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Abstract
The standard deviation of the centre frequency of a signal is investigated for
the quadrature demodulation technique (QDT). Signal frequencies can be
measured by QDT unaffected by the amount of available signal periods. It
can be used for the measurement of nonstationary signals generated by laser
Doppler velocimeters. The dependence of the frequency measuring error on
the averaging time of noisy single-tone Gaussian pulse signals is analysed.
Assuming a quantum noise process, it is shown that the minimum measuring
error results for an averaging time of approximately 1/ e2 of the pulse
duration of the signal. Alternatively, defined weighting of the measured
values leads to a monotonically decreasing measuring error with increasing
averaging time until the Cramer–Rao lower bound is reached. Therefore, the
weighted QDT provides the lowest measuring error of all linear unbiased
frequency estimators. It allows the evaluation of small frequency changes of
laser Doppler signals, e.g. from micro-turbulent flows. The theory presented
here is verified by Monte Carlo simulations and experiments.

Keywords: metrology, interferometry, laser Doppler velocimetry, signal
processing, frequency measurement error, Cramer–Rao lower bound

1. Introduction

Frequency measurements of single-tone signals are important
in several fields of research and technology. Some examples
are sonar, radar and lidar, as well as communication
technology, biomedicine and especially interferometric
measurement techniques like laser Doppler velocimetry
(LDV). The measurement of the signal frequency can be
classified roughly into two principles: the time domain
processing, e.g. by the zero-point-crossing counter, and
the frequency domain processing, e.g. by fast Fourier
transformation (FFT) [1] or the wavelet transformation [2].
Algorithms working with time–frequency distributions are
used for Wigner–Ville processors [3]. Currently, the counter
and FFT processors are standard devices for frequency
measurements. They are usually implemented, for instance,
in digital sampling oscilloscopes. However, precise frequency
measurements by either method require several signal periods
within an averaging time interval. This demand becomes
obvious looking in the time domain: the centre frequency f̂

can be determined, over the number n of zero points of a single-

tone signal. For an averaging time tA, the frequency is given by
f̂ = n/(2tA). At least two zero points, i.e. one signal period,
are necessary for the frequency measurement and for a high
measurement accuracy, averaging over several signal periods
is desired. The temporal resolution of the measurement of low
frequencies is therefore limited. A similar dependence is valid
for the FFT processor [4]. To overcome this drawback, the
quadrature demodulation technique (QDT) was proposed [5].
In principle, the QDT allows precise frequency measurements
of a pair of signals in quadrature, independently of the number
of signal periods available [3–7]. Therefore, also low signal
frequencies can be measured in a time-resolved way in the
signal base band.

An important characteristic of a signal processing
technique is the measuring error obtained. As a fundamental
principle, the uncertainty relation of Heisenberg is well known.
A finite signal duration implies spectral broadening, see
equation (B.1) in appendix B. The ambiguity function, defined
as the product of the duration of the signal and the frequency
broadening, describes this relation [8]. For example, in
radar technology the ambiguity function is generally used to
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Figure 1. The principle of the quadrature demodulation technique (QDT), based on a heterodyne LDV arrangement. The light of the laser
with an optical frequency fL is split by an acoustic-optical-modulator (AOM) into the zeroth and first diffraction order [27]. A
Mach–Zehnder interferometer measures the lateral velocity component along the x direction, according to v = df , where d is the fringe
spacing in the measuring volume and f is the ideal Doppler frequency. The back-scattered light from the measuring volume is detected by
an avalanche photo-diode (APD) and mixed with a reference signal from a radio-frequency (rf) driver, employing a lock-in amplifier.
Measuring the phase angle φM(t) = 2πf t + φN (φN : phase noise) of the generated pair of signals in quadrature yields, by means of linear
regression, the estimated Doppler frequency f̂ = v̂/d.

describe the reciprocity between the spatial resolution and the
velocity measuring accuracy, which are proportional to the
pulse duration and the resolution of the Doppler frequency [8],
respectively. Besides the limitation of the signal duration,
the occurring noise results in a fluctuation of the signal
amplitude and thus disturbs the measurement of the signal
frequency. This can be described by an uncertainty relation
between the amplitude fluctuation and the phase error [9], see
equation (B.2) in appendix B. Both of the fundamental signal
parameters, the finite signal duration and the power of the noise
process, lead to the Cramer–Rao lower bound (CRLB), which
is expressed as [10]

(�f̂ )2 = 3/[π2 SNR T 2
s N(N2 − 1)] (1)

where the signal-to-noise ratio is defined by SNR = A2/σ 2,
with A as the amplitude of the deterministic single signal and
σ 2 as the variance of the white noise process; the parameter Ts

is the sampling period and N is the number of sampling points
of independent discrete-time observations. One presumption
of equation (1) is that the signal is superposed upon an
uncorrelated Gaussian noise process.

The averaging time tA of the measurement is usually
assumed to be equal to the signal duration �t . Considering
an odd number N of samples, the averaging time is given
by tA = (N − 1)Ts . Without limiting the general validity,
equation (1) can be written as

(�f̂ )2 = 3/{π2 SNR t2
AN [(N + 1)/(N − 1)]}. (2)

The CRLB describes the minimum variance of any linear
unbiased frequency estimator. A signal processing procedure
which in principle satisfies the CRLB is the FFT technique,
whereby an interpolation among the discrete frequency

spectrum values is accomplished [1, 11–17]. However, several
signal periods are necessary in order to reduce the systematic
frequency error sufficiently and to separate the Doppler
spectral line from the level of the photo-current signal as well.
If non-integer numbers of periods within the signal interval
or non-symmetrical signal envelopes occur, the shape of the
spectral line has furthermore a large influence on determination
of the centre frequency. Restriction of the interpolation
procedure to the frequency values close to the top of the spectral
line can result in a measuring error greater than the CRLB.
Furthermore, the use of windows, resulting in an attenuation
of the amplitude at the boundaries of the signal interval, will
decrease the power of the signal, so that part of the information
content will be lost.

