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— Background
Virtual staining using deep learning offers a fast

and resource-efficient alternative to traditional
staining protocols in microscopy. In this project, a
neural network previously trained for virtual
Hematoxylin and Eosin (H&E) staining of cellular
images will be adapted via transfer learning to
support fluorescence-based staining methods. The
goal is to enable accurate, label-free visualization
of fluorescence markers, reducing experimental
effort and cost. This project combines biomedical

image processing with state-of-the-art AI methods.
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— Tasks
- Select state-of-the-art H&E model .
- Prepare data and model for transfer learning P pgthon
- Training of the network
- Evaluation and comparison of networks

— Contact
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Explainable Virtual Staining
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— Background
Virtual staining models based on deep learning
enable label-free visualization of fluorescence — Tasks
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markers in microscopy images. While these models
offer impressive performance, their decision-
making processes remain largely opaque. This
project aims to investigate the explainability of - Test network based on input images
these networks through an augmentation-based - Evaluation of results

- Analyse input data from current dataset
- Prepare augmented input images

@. python

study. By systematically altering input images and
analyzing the network's response, we will identify
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critical image features that influence virtual _ _ '
staining outcomes and contribute to model * Katharina Schmidt, BAR 26, E-Mail:
transparency in biomedical Al applications. * Nektarios Koukourakis, E-Mail:
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