

Elektrotechnik und Informationstechnik, Stiftungsprofessur hochparallele VLSI Systeme und Neuromikroelektronik

Schaltkreis- und Systementwurf

Teil 2: Digitale Systeme

Logikschaltungen

- Zweiwertige Darstellung:
 - 0, LOW, L, FALSE
 - 1, HIGH, H, TRUE
- Elektrische Repräsentation als Spannungssignal:
 - $V_{sig} > V_{th} \rightarrow 1$
 - $V_{sig} < V_{th} \rightarrow 0$

• Verknüpfung von Eingangsgrößen zu Ausgangsgrößen

$$\left(\boldsymbol{Z}_{1},\boldsymbol{Z}_{2},\cdots\right)=\boldsymbol{F}(\boldsymbol{A}_{1},\boldsymbol{A}_{2},\cdots)$$

- Darstellungsformen:
 - Logikgleichung
 - Wahrheitswerttabelle
 - Gatter-Netzliste

- Operatoren:
 - Inversion:

• UND Verknüpfung:

$$Z = \overline{A}$$

 $Z = A_1 \cdot A_2$

А	Z	
0	1	
1	0	

A ₁	A ₂	Z
0	0	0
0	1	0
1	0	0
1	1	1

ODER Verknüpfung

 $Z = A_1 + A_2$

A ₁	A ₂	Z
0	0	0
0	1	1
1	0	1
1	1	1

• Rechenregeln:

	Operation + (ODER)	Operation · (UND)
1)	(x + y) + z = x + (y + z)	(xy)z = x(yz)
2)	(x+y) = (y+x)	(xy) = (yx)
3)	x + xy = x	x(x+y) = x
4)	x + yz = (x + y)(x + z)	x(y+z) = xy + xz
5)	$x + \bar{x} = 1$	$xar{x}=0$
6)	x + 0 = x	x1 = x
7)	x + 1 = 1	x0 = 0
8)	x + x = x	xx = x
8)	$\overline{x+y} = \bar{x}\bar{y}$	$\overline{xy} = \overline{x} + \overline{y}$
9)	$\bar{x} =$	x

• Darstellung von Logikfunktionen als Tabelle

Eingänge		Ausgänge		
A ₁	A ₂	A ₃	Z ₁	Z ₂
0	0	0	0	0
0	0	1	1	1
0	1	0	1	0
0	1	1	0	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	0
1	1	1	0	0

- Reduktion von Wahrheitswerttabellen durch Don't care (X)
- \rightarrow Werte die keinen Einfluss auf die Ausgänge haben

Eingänge		Ausgänge		
A ₁	A ₂	A ₃	Z ₁	Z ₂
Х	0	0	0	0
Х	0	1	1	1
Х	1	0	1	0
X	1	1	0	0

- Verknüpfung der Min- oder Max-Terme der Logikfunktion
- MIN-Term:
 - für genau eine Belegung der Eingänge 1
 - ODER Verknüpfung der Min-Terme einer Ausgangsgröße

Eingänge		Ausg	änge	
A ₁	A ₂	A ₃	Z ₁	Z ₂
Х	0	0	0	0
Х	0	1	1	1
Х	1	0	1	0
Х	1	1	0	0

$$\boxed{\begin{array}{l} \texttt{Min-Terme} \\ Z_1 = \overline{A_2} \cdot A_3 + A_2 \cdot \overline{A_3} \\ Z_2 = \overline{A_2} \cdot A_3 \end{array}}$$

- MAX Term:
 - für genau eine Belegung 0
 - UND Verknüpfung der Max Terme einer Ausgangsgröße

$$Z_1 = (A_2 + A_3) \cdot (\overline{A_2} + \overline{A_3})$$
$$Z_2 = (A_2 + A_3) \cdot (\overline{A_2} + A_3) \cdot (\overline{A_2} + \overline{A_3})$$

- Verfahren zur Vereinfachung von Logikfunktionen
- Modifizierte Anordnung der Wahrheitswerttabelle
- Karnaugh-Diagramme mit
 - 2 Eingängen:

Z	<i>A</i> ₁	$\overline{A_1}$
A ₂		
$\overline{A_2}$		

• 3 Eingängen:

Z	A_1A_2	$\overline{A_1}A_2$	$\overline{A_1A_2}$	$A_1\overline{A_2}$
<i>A</i> ₃				
$\overline{A_3}$				

• 4 Eingängen:

Z	A_1A_2	$\overline{A_1}A_2$	$\overline{A_1A_2}$	$A_1\overline{A_2}$
A_3A_4				
$\overline{A_3}A_4$				
$\overline{A_3A_4}$				
$A_3\overline{A_4}$				

- Eintragen der Logiktabelle in das Karnaugh-Diagramm
- Min-Term-Methode:
 - Zusammenfassen von Feldern, die eine 1 enthalten (Min-Terme)
 - Umwandeln dieser Felder in Konjunktionsterme (UND Verknüpfungen)
 - Weglassen von Variablen in negierter und nicht negierter Form
 - ODER Verknüpfung dieser Terme

Z	A_1A_2	$\overline{A_1}A_2$	$\overline{A_1A_2}$	$A_1\overline{A_2}$
A_3A_4	1	1	0	0
$\overline{A_3}A_4$	0	0	1	1
$\overline{A_3A_4}$	0	0	1	1
$A_3\overline{A_4}$	1	1	0	0

 $Z = \overline{A_2} \cdot \overline{A_3} + A_2 \cdot A_3$

- Max-Term-Methode:
 - Zusammenfassen von Feldern, die eine 0 enthalten (Max-Terme)
 - Umwandeln dieser Felder in Disjunktionsterme (ODER Verknüpfungen), <u>Invertierung der Variablen</u>
 - Weglassen von Variablen in negierter und nicht negierter Form
 - UND Verknüpfung dieser Terme

Z	A_1A_2	$\overline{A_1}A_2$	$\overline{A_1A_2}$	$A_1\overline{A_2}$
A_3A_4	1	1	0	0
$\overline{A_3}A_4$	0	0	1	1
$\overline{A_3A_4}$	0	0	1	1
$A_3\overline{A_4}$	1	1	0	0

$$Z = (\overline{A_2} + \overline{A_3}) \cdot (\overline{A_2} + \overline{A_3})$$
$$Z = (\overline{A_2} + A_3) \cdot (A_2 + \overline{A_3})$$
$$Z = \overline{A_2} \cdot \overline{A_3} + A_2 \cdot A_3$$