Besides the FFT technique, several other signal processing
techniques have been applied to process noisy sinusoidal pulse
signals [18–25]. Formerly phase-locked-loop techniques and
electrical spectrum analysers were often used as frequency-
domain measurement techniques, but they require stationary
signals. Real LDV signals are usually pulses, which can
be processed by counter and FFT processors. However, the
theoretical description of the resulting frequency measuring
error was carried out only rudimentarily. So, equations (1)
and (2) are valid only for signals with constant amplitudes.
Ruck et al [26] have attempted to represent pulse signals by a
time-dependent SNR function. A sliding short-time SNR was
calculated with an averaging time of one signal period. The
Gaussian signal shape corresponds to a SNR function with
an approximately Gaussian dependence. It could be set into
relation with the common definition of SNR as an average
value of the whole pulse signal. The measuring error of the
counter technique for LDV pulse signals was investigated in
terms of this concept. As a result, the existence of an optimum
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Figure 2. The evaluation of a simulated Gaussian burst signal by the QDT. The interference phase is determined from the complex pair of
signals in quadrature. Incremental counting of the periods yields the absolute phase curve. The centre frequency is determined by the least
squares method (LSM), considering a defined averaging time.

averaging time for Gaussian single-tone signals was shown.
The minimum error of the centre frequency was obtained with
the following averaging times tA: (i) 1/ e pulse duration, for a
signal-dependent noise process and (ii) 1/

√
e pulse duration,

for a signal-independent noise process [26]. Therefore, for
signal processing by the counter technique, these optimal
averaging times have to be taken into account.

The goal of this paper is to analyse the centre frequency
measuring error of the QDT. In contrast to the FFT technique,
the envelope of the signal has no influence on the measurement
result. Neither is a small number of signal periods critical
for processing by the QDT. This shows clearly the high
potential for its use in LDV. It had already been shown
[3, 4, 7, 12, 14] that the QDT reaches the CRLB. However,
a detailed investigation of the measuring error for noisy
single-tone pulse signals had hitherto not been presented.
The particular emphasis of this paper is placed upon the
examination of the optimal averaging time for the QDT system.
Its advantages for processing LDV signals will be made evident
by comparing its measurement characteristics with those of
the counter and the FFT as representatives of standard signal
processing techniques.

2. The quadrature demodulation technique

The quadrature demodulation technique (QDT) comprises the
generation of a sine–cosine pair of signals, the measurement
of the signal phase and its evaluation in order to determine the
signal frequency. Figure 1 shows an example scheme for the
generation of quadrature signals, employing a heterodyne LDV
system [27]. A carrier-frequency LDV signal is electrically
down-mixed with a pair of reference signals of the same
carrier frequency, resulting in a background-level-free pair
of signals in quadrature aS(t) = A(t) sin φ(t) and aC(t) =
A(t) cos φ(t), which can be regarded as a complex phasor
a(t) = aC(t) + jaS(t) = A(t) exp(jφ(t)), with j2 = −1.

The incremental phase can be determined from φ(t) :=
arctan(aS(t)/aC(t)), with φ(t) = 2πf t , where f is the ideal
signal frequency [5]. Owing to the periodicity of the tangent
function, phase jumps occur at the values π/2, 3π/2, 5π/2,
etc., figure 2. The phase jumps of the amount π have to be
detected, so that they can be added to the incremental phase
curve, resulting in an unwrapped absolute phase function,
figure 2. The measured phase values are fitted to a straight
phase regression line

φ̂ = â + b̂t (3)

by means of the least-squares method (LSM) and the estimated
slope b̂/(2π) gives the centre frequency f̂ of the signal for a
chosen averaging time, figure 2. The estimation procedure
generally has to fulfil the following demands [28–32].

(i) Consistency. The estimate converges towards the true
value of the frequency as the number of measurements,
i.e. phase values, increases.

(ii) Unbiasedness. The bias is defined as the deviation of the
frequency expectation value E[f̂ ] = 〈f̂ 〉 from the true
frequency f . Although unbiasedness and consistency are
related to each other, they describe different features of
the estimation; e.g. an asymmetrical distribution of the
estimate is biased but can nevertheless be consistent.

(iii) Efficiency. The information content I 1 of the measuring
signal can be defined by the Fisher number F

[8, 12, 28, 30]

Ia(f̂ ) := F =
∫ (

∂ ln L(a|f̂ )

∂f̂

)2

L(a|f̂ ) da

1 The information content is often used in the sense of the gain in information,
i.e. the difference between the information entropy, defined by Shannon,
before and after a measurement. Entropy is a well-known figure of merit
in communication techniques. In measuring technique it is diametrical to
the signal quality, that the entropy is maximized with increasing noise power.
Since the entropy is also strongly dependent on the probability density function
of the measuring signal, it cannot be suitable in measuring processes, see [30].
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where L(a|f̂ ) is the likelihood function of the measuring
signal a(t) with respect to the frequency f̂ as the
estimation variable. The likelihood function describes
the probability distribution of the measurement process,
which is often given by a Gaussian normal function. The
reciprocal of the Fisher number is equal to the variance of
the MLE process, assuming that the variables of the Fisher
matrix are independent. The CRLB is the variance of an
efficient estimator, see equations (1) and (2). A suitable
figure of merit of a signal processing technique can be
defined as the quotient of the theoretical CRLB over the
measuring variance obtained2. One estimation procedure,
which is based on the maximum-likelihood estimator
(MLE), is the LSM. With the Gauss–Markov rule [28]
the LSM can be proved an efficient estimator, assuming
that one has a Gaussian noise probability distribution.
Linear regression methods shall be considered for other
distribution functions [28]. For a double-exponential
distribution the use of the L1 norm instead of the L2 norm
is optimal. The norm Lp is given as the sum of the amounts
to the pth degree of the deviations. In general, the optimal
norm can be chosen as follows [28]. For distributions
with longer tails than the Gaussian function, p < 2,
whereas, for distributions with shorter tails, p > 2 is
optimal. However, the L2 norm achieves good results also
for distributions other than Gaussian. Furthermore, the
central limit theorem [8] states that, for a large number of
measured values, the probability distribution approaches
the Gaussian normal distribution. Hence, the choice of
the LSM is not arbitrary, for it is a suitable algorithm for
most signals.

