Wochenplan: Messsystemtechnik SoSe 2024 (Messtechnik III) Freitag: 11:10-12:40 RAUM: GÖR 0226/H

KW	Termin	Vorlesung und Übung (11:10 – 12:40 Uhr)
15	12.04. Vorlesung 1 Dr. Kuschmierz	 Einführung a. AMR, Sensoren für die Robotik und Biosensorik b. Optomechatronik, adaptive Optik c. Al/ML/Deep Learning: Einführung Optolektronische Komponenten a. Quellen (LED, Laserdioden, Laser)
16	19.04. Vorlesung 2 Dr. Kuschmierz	 Optolektronische Komponenten b. Modulatoren (DMD, AOM) c. Photodioden d. CCD/CMOS Kameras e. Single-Photon/ High-Speed/ Low-Noise f. Head-up Display, Virtual Reality, "Lupe" g. Retina-Implantat
17	26.04. Vorlesung 3 Dr. Kuschmierz	3. Grundlagen der Lichtausbreitung a. Brechung, Beugung, Reflexion/Streuung, Absorption b. Regensensor (2 Totalreflexionswinkel) c. Fingerabdrucksensor d. Blutsauerstoffmessung e. Geometrische Optik und Wellenoptik f. Laserstrahlen
18	03.05 Übung 1	 Fermat'sches Prinzip Geometrische Optik Mikroskopie 2D Retroreflektor
19	10.05 Vorlesung 4 Shift? (Tag nach Himmelfahrt) Dr. Kuschmierz	4. Anwendung I (Fertigung & Robotik) a. Einleitung b. Autofokus c. Triangulation, Speckle, time of flight, konfokal d. Lock-in-Kamera
19	17.05 Übung 2	 Lambert-Beer'sches Absorptionsgesetz (Pythonaufgabe zu Röntgenabsorption und 2-Wellenlängen-Blutabsorption) Gaußscher Laserstrahl: Laser, Lichtausbreitung, Abbildungsgleichungen
20	24.05	No Show - Himmelfahrt
21	31.05 Vorlesung 5 Dr. Kuschmierz	 Anwendung II (Fertigung und Biophotonik) a. Heterodyn-Michelson Interferometer, inkl. AOM Messunsicherheitsbudget b. Interferometrie in der Biomedizin

Wochenplan: Messsystemtechnik SoSe 2024 (Messtechnik III) Freitag: 11:10-12:40 RAUM: GÖR 0226/H

22	07.06. Übung 3	 Elektrisches Feld und Intensität Interferometrie Beugungsgitter (Spektrometer)
23	14.06 Übung 4	 Michelson-Interferometer (Positionsmessung, Messunsicherheitsbudget) Head-up-Display bzw. Mixed Reality in der Chirurgie
24	21.06 Vorlesung 6 Dr. Kuschmierz	 Anwendung III (Computergestützte Messysteme) a. Neuronale Netze für die Bildgebung in der Medizin b. Linsenlose Endoskope mit Bildgebung unter Nutzung von Deep Learning/Nutzung von DMD c. Rekonstruktionen mit Deep Learning für die Röntgendetektoren/CT/Radon-Transformation
25	28.06 Übung 5	Auflösung Bildgebender SystemeAutofokus
26	05.07 Vorlesung 7 Prof. Czarske	7. Anwendungen IV: Optische Speichertechnik a. Sensoren und Messsysteme für Auto-Fokus, Tracking (Spur), Drehzahl, Datensignal/laterale Auflösung b. Ausblick: Quantum Revolution 2
27	12.07 Übung 6	 Strahlfokussierung, Abbe-Limit, Gauß'scher Strahl CD, DVD, BluRay (Skalierungsverhalten) Neuronale Netze
28	19.07	Konsultation & Labtour