- Realisierung von logischen Verknüpfungen durch Logikzellen (Gatter, Gates)
- Beispiele:

- Logikzellenbibliotheken beinhalten zusätzlich komplexe Gatter mit >2 Eingängen
 - Adder, Multiplexer, AOI, OAI

- Weit verbreitete Verwendung der "distinctive-shape symbols" in Handbüchern, Standardzellenbibliotheken, wiss. Publikationen
- "... im englischen Sprachraum waren und sind die amerikanischen Symbole (mittlere Spalte) üblich. Die IEC-Symbole sind international auf beschränkte Akzeptanz gestoßen und werden in der amerikanischen Literatur (fast) durchgängig ignoriert. " <u>https://de.wikipedia.org/wiki/Logikgatter</u> (23.10.2015)

• Darstellung der Logikfunktion durch Gatterschaltung

- Darstellung der Logikfunktion abhängig von verfügbarer Gatterbibliothek
- \rightarrow Schaltungssynthese, Mapping

14.10.2018

- Freeware Logic Friday → www.sontrak.com
- Darstellung, Vereinfachung und Optimierung von Logikfunktionen (Gleichung, Tabelle, Gatternetzliste)

- Der Ausgangswert ändert sich bei Änderung der Eingangswerte nach einer Verzögerungszeit t_d (Delay)
- Die ideale Delay-Zeit ist $t_d=0$
- Signalpfade in Schaltungen mit mehreren Ein-und Ausgängen können individuell unterschiedliche Delays haben.

- Kombinatorische Schaltungen beinhalten <u>keine getakteten</u>
 <u>Speicher</u>
- Z = F(A)

- Kombinatorische Schaltungen beinhalten <u>keine getakteten Speicher</u>
- **ABER:** Sie beinhalten dynamische elektrische Systeme (RC) mit Speicher

- \rightarrow Betrachtung der Signale zu **definierten Zeitpunkten** bei denen Z = F(A) gilt
- \rightarrow Anwendung der Theorie der kombinatorischen Logik <u>ohne Speicher</u>.

- Sequentielle Logikschaltungen beinhalten getaktete Speicher
- Speicher Zustand S
- Betrachtung des Systems zu Zeitpunkten (i,i+1,i+2,...),
 z.B. realisiert durch ein <u>Taktsignal (clock)</u>

- Zustandsgesteuertes Speicherelement
- Eingänge:
 - D: Dateneingang
 - C: Clock (alternativ auch E: Enable)
 - C=1 schaltet das Latch transparent (Speicher wird geschrieben)
- Ausgang:
 - Q: Datenausgang

D	С	Q
0	1	0
1	1	1
Х	0	Q _{i-1}

D	С	Q
0	\uparrow	0
1	\uparrow	1
Х	\rightarrow	Q _{i-1}

Q

- Zusätzlicher asynchroner Eingang zum definieren eines Anfangszustandes ٠ unabhängig vom Clock C
- Möglich bei Latches und FlipFlops ٠
- Aktiv nur auf einen Logikpegel (High-aktiv (1), Low-aktiv (0)) ٠
 - High-aktives Set S: aktiv bei S=1
 - Low-aktives Set SN: aktiv bei SN=0
 - High-aktives Reset R: aktiv bei R=1
 - Low-aktives Reset RN: aktiv bei RN=0 •
- $Q_0 = 1$ \rightarrow \rightarrow $Q_0 = 1$ \rightarrow

 \rightarrow

 $Q_0 = 0$

Beispiel: Schieberegister

- Zustandsautomaten (Finite-State Machines (FSM)) sind Grundbestandteil digitaler Steuerwerke
- FSMs sind sequentielle digitale Systeme
- Mealy Automat
 - $S_{i+1} = G(A_i, S_i)$
 - $Z_i = F(A_i, S_i)$

- Moore Automat
 - $S_{i+1} = G(A_i, S_i)$
 - $Z_i = F(S_i)$

FSM

 (S_1, S_0)

Darstellung der Zustände und ihrer

 Z_1

 Z_2

- Zuweisung eines eindeutigen Binärwortes für jeden Zustand
 - Bei m Zuständen \rightarrow N Zustandsbits mit $2^{N} \ge m$
 - Kodierung auch der 2^N-m nicht genutzten Zustände!
- Zustandskodierung hat Einfluss auf:
 - Verlustleistungsaufnahme
 - → Reduktion der Signalwechsel im Zustandswort bei den am häufigsten erwarteten Routen durch den Zustandsgraphen
 - Komplexität der Zustandsübergangslogik und Ausgangslogik
- Beispiel:
 - Binär-Code \rightarrow 6 Toggles in **S** pro Durchlauf
 - Gray-Code \rightarrow 4 Toggles in **S** pro Durchlauf

S _{1,i}	S _{0,i}	A ₂	A ₁	S _{1,i+1}	S _{0,i+1}
0	0	Х	0	0	0
0	0	Х	1	0	1
0	1	Х	Х	1	1
1	0	Х	Х	0	0
1	1	0	Х	0	1
1	1	1	Х	0	0

S _{1,i}	S _{0,i}	Z _{2,i}	Z _{1,i}
0	0	0	0
0	1	0	1
1	0	0	0
1	1	1	0

S _{1,i+1}	S_1S_0	$\overline{S_1}S_0$	$\overline{S_1}\overline{S_0}$	$S_1\overline{S_0}$
A_1A_2	0	1	0	0
$\overline{A_1}A_2$	0	1	0	0
$\overline{A_1A_2}$	0	1	0	0
$A_1\overline{A_2}$	0		0	0