Using the LSM for the QDT, the L2 norm, i.e. the sum
S over the squares of the differences between the measured
phase values φMi and the estimated phase values φ̂i , has to be
minimized, see appendix A:

S =
i=(N−1)/2∑

i=−(N−1)/2

(φMi − φ̂i)
2wi.

The weighting wi takes into account the varying error of the
measured phase values. The normalized weighting is defined
by

wi := (�φmin)
2/(�φMi)

2 (4)

where �2φmin is the minimum value of the phase variance for
the whole time series.

However, besides the weighted LSM, sometimes the
unweighted LSM has to be chosen. (i) In general, the weight
distribution is a priori unknown. Although the weighting
is given by the signal amplitude, the noise characteristics
of the photo-detector have to be known. Furthermore,
noise processes like quantization noise, flicker noise and
superposed laser noise can exhibit different dependences.
Accurate determination of the weighting for pulse signals
requires time-resolved calculation of the phase variance, which

2 Assuming that one has a biased estimation process, a lower variance than
the CRLB can be achieved. If it is possible to find an estimate of the bias of
such an estimator, its result can be corrected and an unbiased estimator with
reduced variance is achieved. However, reliable processing of such a reduced
variance unbiased estimator is difficult to accomplish for experimental signals.

is complicated. (ii) The computer load of the weighted
QDT is significantly higher than that of the unweighted
QDT, see equations (A.1) and (A.2). First, the number of
multiplication steps in the numerator is half that in the weighted
QDT. Secondly, only one multiplication step is required
for the calculation of the denominator in equation (A.2).
This simplification is allowed since the sampling times
can be written as ti = ct ′i , where t ′i are constant values
and c corresponds to the actual sampling frequency. The
denominator turns out to be

i=(N−1)/2∑
i=−(N−1)/2

(ct ′i )
2 = c2

i=(N−1)/2∑
i=−(N−1)/2

t ′2i .

The constant value of the sum can be used for the calculation
of the denominator in equation (A.2). The a priori unknown
weightings wi do not allow such a simplification for the
weighted QDT. In conclusion, the unweighted QDT attains
a higher data rate, but a lower measurement accuracy, than
the weighted QDT. Therefore, the measurement error will be
investigated for both cases of the QDT.

3. The objective

As mentioned in section 1, two fundamental parameters
influence the frequency measuring error: the signal duration
�t and the SNR. However, for the observation of an
nonstationary signal like a pulse, neither parameter can be
defined easily. The SNR of a pulse has to be described
by a time-dependent function, see [26]. The resulting time-
dependent variance of the measured phase implies that the
measuring for the error centre frequency depends on the
averaging time tA. Let this be outlined by two examples.

(i) The averaging time tA is much less than the signal duration
�t . A short averaging time corresponds to a small number
of measured values. The information content of the signal
will be evaluated incompletely, so that a high measuring
error will result. This is also evident from the occurrence
of a broad-banded Fourier spectrum for a short signal
interval, compare with equation (B.1).

(ii) The averaging time tA is much greater than the signal
duration �t . The continuous decrease of the SNR in the
remote tail regions of the pulse signal, i.e. for a high signal
time, causes noisy measured values. Employing these
measured values in the frequency determination may also
result in a large measuring error.

In consequence, the optimum averaging time can be
expected to lie in between these two boundary conditions.
One main objective of this paper is to determine this supposed
optimum averaging time for the QDT.

4. Theoretical investigations

4.1. The model and approach

Let us assume that we have a real sinusoidal signal pulse with a
Gaussian amplitude envelope A(t) = A0 exp[−(t/τ )2]. Upon
this ideal signal there is superposed an additive noise process
n(t), resulting in the measurement signal

aM(t) = A0 exp(−(t/τ )2) sin(ωt) + n(t) (5)
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Figure 3. A model of frequency measurement with a QDT system. The noisy phase samples exhibit a deviation from the ideal (true) phase
curve of a single-tone signal. The difference between the angles of the estimated phase regression curve and the ideal phase curve yields the
frequency measuring error.

where A0 is the maximum signal amplitude, τ is the 1/ e
half duration of the signal and ω = 2πf is the ideal circle
frequency. The duration �t of the signal is generally set to the
1/ e2 full duration �t = τ2

√
2. To simplify the description,

only one part of the complex quadrature signal, see section 2,
is considered.

Figure 3 shows the signal model for the investigation of
the QDT processor. The ideal (noise-free) signal is described
by the phase φ = 2πf t , see equation (5). Owing to the noise
process φN(t) the measuring phase values φMi = φi + φNi ,
i = −(N − 1)/2, . . . + (N − 1)/2 are disturbed and lie
inside an uncertainty band. Assuming that one has a Gaussian
distribution, the confidence interval displayed in figure 3, with
a width of about ±3�φ, contains 99.7% of the noisy phase
samples φMi . From the measured phase values an averaged
phase curve φ̂ = 2πf̂ t is calculated by linear regression,
compare with equation (3) for â = 0. In general there
is a difference between the estimated frequency f̂ and the
true value f . Repetition of the measurement will result in
a probability density function of the frequency f̂ , figure 4.
Owing to the unbiasedness of the LSM procedure, the centre
frequency 〈f̂ 〉 of the distribution is assumed to be equal to
the true frequency f . Taking the standard deviation of the
ensemble results in �f̂ = [〈(f̂ − f )2〉]1/2.

As shown in figure 5, the measuring error is influenced by
several signal and processor parameters. Their discussion will
be carried out in sections 4.5, 5 and 6.

4.2. Signal and noise processes

The measurement signal is generated by LDV system with
a lateral intensity distribution I (x, y) in the centre of the
measurement volume of I (x, y) = I0 exp[−(x2 + y2)/w2][1 +
ν sin(2πx/d)], where I0 is the maximum intensity, x and

p(f)

f

2∆f

< f >=f

^

^

^^

Figure 4. The probability density function of the estimated
frequency of a noisy single-tone pulse signal.

y are the lateral coordinates, w is the 1/ e half width, ν

is the visibility of the fringe pattern and d is its spacing
[25]. The measurement volume is given by the cross
section of two coherent Gaussian laser beams. The infinite
integral of the intensity distribution gives

∫∫
I (x, y) dx dy =

I0πw2 = PL, where PL is the available laser power in the
measurement volume. A single tracer particle is assumed,
the diameter of which is small relative to the radius w,
crossing the measurement volume with a constant velocity v

in the x direction. The power of the scattered light follows
as P(t) = P0 exp[−(t/τ )2][1 + m sin(2πvt/d)], where the
correspondences between the spatial and the time domain,
x = vt and w = vτ , are used. The scattered light generates
a photo-current signal, according to A = Pqη/(hυ) = kP ,
where η is the quantum efficiency, h is Planck’s quantum, υ is
the optical frequency and k = qη/(hυ) is a proportionality
constant. Using only the modulated current, equation (5)
results. Its parameters can be set in relation to the optical
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Figure 5. The scheme used for the investigation of the centre
frequency error. Various key parameters of the signal and system are
considered. The ideal signal phase φ(t) = 2πf t is disturbed by the
phase noise process φN(t). In principle, the measuring error of the
estimated frequency f̂ is influenced by several signal parameters as
well as by parameters of the QDT system. The frequency deviation
results as the difference between the estimated frequency f̂ and the
true (ideal) frequency f . Evaluating the signal ensemble results in
the standard deviation �f̂ of the centre frequency.

constraints of the LDV system, as follows [32]. (i) The signal
amplitude A0 � I0 � PL/w2 is directly proportional to the
laser power and inversely proportional to the square of the
lateral size w of the measurement volume. (ii) The pulse
signal duration �t = 2

√
2τ is determined for example for

a constant tracer particle velocity of v = 1 m s−1 and a
1/ e2 lateral diameter of the measurement volume of typically
�x = 2

√
2w = 100 µm. Together with τ = w/v, the

1/ e2 full signal duration of �t = 2
√

2τ = 100 µs results.
(iii) The ideal signal frequency is described by f = v/d. A
typical frequency of f = 100 kHz results for a velocity of
v = 1 m s−1 and a fringe spacing of d = 10 µm. (iv) The noise
process n(t) is described by its variance σ 2, which depends on
the elongation a(t) of the signal. To simplify the description,
averaging over a single period is carried out. Therefore, the
variance can be regarded in terms of its dependence on the
signal amplitude A(t).

The intrinsic noise of a photo-detector is the shot noise, i.e.
quantum noise, caused by random fluctuation of the electron
current. In terms of Poisson statistics its variance turns out to
be [8]

σ 2
S = 2qA′B = c1A/m (6)

where q = 1.6 × 10−19 A s is the electron charge, A′ = A/m

is the directional photo-current, A is the amplitude of the bias-
free sinusoidal signal, m is the modulation coefficient, B is the
electrical bandwidth and c1 is an introduced proportionality
constant. The excess noise of the internal amplification process
of the detector is also a shot noise process, which occurs in
avalanche photo-diodes and photo-multipliers. Besides these
intrinsic noise processes, the dark current of a photo-detector
also causes shot noise, but it is independent of the signal
amplitude and usually has a lower level.

An extrinsic noise process is the thermal noise, which is
caused by the Brownian motion of the electrons. The variance
results in [8]

σ 2
T = 4kT B/R = c2 (7)

where k is the Boltzmann constant, T is the environmental
temperature, B is the electrical bandwidth and R is the real

part of the impedance of the photo-detector (c2 is an introduced
constant). Amplifiers, mixers and other electronic components
also generate thermal noise. After pre-amplification of the
photo-current, the signal level is significantly increased, so
that the additional thermal noise is usually negligible. Of
course, laser power fluctuations and other technical sources
also produce noise. However, those are not of fundamental
character and will therefore not be considered.

The digital processing of the photo-signal causes
quantization noise. The quantized signal can be considered
as the continuous function plus quantization noise, which
represents the difference between the quantized values and
the original continuous values. Assuming an amplitude
quantization with equidistant levels, the standard deviation
turns out to be σQ = �a = �m/

√
12 [33], where �m is the

quantization resolution. It is equal to �m = 2A0/(2b − 1),
with b the bit number of the quantization levels. The full
dynamic range of an analogue-to-digital converter (ADC) is
assumed to be equal to twice the maximum amplitude A(t =
0) = A0, so that no signal clipping occurs. The equivalent
SNR for a sinusoidal signal is then given by [33]

σ 2
Q = A2

0/(3(2b − 1)2) = c3 (8)

with c3 as an introduced constant.
In conclusion, three fundamental noise processes of

the LDV signal are considered. Shot noise is an intrinsic
process, caused by the quantized current of photo-detectors,
see equation (6). Thermal noise in the photo-detector and
the amplifiers also has to be considered, see equation (7). It
can be reduced by cooling, but carrier fluctuations caused
by temperature cannot be suppressed completely. Another
fundamental type of noise is caused by the signal quantization
due to the digital signal processing technique, see equation (8).
The resulting SNR of the sinusoidal signal can be summarized
as

SNR = PS/PN = a2
eff /σ 2=(A2(t)/2)/(c1A(t)/m + c2 + c3)

= (k2P 2(t)/2)/(kc1P(t)/m + c2 + c3) (9)

where the optical–electrical relation A = kP , the effective
amplitude aeff (t) = A(t)/

√
2 and the resulting power σ 2 =

σ 2
S + σ 2

T + σ 2
Q of the uncorrelated noise processes are used.

The asymptotes of equation (9) are given by

lim(A → 0) SNR = A2(t)/(2c2 + 2c3) ∼ A2(t)

lim(A → ∞) SNR = mA(t)/(2c1) ∼ A(t). (10)

Thermal and quantization noise processes dominate at
small amplitudes, whereas shot noise is prevalent at large
amplitudes, i.e. SNR. However, when one is optimizing the
photo-detection unit by employing an avalanche diode, a
transimpedance pre-amplifier and a high-resolution ADC, the
shot noise regime can also be reached for a moderate SNR.