 $S_{1,i+1} = \overline{S_1}S_0$

S _{0,i+1}	S_1S_0	$\overline{S_1}S_0$	$\overline{S_1}\overline{S_0}$	$S_1\overline{S_0}$
A_1A_2	0		1_1	0
$\overline{A_1}A_2$	0	1	0	0
$\overline{A_1A_2}$	1	1	0	0
$A_1\overline{A_2}$	1	1	1	0

$$S_{0,i+1} = S_0 \overline{A_2} + \overline{S_1} S_0 + \overline{S_1} A_1$$

S _{1,i+1}	S_1S_0	$\overline{S_1}S_0$	$\overline{S_1}\overline{S_0}$	$S_1\overline{S_0}$
A_1A_2	Х	1	0	0
$\overline{A_1}A_2$	Х	1	0	0
$\overline{A_1A_2}$	Х	1	0	0
$A_1\overline{A_2}$	X	1	0	0

 $S_{1,i+1} = S_0$

S _{0,i+1}	S_1S_0	$\overline{S_1}S_0$	$\overline{S_1}\overline{S_0}$	$S_1\overline{S_0}$
A_1A_2	Х	0	i_1_i	0
$\overline{A_1}A_2$	Х	0	0	0
$\overline{A_1A_2}$	X	0	0	īĪ
$A_1\overline{A_2}$	X	0	1	<u>_1</u>

$$S_{0,i+1} = S_1 \overline{A_2} + \overline{S_1 S_0} A_1$$

- 1. Zustandsübergangsdiagramm aufstellen
- 2. Bestimmung der Anzahl der Zustandsbits und Zustandskodierung
- 3. Zustandsübergangstabelle und Ausgangstabelle
- 4. Vereinfachung der Logik (Karnaugh, Gleichung)
- 5. Gatternetzliste erstellen

Arithmetik - Zahlenformate

Binäre Zahlen

• Darstellung vorzeichenloser (unsigned) ganzer Zahlen als n-bit Vektor

n-1

 $D=\sum b_i\cdot 2^i$

- $b \in (0; 1)$
- Dezimaler Wert:
- Wertebereich: $0 \le D \le 2^n 1$

Dezimalwert	Binäre Darstellung	Hexadezimale Darstellung
0	0b0000	0x0
1	0b0001	0x1
2	0b0010	0x2
3	0b0011	0x3
4	0b0100	0x4
5	0b0101	0x5
6	0b0110	0x6
7	0b0111	0x7
8	0b1000	0x8
9	0b1001	0x9
10	0b1010	0xA
11	0b1011	OxB
12	0b1100	0xC
13	0b1101	0xD
14	0b1110	0xE
15	0b1111	0xF

• 1-Bit Addition a+b

a	b	Summe	Übertrag
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

• Beispiel Addition:

• Addition von n-Bit Zahlen \rightarrow n+1 Bit Ergebnis

• 1-Bit Multiplikation a·b

• Beispiel: 0b1001 · 0b0101 (9·5)

• Multiplikation von n-Bit Zahlen \rightarrow 2n-Bit Ergebnis

- Darstellung vorzeichenbehafteter (signed), ganzer Zahlen als n-bit Vektor
- $b \in (0; 1)$
- Zweierkomplement Darstellung
- Dezimaler Wert:
 - positive Zahl: wenn $\mathbf{b}_{n-1} = 0$: $D = \sum_{i=0}^{n-1} b_i \cdot 2^i$
 - negative Zahl: wenn $\mathbf{b}_{n-1} = 1$: $D = -1 \cdot (\sum_{i=0}^{n-1} \overline{b_i} \cdot 2^i + 1)$
- Wertebereich: $-2^{n-1} \le D \le 2^{n-1} 1$

Dezimalwert	Binäre Signed Darstellung (Zweierkomplement)
0	0b0000
1	0b0001
2	0b0010
3	0b0011
4	0b0100
5	0b0101
6	0b0110
7	0b0111
-8	0b1000
-7	0b1001
-6	0b1010
-5	0b1011
-4	0b1100
-3	0b1101
-2	0b1110
-1	0b1111

- Berechnung von $-1 \cdot A$
 - 1. Invertierung aller Bits von A
 - 2. Addition von +1
- Beispiel:
 - -1·3 =-1·(0b0011)→ 0b1100+0b0001=0b1101=-3
 - -1·(-3) =-1·(0b1101) → 0b0010+0b0001=0b0011 = 3

٠	Beispiel 1:			0	0	1	0	(2)	
		+		1	1	1	0	(-2)	
		Übertrag	1	1	1	0			
		Summe		0	0	0	0	(0)	OK
				1	1	1	0		
•	Beispiel 2:			1	1	1	0	(-2)	
		+		1	1	1	0	(-2)	
		Übertrag	1	1	1	0			
		Summe		1	1	0	0	(-4)	OK
•	Reisniel 3.			0	1	0	0	(4)	Error
-	Delspier 5.	+		0	1	1	0	(6)	Addition von pos.
		Übertrag	0	1	0	0			Zahlen muss
		Summe		1	0	1	0	(-6)	pos. sem
	Roichial 1			1	1	0	0	(-4)	
•	Deispiel 4.			1	1	0	0	(-4)	Error
		+		1	0	1	0	(-6)	Addition yon
		Übertrag	1	0	0	0			neg. Zahlen
		Summe		0	1	1	0	(6)	muss neg. sem!
							_		

- Carry: Übertrag von der höchsten binärstelle (MSB) im **unsigned** Bereich
- Overflow: Detektion von Überläufen des **signed** Bereich

	Sign(A)	Sign(B)	Sign(A+B)	Overflow
	0	0	0	0
	0	0	1	1
	0	1	0	0
	0	1	1	0
	1	0	0	0
	1	0	1	0
<		1	0	1
	1	1	1	0

Dezimalwert	Unsigned Darstellung	Signed Darstellung
Carry Bit	Error	nicht relevant
Overflow Bit	nicht relevant	Error

• Addition und Subtraktion kann mit der gleichen Schaltung erfolgen

- Darstellung von Zahlen mit Nachkommastellen als n-bit Vektor
- k Nachkommastellen und n-k Vorkommastellen
- Wertigkeit des LBS: 2^{-k}
- Dezimaler Wert:

$$D = \sum_{i=0}^{n-1} b_i \cdot 2^{i-k}$$

• Wertebereich: $0 \le D \le (2^n - 1) \cdot 2^{-k}$

Darstellung vorzeichenbehafteter Fixed-Point Zahlen analog zu ganzen Zahlen (Skalierung mit 2^{-k})