The phase noise can be derived by error propagation [34]
as well as by statistical interpretation of the noise distribution
of a complex phasor [32]. The standard deviation yields

�φM = (2 · SNR)−1/2 SNR � 1. (11)

The experimental determination of the signal phase exhibits
a demodulation threshold of SNR ∼= 9 dB ∼= 8 [4, 14].
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Therefore equation (11) is considered valid for a SNR > 9 dB.
However, with implementation of a modified phase evaluation,
correcting parasitary counts of noise-induced periods (clicks),
the demodulation threshold can be reduced to lower than 5 dB.

In summary, the standard deviation of the signal phase
according to equations (5), (10) and (11) is given by the
following.

(i) For a signal-dependent noise process, i.e. shot noise
(regime 1),

�φM(t) ∼ SNR−1/2(t) ∼ A−1/2(t) ∼ exp[(t/τ )2/2].
(12)

(ii) For a signal-independent noise process, i.e. thermal noise
(regime 2α) and quantization noise (regime 2β),

�φM(t) ∼ SNR−1/2(t) ∼ A−1(t) ∼ exp[(t/τ )2]. (13)

The relations developed assume a dependence of the SNR
on the envelope A(t) of the sinusoidal signal. As shown in
section 2, a complex signal a(t) = aC(t) + jaS(t) is processed
by the QDT. In comparison with equation (9) the complex
SNR results in: SNR = 〈a2

S(t) + a2
C(t)〉/[σ 2

S (t) + σ 2
C(t)] =

A2(t)/[2σ 2(t)], where the Pythagorean angle rule a2
S(t) +

a2
C(t) = A2(t)[sin2 φ(t) + cos2 φ(t)] = A2(t) and the equality

of the uncorrelated noise processes σ 2
S (t) = σ 2

C(t) = σ 2(t)

are used. The assumed cross correlation function relating
the noise processes of the sine and cosine signals of zero is
valid for independent noise sources. In principle the complex
signal can physically be generated both by the homodyne
and by the heterodyne LDV technique [5]. Separated noise
processes are given for the homodyne technique, using two
photo-detectors for the generation of the sine and cosine signals
[32]. Regarding thermal and quantization noise processes,
their variances are independent of the signal, which results
in the proportionality SNR ∝ A2(t), see equations (10) and
(13). For shot noise the variance depends on the elongation
of the signal a(t), but integration over one signal period [26]
allows as an approximation the same description as that shown
above. Therefore, equations (10) and (12) describe the shot
noise by invoking the assumed proportionality σ 2(t) ∝ A(t).
In the case of the heterodyne technique the shot noise and the
thermal noise generated in the same photo-detector, figure 1,
are correlated. Averaging of the variance of the noise over
one signal period can also simplify their description. As an
approximation the SNR results in the formulae given above.

Finally, the probability density function of the phase noise
is considered. Thermal noise has a Gaussian distribution,
which can be shown by the central limit theorem [8]. A
large number of elementary current pulses occur, having a
time scale of the order of the interval between inter-electron
collisions, which is around 10−14 s at room temperature. Since
the duration of these elementary events is significantly smaller
than the typical signal duration of about �t = 100 µs (see
above), stationarity and ergodicity of the noise process can be
presupposed. For shot noise a Poisson distribution results,
which can be approximated by a Gaussian distribution for
higher numbers of events. In contrast to these noise processes
of the analogue signal, quantization noise is described by
a uniform distribution [33]. Furthermore, the quantization
effect can be treated as a noise process only if an arbitrary

sampling of a high number of available quantization levels
occurs. Otherwise, in the case of only a few quantization levels,
deterministic effects will happen. Section 5.1 deals with these
characteristics.

The phase noise of a pair of signals in quadrature,
formulated in polar coordinates, can be considered on the
basis of amplitude noise [29]. The assumed Gaussian
noise processes of the signal amplitudes exhibit a Rayleigh
amplitude distribution in polar coordinates, with a uniform
phase noise distribution in [0, 2π [. The measuring
signal is defined as the sum of an ideal signal and
this Rayleigh noise distribution, which leads to a Rice
distribution [29]. The phase noise distribution becomes
p(φM) = exp(−SNR sin2 φM)

√
SNR cos φA/

√
π , SNR > 1.

Assuming that SNR � 1, the Rice phase distribution can be
approximated by a Gaussian distribution. In conclusion, a
white Gaussian phase noise process of the pair of signals in
quadrature results.

4.3. Assumptions

In this section, the parameters of the LDV signal are
considered. The assumptions for the investigation of the
measuring error are summarized as follows.

(i) We have a single-tone sinusoidal signal, equation (5).
Scattering from a single moving tracer particle in the
measurement volume is considered. Multiple-scattering
processes are neglected.

(ii) We have a Gaussian function of the signal amplitude,
equation (5). The fundamental-mode laser beams
employed generate a Gaussian shape of the intensities
in the measurement volume. Regarding straight motion
of a particle with constant velocity v in the x direction,
figure 1, a sinusoidal signal of constant frequency f

with a Gaussian signal envelope results. Deviations from
the Gaussian shape can be obtained if asymmetrically
orientated receiving optics with beam stops are employed.
Since the QDT algorithm is robust against different signal
envelopes it has not to be considered.

(iii) We have a Gaussian distribution of the phase noise,
section 4.2. It was shown that the Gaussian probability
density function is a good approximation for a SNR � 1.
Since the LSM applied is robust against differences in
noise distributions [28, 35], the uniform distribution of the
quantization noise will be ignored in the investigations.

(iv) We have a white phase noise, i.e. statistically independent
phase values, section 4.2. Shot and thermal noise can
be described as white noise processes. Usually the noise
bandwidth is significantly broader than the linewidth of
the Doppler signal spectrum. The sampling frequency
is assumed to be twice the signal frequency and smaller
than the noise bandwidth. Then phase values that are
assumed to be uncorrelated result. However, in real
signal processing, the sampling theorem of Shannon
[33] also applies to the noise signal. Partial correlation
of the measured values has to be considered for these
investigations.