- Beispiel 2:
 - n=4, k=2, 2^{-k}=0,25, signed

			0	1	1	0	(1,50)
	+		1	0	1	1	(-1,25)
Übertrag		1	1	1	0		
Summe			0	0	0	1	(0,25)

- Addition/Subtraktion von n-Bit Fixed-Point Zahlen:
 - $A=a\cdot 2^{-k}$, $B=b\cdot 2^{-k} \rightarrow A\pm B=(a\pm b)\cdot 2^{-k}$
 - (n+1)-Bit Ergebnis
- Beispiel 1:
 - n=4, k=2, 2^{-k}=0,25, unsigned

			0	1	1	0	(1,50)
	+		1	0	0	1	(2,25)
Übertrag		0	0	0	0		
Summe			1	1	1	1	(3,75)

- Multiplikation von n-Bit Fixed-Point Zahlen:
 - $A=a\cdot 2^{-k}$, $B=b\cdot 2^{-k} \rightarrow A\cdot B=(a\cdot b)\cdot 2^{-2k}$
 - \rightarrow Verdopplung der Anzahl der Nachkommastellen
 - 2n-Bit Ergebnis mit 2^{-2k} LSB Genauigkeit
- Beispiel:

- n=4, k=2, 2^{-k}=0,25, unsigned

- 0b1001 · 0b0101 (2,25 · 1,25)

- Multiplikation von n-Bit Werten \rightarrow 2n-Bit Ergebnis
- Bei n-Bit Datenbussen ist Skalierung notwendig c=Scale(b)

- Im Praktikum:
 - **SCALER64_to_32**: Ermittlung von Overflows (signed, unsigned)
 - Angabe der Anzahl k LSBs
 - Nur Verwenden wenn Overflow Signale benötigt werden
 - Sonst: Direktes Verdrahten der Bussignale

- Division von n-Bit Fixed-Point Zahlen:
 - $A=a\cdot 2^{-k}$, $B=b\cdot 2^{-k} \rightarrow A/B=(a/b)\cdot 2^{-k+k}=a/b$
- Bei n-Bit Operanden:
 - n-Bit ganzzahliges Ergebnis + n-Bit Rest (Modulo)
 - Beispiel: 0b1101 / 0b0011 (13/3) = 0b0100 Rest: 0b0001
 - Praktikum: DIV_FIXED32_signed und DIV_FIXED32_unsigned
 - n-Bit ganzzahliges Ergebnis + <u>unendlich viele</u> Nachkommastellen
 - Beispiel: 0b1101 / 0b0011 (13/3) =0b0100,010101... (4,33333...)
 - Im Praktium: DIV_FIXED64_signed (32 Vorkomma, und Nachkommastellen, <u>begrenzte Genauigkeit!</u>)

- Probleme bei Festkommadarstellung:
 - Eingeschränkter Wertebereich
 - Fixed-Point: Kompromiss zwischen Wertebereich und Genauigkeit
- Zahlendarstellung in der Form:
 - Basis: 2
 - S: Vorzeichen (sign) \rightarrow 1-Bit
 - M: Mantisse
 - E: Exponent (variabel)

- $X = S \cdot M \cdot 2^{E}$
- \rightarrow unsigned fixed-point
- \rightarrow signed integer
- Sehr hohe Präzision bei kleinen Zahlen
- Sehr großer Wertebereich bei großen Zahlen (bei geringerer Präzision)
- Fließkommadarstellungen sind Näherungen!

- Beispiel: Zahl 5 als Fließkommadarstellung
 - $5 = +1 \cdot 1, 25 \cdot 2^2$
 - S=0
 - M=0b1,01_0000_0000_0000_0000
 - E=0b0000010

- Aber auch: $5 = +1 \cdot 0,625 \cdot 2^3, 5 = +1 \cdot 0,3125 \cdot 2^4, 5 = +1 \cdot 0,15625 \cdot 2^5, ...$
- Die Fließkommadarstellungen ist nicht eindeutig bestimmt
- \rightarrow Normierung des Wertebereichs der Mantisse
- z.B. 1≤M<2

- Der Exponent einer Fließkommazahl ist vorzeichenbehaftet (signed)
- Hardware für signed Operationen notwendig
- Speicherung des Exponenten als E`=E+B als vorzeichenlose (unsigned) Zahl
 - B: Bias
 - Beispiel: 8-Bit Exponent: B=127
- Ermöglicht Nutzung von unsigned Arithmetik Komponenten für Floating Point Units

Bias

	Bits	Mantisse (Bit)	Exponent (Bit)	Bias	Wertebereich	Genauigkeit (Dezimale Nachkommastellen)
Single (float)	32	23	8	127	10 ⁻³⁸ bis 10 ³⁸	≈7
Double	64	52	11	1023	10 ⁻³⁰⁸ bis 10 ³⁰⁸	≈16

- Zahlenformate Fixed-Point (singed, unsigned) und Floating Point
- Höhere Genauigkeit erfordert mehr Aufwand bezüglich:
 - Höherer Speicherbedarf
 - Größere Chipfläche für Arithmetik
 - Längere Logiklaufzeiten → Häufig Realisierung komplexer Arithmetik Blöcke in mehreren Taktzyklen (Pipelining)
 - Höheren Energieaufwand der Berechnung
- Wahl des Zahlenformates ist entscheidend für die Effizienz der Hardwareimplementierung

Arithmetik - Schaltungen

- Addition von 2-Bit
 - Eingänge A, B
 - Ausgänge S (Sum), CO (Carry)

A	В	S	CO
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

- Addition von 2 Bit und Carry
 - Eingänge A, B, CI (Carry In)
 - Ausgänge S (Sum), CO (Carry)

А	В	CI	S	CO
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

 $S = A \oplus B \oplus CI$ $CO = A \cdot B + CI \cdot (A \oplus B)$

 $S = A \oplus B \oplus CI$ $CO = A \cdot B + CI \cdot (A \oplus B)$

Carry Pfad CI → CO: 2 Gatterstufen

- Verkettung von Volladdierern zur Addition von n-Bit Zahlen
- Wenn kein CI benötigt wird, kann erste Stufe durch HA ersetzt werden

Kritischer Pfad: CI → CO: 2*n Gatterstufen

- Beispiel:
 - 32-Bit Addierer → 64 Gatterverzögerungen
 - 28nm: $t_{gate} \approx 50 \text{ps} \rightarrow T=3,2 \text{ns} \rightarrow f_{max} \approx 310 \text{MHz}$
- Stand der Technik: 32-Bit Prozessoren bei >2GHz → Wie geht das?

- Carry Pfade sind Timing kritisch!
- \rightarrow Reduktion der Logikstufen im Carry Pfad
- Einführen neuer Größen:
 - P: Propagate: Weiterreichen des Carry
 - G: Generate: Erzeugen des Carry

A	В	CI	S	СО	P	G
0	0	0	0	0	0	0
0	0	1	1	0	0	0
0	1	0	1	0	1	0
0	1	1	0	1	1	0
1	0	0	1	0	1	0
1	0	1	0	1	1	0
1	1	0	0	1	0	1
1	1	1	1	1	0	1

 $S = A \oplus B \oplus CI$ $CO = A \cdot B + CI \cdot (A \oplus B)$

 $P = A \oplus B$

$$G = A \cdot B$$

 $S = P \oplus CI$ $CO = G + CI \cdot P$

- Vorausberechnung der Carry Bits → Carry Look Ahead
- Beispiel n=4:
 - $C_1 = G_0 + C_0 P_0$
 - $C_2 = G_1 + C_1 P_1 = G_1 + G_0 P_1 + C_0 P_0 P_1$
 - $C_3 = G_2 + C_2 P_2 = G_2 + G_1 P_2 + G_0 P_1 P_2 + C_0 P_0 P_1 P_2$
 - $C_4 = G_3 + C_3 P_3 = G_3 + G_2 P_3 + G_1 P_2 P_3 + G_0 P_1 P_2 P_3 + C_0 P_0 P_1 P_2 P_3$

Benötigt nur 5 Logikstufen!

Carry Look Ahead Addierer

• Vorausberechnung der von Generate und Propagate für eine n-Bit Gruppe

- Group Propagate: $PG=P_3P_2P_1P_0$
- Group Generate: $GG = G_3 + G_2P_3 + G_1P_3P_2 + G_0P_3P_2P_1$

→ 2+1 Gatterstufen → 4+1 Gatterstufen

- \rightarrow 1+3·4+2=15 Gatterstufen für C64
- 64-Bit Ripple Carry Adder hätte ≈128 Gatterstufen

- Schnelle Carry Weiterleitung durch Multiplexer
- Homogene Hardware Realisierung von Addierer Ketten

 $S = P \oplus CI$

 $CO = G + CI \cdot P$

Carry Pfad CI → CO: 1 Multiplexer

• Quelle: Xilinx 7 Series FPGAs Configurable Logic Block, User GuideUG474 (v1.7) November 17, 2014

• Gewichtete Addition von Partialprodukten a_i·b_i

					A3	A2	A1	A0	
					A3B0	A2B0	A1B0	A 0 B0	B 0
+				A3B1	A2B1	A1B1	A 0 B1		В1
+			A3B2	A2B2	A1B2	A0B2			В2
+		A3B3	A2B3	A1B3	A0B3				В3
	P 7	P6	P5	P4	P3	P2	P1	P0	

• Addition von Partialprodukten a_i·b_i durch Ripple Carry Ketten

- Vorstellung von Schaltungen zur binären Addition und Multiplikation
- Strategien zur Optimierung der Hardware Implementierung bezüglich Gatterlaufzeiten
- Bei der praktischen Implementierung sind weitere Randbedingungen zu beachten, wie z.B. Chipfläche, Verlustleistung

Datenpfade

- Arithmetic Logic Unit (ALU) prozessieren numerische und logische Daten
 - Operanden (OPA, OPB, ...)
 - Modus (M): Wahl der Operation, z.B.
 - ADD, SUB, MUL, DIV, SHIFT, AND, OR, ...)
 - Ergebnis (RES)
 - Status Flags (F): Zusatzinformation zur durchgeführten Operation, z.B.
 - CARRY, OVERFLOW, SIGN, ZERO
- ALU Datenpfad Baublöcke können kombinatorisch oder sequentiell realisiert sein
- Im Praktikum stehen dedizierte Baublöcke für die Arithmetischen Operationen zu Verfügung
- \rightarrow Details siehe Anleitung zum Praktikum

- Anordnung aus n-Bit FlipFlops zur Datenspeicherung
- Reset-Wert des Registers, festgelegt zur Implementierungszeit durch Auswahl des FlipFlop Typs (Set, Reset)

- Bedingtes Schreiben auf das FlipFlop bei E=1
 - $Q_{i+1}=D_i$, wenn E=1
 - $Q_{i+1}=Q_i$, sonst
- Realisierung mit Multiplexer
 - permanentes Schreiben der Daten
 - Auswahl der Daten

- geringer Schaltungsaufwand
- Kaum Erhöhung der Verlustleistung bei hoher Schreibaktivität

© Sebastian Höppner 2015

- Realisierung mit Clock Gate
 - Selektives Takten des Registers

- Höherer Schaltungsaufwand (Fläche)
- Höhere Verlustleistung bei hoher Schreibaktivität
- Geringere Verlustleistung bei nur niedriger Schreibaktivität

• → Anwendung von Clock Gating abhängig vom Betriebsszenario

• Nicht-flüchtiger Speicher (ja/nein)

Тур	NVM	Bits/µm²	Zugriffzeit	Typische Speichergrößen	Kommentar
Latch	Nein	<1	Einige 10ps	einige Bit	Ansteuerschaltung nötig da Level sensitiv!
FlipFlop	Nein	<0.4	einige 10ps	einige Bit	
SRAM	Nein	<7 (Zelle) <5 (Makro)	einige 100ps	einige kBit bis MBit	Komplexe Ansteuerschaltung (SRAM Makro)
(embedded) DRAM	Nein	<30	einige 100ps	einige kByte bis Mbyte	Dynamischer Speicher, refresh nötig. Ggf. extra Prozessoptionen (Kosten!)
(embedded) Flash	Ja	<30	einige ns	einige kByte bis Mbyte	Extra Prozessoptionen (Kosten!)
ROM	Ja	<15	einige 100ps	einige kBit bis MBit	"Maskenprogrammierung" bei der Implementierung
OTP	Ja	<10	einige 100ps	einige kBit bis MBit	"Einmalprogrammierung" beim Test der Chips