(v) We have deterministic sampling times. Usually quartz
clocks are applied. They have a low jitter for such short
time durations of �t = 100 µs as are typical for LDV
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signals, see section 4.2. Also their long-term drift of about
1 s per year (3 × 10−8) is sufficiently low. The sampling
time jitter corresponds to the clock jitter, since precision of
sample-and-hold circuits can be assumed in comparison
with the typical relative phase error of �φ/(2π) ≈ 10−2

for a signal with a SNR of 20 dB, the sampling jitter
can be neglected. This allows the assumption of a one-
dimensional error distribution of the noisy phase values
with deterministic sampling times, figure 3.

4.4. Results

In appendix A the measuring error of the centre frequency is
derived on the basis of the assumptions in section 4.3, see
also [35, 36]. Equations (A.6) and (A.7) are reformulated
with the weighting function equation (4), which results, using
equations (12) and (13), in

wi = exp[−m(ti/τ )2] ∝ Am(ti) (14)

with m = 1 for signal dependent noise processes (regime 1)
and m = 2 for signal-independent noise processes (regime 2).
Both the unweighted and the weighted QDT are discussed.
Owing to the symmetry of the Gaussian shaped signal, half of
the time series with the sampling times ti , i = 1, . . . , (N −
1)/2, is considered. The standard deviation of the unweighted
QDT (case A) is given by

�f̂ = �φmin(
∑(N−1)/2

i=1 i2 exp[m(i/τ)2])1/2

(23/2πtA/(N − 1))
∑(N−1)/2

i=1 i2
(15)

whereas, for the weighted QDT (case B),

�f̂ = �φmin

(23/2πtA/(N − 1))(
∑(N−1)/2

i=1 i2 exp[−m(i/τ)2])1/2
.

(16)
In either formula, �φmin is the minimum standard deviation
of the time series, tA is the averaging time, N is the number of
phase samples, τ denotes the 1/ e half pulse duration and the
parameter m is given as m = 1 for signal-dependent noise and
as m = 2 for signal-independent noise.

4.5. Concluding remarks

4.5.1. The dependence on the averaging time. In section 3
the existence of an optimal averaging time was expected. To
simplify the discussion, the result, equations (15) and (16),
will be written as analogous functions. Then, the sums can be
formulated as integrals. For case A,

�f̂ ∼ (
∫ tA/2

t=0 t2 exp[m(t/τ)2] dt)1/2∫ tA/2
t=0 t2 dt

=
[(∫ tA/2

t=0
t2{1 + m(t/τ)2 + [m(t/τ)2]2/2

+[m(t/τ)2]3/6 + · · ·} dt

)1/2]
[t3

A/24]−1

and for case B,

�f̂ ∼
(∫ tA/2

t=0
t2{1 + m(t/τ)2 + [m(t/τ)2]2/2

+[m(t/τ)2]3/6 + · · ·} dt

)−1/2

. (17)

The Gaussian function is expressed as a polynomial, since its
integral cannot be solved in a closed form for finite limits. The
measuring error is discussed for two examples.

(i) A short averaging time. For lim tA → 0, only the
zeroth order of the polynomial in equation (17) has to
be considered. Thus the same asymptote results for both
cases A and B: �f̂ ∼ t

−3/2
A . A high measuring error

results, as had already been predicted in section 3.
(ii) A long averaging time. For lim tA → ∞ the higher

orders of the polynomial function have to be included
in the calculation. A higher degree of the numerator
than of the denominator results. Therefore, in case A
the measuring error has a divergent characteristic. A high
measuring error results. On the other hand, in case B
a convergent dependence is obtained. The measuring
error is minimized by increasing the averaging time.
To summarize, the arguments mentioned in section 3
are confirmed only for case A. Case B has a different
dependence for a high averaging time. This discrepancy
will be investigated in section 5.

4.5.2. Continuous signals. The measuring error for a signal
with a constant amplitude A(t) = A0 is discussed in order to
compare the result with equation (2), in section 1. Since the
weighting is identical to unity, the same standard deviation of
the centre frequency results for both cases (A and B):

�f̂ = �φmin

(23/2tAπ/(N − 1))(
∑(N−1)/2

i=1 i2)1/2

with
(2
∑

i2)1/2

N − 1
=
(

N

12

N + 1

N − 1

)1/2

�f̂ =
√

1.5

tAπ [SNR · N(N + 1)/(N − 1)]1/2
(18)

where statistically independent measurement values and a
SNR = a2

eff /σ 2 � 1 of a single signal are assumed; see
equation (11). Taking into account the complex pair of signals
in quadrature, the same expression as that in equation (2), i.e.
the CRLB, is obtained. This proves that the QDT system meets
the CRLB, i.e. it is an efficient frequency estimator (section 2).

Equation (18) shall be considered in relation to the
Heisenberg uncertainty relation (see appendix B).

(i) The proportionality �f̂ ∝ t−1
A corresponds to

equation (B.1). Large averaging times for a signal with
constant amplitude reduce the measuring error. However,
nonstationary signals like pulses from LDV systems have
a limited signal duration, see above.

(ii) The proportionality �f̂ ∝ SNR−1/2, SNR � 1,
corresponds to equation (B.2). A high signal quality,
i.e. SNR, reduces the measuring error. However, real
signals have a limited SNR, since the photo-detector
current attains saturation and digital signal processing
causes quantization noise.

(iii) The proportionality �f̂ ∝ N−1/2, N � 1 corresponds
to Poisson statistics, see appendix B. The number
N of samples denotes the repetition of independent
measurements. An increase in N reduces the measuring
error until adjacent noisy phase values are correlated, see
(iv) in section 4.3. Then, the available information content
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of the signal is completely evaluated. The resulting
measuring error will be considered for this demand. The
maximum sampling frequency fS = 1/Ts is chosen to be
equal to the noise bandwidth B of the signal (fS = B).
With equation (A4) the number of phase values turns out
to be Nmax

∼= tAfS = tAB. The SNR can be written
according to section 4.2 as SNR = PS/(pNB), where
PS is the signal power and PN = pNB is the noise
power, with pN as the spectral power density. Using these
dependences, equation (18) can be written for SNR � 1,
N � 1 and a constant noise bandwidth B as

�f̂ ∼ t−1
A SNR−1/2N−1/2

max ∼ t−1
A SNR−1/2

∼ p
1/2
N t−1

A P
−1/2
S . (19)

In conclusion, the minimum measuring error is
independent of the number Nmax of samples, when they are
chosen in correspondence to the noise bandwidth. Only
the fundamental signal parameters tA and SNR determine
the measuring error. This represents the Heisenberg
uncertainty relation (appendix B, see also [9, 37]).