Zahlenwerte geschätzt für 28nm Technologieknoten

- Single Port (SP)
 - Zugriff von einem
 Write/Read Port
- Dual Port (DP)
 - Zugriff von 2 unabhängigen Write/Read Ports
 - Synchrone und asynchrone Variante möglich
 - Arbitrierung/Priorisierung von Write Zugriffen auf gleiche Adressen nötig
- Two-Port (TP)
 - Zugriff von einem Write
 Port und einem separaten
 Read Port

- Adressierbarer Zugriff
- Typischer Weise synchrone Realisierung (gleicher Takt f
 ür alle Ports)
- Schneller Zugriff (1 Takt), kurzes Delay CLK $\uparrow \rightarrow Q$

 Anwendung in Systemen mit mehreren Rechenkernen

CLK

- Register File für Infineon X-GOLD SDR[™] 20 Prozessor •
- Entwickelt an der Stiftungsprofessur HPSN (2008/2009) •
- 16-Worte zu je 34 Bit, 4-Write Ports, 6 Read Ports •
- Cell-Based Design \rightarrow Optimierung auf Transistorlevel

Ouelle: infineon.com

Johannes Uhlig, Sebastian Höppner, Georg Ellguth, and René Schüffny, A Low-Power Cell-Based-Design Multi-Port Register File in 65nm CMOS Technology, IEEE International Symposium on Circuits and Systems ISCAS 2010, 2010, p. 313-316,

Johannes Uhlig, Sebastian Höppner, Georg Ellguth, and René Schüffny, A Low-Power Cell-Based-Design Multi-Port Register File in 65nm CMOS Technology, IEEE International Symposium on Circuits and Systems ISCAS 2010, 2010, p. 313-316,

- Die Verschaltung von Datenpfadbaublöcken soll flexibel und re-konfigurierbar erfolgen
- Bussysteme dienen der Vernetzung von Datenpfadelementen
- Vorstellung von 3 Ansätzen:
 - Tri-state Bus
 - Multiplexer Bus
 - Komplexe Bussysteme und Network-on-Chip

• Gatterausgänge erzeugen 2 Logikpegel (0,1)

 Das Zusammenschalten mehrerer Gatterausgänge ist nur möglich wenn sie die gleichen Pegel treiben

- Einführung eines **Dritten** Ausgangszustandes (Tri-State) Z
- Ausgangstreiber wird hochohmig geschalten, durch separates Steuersignal (OE)

- Das Zusammenschalten mehrerer Gatter**ausgänge** im Tri-state ist möglich.
- Es darf nur ein Treiber aktiv sein!

Tri-State-Buffer

• Buffer mit Tri-state Ausgangstreiber

OE	A	Z
0	Х	Z
1	0	0
1	1	1

• Kombinatorische Gatter und sequentielle Baublöcke (z.B. Register) können mit Tri-state Ausgängen versehen werden.

- Mehrere Baublöcke können an **einen** Tri-State Bus angeschlossen werden
- Pro Tri-State Bus darf nur **ein** Treiber aktiv sein \rightarrow Steuerwerk!
- Mehrere Busse möglich für **parallelen** Datentransfer zwischen Baublöcken

• In aktuellen Entwürfen mit automatischem Platzieren und Verdrahten (P&R), werden Tri-State Signale vermieden!

- Auswahl der Datenquellen für den Bus durch Multiplexer
- Auswahl des Busses für den Eingang des Datenpfad Elements durch Multiplexer
- Setzen der Multiplexer Select Signale durch das Steuerwerk

BUS A

- Vorteil: Keine Tri-State Treiber
- Anzahl der Multiplexer Eingänge abhängig von notwendigen
 Datenverbindungen
- Ziel: Minimierung der notwendigen Multiplexer Eingänge
- Möglichkeit der hierarchischen Realisierung von Multiplexern
 - Bus Multiplexer: Auswahl der Datenquelle für den Bus
 - Eingangs Multiplexer: Auswahl der Datenquelle f
 ür den Eingang des Datenpfadelementes

• Del	spiel. $C = (A + D) +$		UFA	OPD		
Zustand	Datenquelle	Anzahl Busse		\downarrow		
			M.			•
LOAD A	IN→ REGA	1	1*1	ALU		-
LOAD B	IN→ REGB	1				
COMP1	REGA → ALU(OPA) REGB → ALU(OPB) REGA → SHIFT	2		RES		
COMP2	ALU(RES)→ ALU(OPA) SHIFT→ ALU(OPB)	2		REGA	N	
STORE	ALU(RES) → OUT	1			ſ	REGB

Poincial $C = (A \mid B) \mid A/2$

• \rightarrow 2 Datenbusse nötig (BUS A, BUS B)

TECHNISCHE UNIVERSITÄT Beispiel: Bus-Implementierung Multiplexer Bus Variante 1 DRESDEN

TECHNISCHE UNIVERSITÄT Beispiel: Bus-Implementierung Multiplexer Bus Variante 2 DRESDEN

• Reduktion der Multiplexer

- Die bisher vorgestellten Bus-Systeme erfordern Anwendungsspezifische Kontrolle durch ein Steuerwerk
- Sie sind nicht standardisiert \rightarrow Einbinden vorgefertigter Baublöcke (IP) schwierig. ۲
- Komplexe digitale Systeme erfordern flexible, standardisierte Bussysteme
- Grundkonzept:
 - Standardisierte Busschnittstelle (Daten, Adresse, Steuer- und Statussignale) •
 - Adressierung der Busteilnehmer (ID) •
 - Zugriff über Ports (ähnlich Memory) ٠
 - Businterne Steuerlogik realisiert den Datentransfer und Uberwacht den Zugriff ٠

Bus

- "Circuit Switched Network" → Multiplexer Bus
- Master und Slave Komponenten mit standardisiertem Bus-Interface
- Arbitrierung und Priorisierung des Zugriffs durch Bus Controller
- Synchrone Realisierung (CLK)
- Sequentieller Zugriff (Adress-Cycle, Data Cycle, Wartezyklen wenn Bus ", Burst)
- Beispiele: ARM AHB, WishBone, ...

- Vorteile:
 - Standardisierte Busschnittstelle
 - Geringer Latenz (wenige Takte)
 - Einfach zu implementieren (synchrones Design)
- Nachteile:
 - Lokal synchrone Taktung f
 ür "globale Verdrahtung" auf dem Chip
 - Hoher Aufwand an Chipfläche und Verlustleistung
 - Kann die maximale Taktfrequenz limitieren.
- Beispiel: Music 2 SIMD Cluster

Infineon/IMC MuSiC2 SIMD Cluster (conv. interconnect)

- "Packet Switched Network" → Routing von Paketen durch das Netzwerk (Router)
- Flexible Topologien möglich
- Standardisiertes Paketformat und Interface der Komponenten
- Hohe Performanz (Datendurchsatz, Latenz) in komplexen Systemen durch Parallelität
- Global asynchrone Realisierung möglich, individuelle Takte der einzelnen Komponenten

- Tomahawk2: Software-Defined Radio Basisbandprozessor, entwickelt von TUD-MNS und TUD-HPSN
- Vernetzung der Systemkomponenten in einem NoC
- Punkt-zu-Punkt Verbindungen mit schnellen seriellen Links \rightarrow kompaktes Layout

Höppner, Sebastian and Walter, Dennis and Hocker, Thomas and Henker, Stephan and Hänzsche, Stefan and Sausner, Daniel and Ellguth, Georg and Schlüssler, Jens-Uwe and Eisenreich, Holger and Schüffny, René, An Energy Efficient Multi-Gbit/s NoC Transceiver Architecture With Combined AC/DC Drivers and Stoppable Clocking in 65 nm and 28 nm CMOS, IEEE Journal of Solid State Circuits 50 (2015), no. 3, 749-762,

- Taktfrequenz und Datendurchsatz, gemessen in
 - [GHz]
 - Operationen pro Sekunde [GOPS]
- Chipfläche, gemessen in
 - [µm²]
 - NAND2 Äquivalenten (technologieunabhängige Normierung)
- Energie pro Rechenschritt, gemessen in
 - [pJ]

- Datenpfade besitzen viele Timing-Pfade mit Verzögerung t_{delav}
 - Startpunkt: Register Ausgang
 - Endpunkt: Register Eingang
- Taktfrequenz limitiert durch den kritischen Pfad (f_{max}≈1/max(t_{delay}))
- Oft sind nur wenige Datenpfadelemente kritisch für das Timing

- $f_{max} = 1/max(t_{delay}) \rightarrow 285MHz$
- Latenz: 4 Taktzyklen
- Datendurchsatz: 285MHz/4=71 MOP/s (ohne Pipelining)

• Logic Re-Timing:

- $f_{max} = 1/max(t_{delay}) \rightarrow 333MHz$
- Latenz: 4 Taktzyklen
- Datendurchsatz: 333MHz/4=**83 MOP/s** (ohne Pipelining)
- Kann automatisch von Synthesetools durchgeführt werden

• Einfügen von Registerstufen:

- $f_{max} = 1/max(t_{delay}) \rightarrow 500MHz$
- Latenz: 5 Taktzyklen
- Datendurchsatz: 500MHz/5=100 MOP/s (ohne Pipelining)
- Arithmetische Schaltungs-IP (RTL) oft konfigurierbar hinsichtlich der Anzahl benötigter Takte (z.B. Synopsys Design Ware)

- Realisierung von sequentiellen Abläufen
- Register Werte in Zeitschritt i sind Grundlage f
 ür Berechnung in Schritt i+1
- Vorteile:
 - Kürzere Logiklaufzeiten (Berechnung in mehreren Taktzyklen)
 - Geringer Hardware Aufwand (Wiederverwendung von Baublöcken in unterschiedlichen Taktzyklen)
- Nachteile:
 - Längere Berechnungsdauer

- Latenz N Takte
- Datenrate 1/N Operationen pro Takt

Pipelining

- Latenz N Takte
- Datenrate 1 Operation pro Takt

- Einfügen von Registerstufen in einen binären Multiplizierer
- Latenz: 4 Takte, Datendurchsatz: 1 Ergebnis/Takt

- Vorstellung von
 - Datenpfadbaublöcken
 - Speicherarchitekturen
 - Bussystemen
- Timing Optimierung von sequentiellen Datenpfadbaublöcken
 - Einfügen von Registerstufen
 - Sequential Re-Timing
 - Pipelining

Realisierung von Algorithmen in Hardware

- Algorithmus Beschreibungsformen
 - Textform
 - Gleichungen
 - (Pseudo-) Code
 - Struktogramm
 - ...
- Szenario 1:
 - Programmierung einer gegebenen Hardware (Prozessor)
 - Gegebener Datenpfad, Speicherarchitektur, Befehlssatz
 - Abbilden des Codes auf die Hardware durch Compiler
- Szenario 2:
 - Entwurf einer für den Algorithmus spezifischen Hardware (ASIC)
 - Entwurf von Datenpfad, Speicherarchitektur, Control-Flow

- Die "Laufzeit" einer Operation wird in Takt Zyklen angegeben
- Darstellung der Startzeit und der Verzögerungszeit
- Angabe der notwendigen Hardware Ressourcen

- Festlegen der Abarbeitungsreihenfolge (Schedule) der Operationen
- Berücksichtigung von Randbedingungen (Constraints)
 - Laufzeit (Timing Constraints)
 - Hardwareaufwand (Ressource Constraints)
- Scheduling ist ein Optimierungsproblem
 - Festlegen der Start-Zeit der Operationen
 - Einhalten der gegebenen Randbedingungen
- Ergebnis des Scheduling:
 - Erstellen eines DFG
 - Daraus abgeleitet:
 - Datenpfad
 - Welche und wie viele Datenpfadbaublöcke?
 - Welche und wie viele Register?
 - Wie viele Busse?
 - Register-Transfer Folge zum Entwurf des Steuerwerks

- Numerische DGL Lösung: y``+3xy`+3y=0
- Euler-Vorwärts-Verfahren
- Speichern des Ergebnis im RAM an ADDR

```
WHILE (x<a) DO
    x1:=x+dx;
    u1:=u-(3·x·u·dx)-(3·y·dx);
    y1:=y+(u·dx);
    x := x1; u := u1; y :=y1;
    addr := addr+1; STORE(y1,addr);
ENDWHILE</pre>
```