Equation (19) shall be considered in relation to the signal
energy E = PStA, assuming an equivalence of the signal
duration �t and averaging time tA. Using the proportionality
of the signal amplitude A = P

1/2
S to SNR from equations (10),

(12) and (13), the measuring error turns out to be �f̂ ∼
t−1
A A−1/2 ∼ t

−1/2
A E−1/2, regime 1 and �f̂ ∼ t−1

A A−1 ∼ E−1,
regime 2. Considering regime 2, the measuring error can be
directly expressed in terms of the signal energy.

4.5.3. Systematic measuring error. The resulting frequency
measuring error can be divided into a statistical and a
systematic error. A reduction of the statistical error can be
achieved by repeating the measurements. In contrast, the
systematic error forms a bias, which cannot be reduced in this
way, but allows a correction of the measuring result, if it is
known.

The occurring period number n of the signal interval has
a strong influence on the frequency bias of the FFT technique
[1, 4, 13, 17]. Since the bias is influenced by several parameters
of the signal, especially the actual frequency, which has to be
measured, it usually cannot be corrected. Therefore, a bias-free
characteristic is important for the signal processing technique
used. One major advantage of the QDT is its unbiased
frequency measurement, which is principally independent of
the signal’s envelope function and the available number of
signal periods [3–7]. A limit of the measurement performance
results, however, from the quantization bit number. Using
e.g. 8-bit digitization of the signals, frequency measurements
can be accomplished for a period number of about 1/100 [4].
Furthermore, it has to remarked that the QDT is based on a pair
of signals in quadrature, which ideally has the same amplitude,
exactly 90◦ phase difference and no offset [5, 32]. In order to
guarantee an unbiased frequency measurement, see figure 4,
these presumptions have to be fulfilled. Then, the QDT ensures
that bias-free frequency measurements are obtained even for a
small fraction of one signal period.

4.5.4. The correspondence to the optical signal generation.
The intensity distribution in the measurement volume of
the LDV system will be included in the investigations of
the measuring error. Equations (18) and (19) describe the
absolute statistical frequency error, which can be reformulated
by including the signal generation of a LDV system, see
section 4.2: f = v/d and tA = �t = �x/v, where v is the
velocity of the tracer particles, �x is the lateral 1/ e2 diameter
of the intensity distribution in the measurement volume and d is
the spacing of the fringe pattern. The 1/ e2 full signal duration
�t is set to the averaging time tA. Assuming a constant
number Nmax of samples, the measuring error turns out to be
�f̂ ∼ v�x−1SNR−1/2. The accuracy is therefore reduced for
high velocities. Precision measurements of supersonic flows
require high SNR values, i.e. high powers of the scattered light.

The appreciation of the quality of measurement is usually
accomplished by referring the absolute measurement error to
the measured value. This relative measuring error is given
by �f̂ /f̂ ∼ t−1

A SNR−1/2f −1 ∼ �x−1SNR−1/2d. According
to equation (10) the SNR is expressed in terms of the signal
amplitude A, which, on the other hand, is given by A ∼ I ∼
PL/(�x)2, where I is the intensity within the measurement
volume and PL is the laser power, see section 4.2. It results
in SNR ∼ Am ∼ P m

L (�x)−2m, with m = 1 for shot noise
(regime 1) and m = 2 for thermal and quantization noise
(regime 2). The relative measurement error is given by

�f̂ /f̂ ∼ (�x)m−1P
−m/2
L d. (20)

The relative measuring error can be minimized by increasing
the laser power PL and decreasing the fringe spacing d. A
discussion of the diameter �x of the measurement volume
requires consideration of the different noise regimes. (i) For
m = 1 there is no dependence on the size of the measurement
volume. (ii) For m = 2, �f̂ /f̂ ∼ �x, a small measurement
volume has to be generated in order to minimize the relative
measuring error.

Additionally, the fluid mechanics has to be considered for
the dimensioning of the measurement volume. A small size is
desired in order to resolve spatial changes of the velocity or to
allow measurements near walls [2, 25]. However, the number
n of fringes, i.e. signal periods, is then also reduced. Ongoing
systematic frequency error can be reduced with the QDT, in
comparison with to the usually applied FFT technique, see
above.

Finally the shape of the intensity distribution is
investigated. For the weighted QDT, see equations (A.3), (16)
and (17), the measuring error can be considered to be

�f̂ ∼
(∫ tA/2

t=0
t2w(t) dt

)−1/2

where w(t) is a continuous weighting function, which is
directly proportional to the intensity distribution I , assuming
that we are in regime 1, see above. According to equation (14)
it can be written as w(t) = exp[−m(t/τ)2]. A diametrical
mutual dependence of w(t) and t2 can be recognized. It can
be referred to as a functional mismatching, meaning that a
high quality of the signal, i.e. large values of w(t), around the
centre of the signal has a negligible effect on the calculated
centre frequency. At the tails of the signal, where high values
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of the parabolic function t2 are available, only small values
of w(t) occur. In conclusion, the available power of the light
source is not used for the frequency measurement in an optimal
way.

A reduction of the measuring error can be achieved by
matching of the functions w(t) and t2. One can generate a
fringe pattern with an intensity envelope, corresponding to
two laser spots having maximum values at the boundaries of
the measurement volume. Then, the corresponding weighting
function is matched to the parabolic function coming from
the signal processing algorithm. In [30] a similar result was
derived, but with a different method. However, the possible
improvement of the frequency measurement is relatively
small [7], so that the Gaussian intensity distribution of common
LDV systems is no remarkable disadvantage.