Quelle: Scheduling Algorithms for High-Level Synthesis, Zoltan Baruch

Quelle: Scheduling Algorithms for High-Level Synthesis, Zoltan Baruch

- Scheduling Algorithmus:
 - Wiederhole f
 ür alle Knoten v_i
 - Auswahl eines v_i dessen **Vorgänger** alle zugewiesen sind
 - Terminiere v_i → t_i=max (t_j +d_j) für alle j aus Pred_{vi} (→ frühester Zeitpunkt)
 - Bis alle v_i zugewiesen sind

\rightarrow 4 MUL, 2 ADD/SUB

- Scheduling Algorithmus :
 - Wiederhole f
 ür alle Knoten v_i
 - Auswahl eines v_i dessen **Nachfolger** alle zugewiesen sind
 - Terminiere v_i → t_i=min (t_j −d_i) für alle j aus Succ_{vi} (→ spätester Zeitpunkt)
 - Bis alle v_i zugewiesen sind

\rightarrow 2 MUL, 4 ADD/SUB

Mobility

 Freiheitsgrad des Startzeitpunktes von Operationen ohne Auswirkung auf die Latenz des DFG

- Scheduling für
 - gegebene Hardware Ressourcen (Chipfläche)
 - Extremfall: minimale Hardware (Module, Busse)
- Nutzung der Mobility (keine Erhöhung der Latenz):

 \rightarrow 2 MUL, 2 ADD/SUB

• Einfügen zusätzlicher Takte \rightarrow Erhöhung der Latenz

- Scheduling für gegebene Abarbeitungszeit
- Anwendung z.B. digitale Signalprozessoren (DSP) mit Echtzeit Anforderung → Ergebnis muss nach gegebener Taktzahl vorliegen
- Beispiel: Minimale Hardware bei 6 Takten Latenz

- Detaillierter DFG mit expliziter Darstellen von Registern
 - Visualisierung der Speicherung von Daten \rightarrow Register Hardware
 - Grundlage des Entwurfs von Pipelines
- Explizite Darstellung von Verzweigungen

- Zuweisung von Datenbussen an Kanten des DFG
- \rightarrow Bestimmung der Anzahl der notwendigen Datenbusse

Sequentieller SRAM Zugriff

TECHNISCHE UNIVERSITÄT Darstellung von Speicherzugriffen- Lesen vom SRAM DRESDEN

- Konstruktion des Datenpfades aus einem DFG
- Bestimmen der Anzahl von
 - Modulen
 - Registern
 - Busse/Datenverbindungen
- Entwurf des Datenpfades mit Bussystem (z.B.Multiplexer)
 → siehe Abschnitt Datenpfade/Busse

• Darstellung der Abläufe in Register Transfer Notation

• Ein Register-Transfer Block beschreibt **einen** Taktzyklus

14.10.2018

- Die RT-Darstellung legt die Zustände und Zustandsübergänge der FSM fest
 - Bedingungen: Flags
- Die RT-Darstellung legt die Signale \rightarrow Ausgangslogik der FSM
 - Schalten von Bussen (Tristate-Treiber, Multiplexer)
 - Konfigurieren von Datenpfadbaublöcken (ADD/SUB)
 - ...
- \rightarrow siehe Abschnitt FSM
- → Details und ausführliches Beispiel siehe Praktikumsanleitung

- Vorstellung des Datenflussgraphen, Scheduling und Optimierung
 - ASAP, ALAP, Ressource Constraints und Timing Constraints
 - Pipelining
- Register Transfer Folge \rightarrow Ableiten von Datenpfad und FSM

- Neuromorphe Hardware für das Human Brain Project
 - Gehirnsimulation
 - Technische Anwendungen, z.B. Robotik
- Herausforderung:
 - Simulation von einer großen Anzahl Neuronen und Synapsen in biologischer Echtzeit
- Entwicklung eines Many-Core Computers mit > 4 Millionen ARM Prozessoren (SpiNNaker 2)
 - Architekturentwicklung \rightarrow University of Manchester
 - Chip-Design \rightarrow TU Dresden

Quelle: Human Brain Project

http://bluebrain.epfl.ch

SpiNNaker 1 Chip Folie Nr. 146

FECHNISCHE

- Berechnung der Dynamiken von Neuronen und Synapsen
- Dabei häufig verwendet: ex
- Zahlenformat: 32-Bit, s16.15 fixed-point
- Prozessor Kern (ARM Cortex M4)
 - Bisher **exp()** in Software realisiert (≈30 Takte)
 - → Hardware Beschleuniger f
 ür exp(),
- Anbindung als AHB Slave an den Prozessor

- Pipeline mit 4 Stufen
- FIFO am Ausgang (32 Werte)
- Realisierung in 28nm CMOS
- >500MHz Taktfrequenz möglich

Measure	exp accelerator	software exp
Throughput @500MHz	250Mexp/s	5.3Mexp/s
Time per exp, pipelined	2clks/exp	95clks/exp
Latency	6clks/exp	95clks/exp
Energy per exp (nominal)	0.44nJ/exp	25nJ/exp
Energy per exp (0.7V/154MHz)	0.21nJ/exp	12nJ/exp
Total area	$10800 \mu \mathrm{m}^2$	-

J. Partzsch et al., "A fixed point exponential function accelerator for a neuromorphic many-core system," 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, 2017, pp. 1-4. doi: 10.1109/ISCAS.2017.8050528

- Testchip: Santos
- 28nm SLP CMOS, 18mm²
- Komponenten Testchip für Neuromorphen Supercomputer
- **4** Processing Elements, Speicherinterface, schnelle Serielle I/Os 14.10.2018 © Sebastian Höppner 2015 Folie

Modul Neuromorphic VLSI-Systems

Neuromorphe Systeme

Analoger CMOS-Schaltungsentwurf

- Grundlagen zu neuronalen Netzen und ihrer technischen Realisierung
- Integrierte analoge Schaltungen: Entwurf, Simulation, Verifikation
- Praktischer Schaltungsentwurf und Layout mit Cadence

Human Brain Project