5. Simulation results

In section 4 the measuring error of the centre frequency
was theoretically derived in terms of its dependence on the
averaging time of the signal. Now, a Monte Carlo computer
simulation is applied. First the parameters of the signal
generation and the sampling regimes are presented. A signal
duration of �t = 23/2τ = 100 µs and a period of duration
T = 10 µs are assumed. Two different sampling regimes are
considered: (i) a constant sampling frequency fS and (ii) a
constant number N of measurements within the averaging
time. Usually regime (i) is applied in the LDV technique, but,
when a limited memory of the signal processing technique is
relevant, regime (ii) has to be used. The maximum number
of measurements for the simulation is set to Nmax = 1025
for an averaging time of tA = 2�t = 200 µs. Using the
relation ti = iTs for the sampling points, with −(N − 1)/2 <

i < +(N − 1)/2, a constant period of Ts = tA/(N − 1) =
200 µs/1024 = 195 ns results for regime (i). In contrast,
regime (ii) has a sampled period of variable duration, given by
Ts = tA/(N − 1) = tA/1024.

According to equation (5), deterministic quadrature
signals with superposed uncorrelated Gaussian white noise
processes are generated. The auto-correlation functions of the
simulated noise processes were proved to be equal to δ(n) each
(δ(n) is the Kronecker delta).

The investigation of the measuring error is accomplished
according to figure 3: A noisy Gaussian single-tone pair of
signals, equation (5), having a controlled SNR, is generated
and measured by a QDT system, implemented with LabVIEW
on a PC. The estimated frequency is compared with the true
frequency of the generated signal. After a repetition of this
procedure, the measuring error is given by

�f̂ =
(

1

M ′

M∑
µ=1

(f̂µ − 〈f̂µ〉)2

)1/2

. (21)

The values f̂µ are the estimated frequencies of each simulated
signal, whereas 〈f̂µ〉 is the arithmetic mean of the ensemble
of signals, which is equal to the true frequency f . Since the
true frequency is known for a simulation calculation, the value
M ′ in the denominator is set to the number of measurements
performed: M ′ = M = 50.

Figure 6. The statistical frequency measuring error versus the
averaging time, for unweighted QDT (case A), with a shot noise
process (regime 1) and constant sampling frequency (regime (i)).

Figure 7. The statistical frequency measuring error versus the
averaging time, for unweighted QDT (case A), with a shot noise
process (regime 1) and constant sampling number (regime (ii)).

A simplified scientific notation for the standard deviation
is used, neglecting the ensemble of signals. The derivation
as an ensemble value will have to be considered in a further
investigation. So the ergodicity of the noise process, i.e. the
equality of the time average and ensemble average, has to
be assumed. This is valid, since the time constant of the
elementary noise events and the sampling period are several
orders of magnitude smaller than the signal duration, see
section 4.3.

5.1. Investigations on the unweighted QDT (case A)

In figures 6–11, the measuring error of the unweighted QDT
is shown in terms of the dependence on the averaging time.
Theoretical curves, calculated with equation (15) and Monte
Carlo simulations for six different regimes resulting from the
combinations of the sampling regimes (i) and (ii) and the noise
regimes (1, 2α and 2β) are displayed. The SNR in each figure
is defined for the maximum signal amplitude A(t = 0) = A0

and written as logarithmic values SNRdB(t = 0).
The minimal measuring error is achieved for defined

averaging times, shown in table 1. It has to be recognized
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Table 1. The optimal averaging time for a centre frequency determination by a weighted QDT (case A), determined by equation (15).
Various noise processes (regimes 1 and 2) and sampling regimes (i) and (ii) for the noisy sinusoidal signal with a Gaussian pulse shape are
considered. The half averaging time tA/2 is compared with the 1/ e half pulse duration τ . For comparison, the results of the counter
technique are shown, see [26].

Constant sampling Constant number of samples, Zero-point crossing
frequency, regime (i) regime (ii) counter technique

Signal-dependent 1.018
√

2τ 0.849
√

2τ τ
noise process, regime (1)
Signal-independent 1.018τ 0.849τ 1/

√
2τ

noise process, regime (2)

Figure 8. The statistical frequency measuring error versus the
averaging time, for unweighted QDT (case A), with a thermal noise
process (regime 2α) and constant sampling frequency (regime (i)).

that the optimal averaging times are independent of the SNR,
see figures 6–11. However, for large SNRs also a low
measuring error is obtained in the immediate vicinity of the
optimal averaging times. In consequence, the tolerances of the
averaging times for obtaining precise frequency measurements
are enlarged.

The quotient of the optimal averaging times for the
regimes 1 and 2 is exactly

√
2; see table 1. It is valid for both

sampling regimes (i) and (ii) and also for the counter technique.
This can be explained as follows. The standard deviation �φM

of the phase values is dependent on the weighting function,
equation (14): �φM ∼ √

w ∼ exp[−(t/τ )2m/2], with m = 1
for regime 1 and m = 2 for regime 2. The half 1/ e duration
of these distribution is τ(2/m)1/2. It yields

√
2τ for regime 1

and τ for regime 2, resulting in a quotient of
√

2.
For the different sampling regimes (i) and (ii), the optimal

averaging times shall be discussed. For an averaging time
of tA = 2�t = 200 µs, by definition the same number of
samples Nmax = 1025 occurs for both regimes. The standard
deviations of regimes (i) and (ii) are equal (figure 6–11). For
an averaging time tA less than 2�t the number N of samples is
reduced according to N = 1025 tA/(2�t) for regime (i), but
remains constant (N = Nmax) for regime (ii), see above. The
higher number of measurements of regime (ii) for tA < 2�t

results in a smaller measuring error, compare figures 6, 8 and 10
with figures 7, 9 and 11. In regime (i), the number of samples
increases with the averaging time. At increasing averaging
times, a stronger decrease of the measuring error results, so
that the optimal averaging time of regime (i) is larger than that

of regime (ii). The quotient of the optimal averaging times of
the regimes (i) and (ii) is q ≈ 1.1987, see table 1.

The counter technique can also be considered as a phase
measurement procedure, but with a different sampling regime.
The counter measures the zero crossing points, which occur at
phase values of 0, π , 2π , 3π , etc., giving a phase resolution of
1 bit per period. In contrast to the QDT, the counter determines
the time points for these defined phase values. This completely
different sampling regime implies other optimal averaging
times than those for the QDT, see table 1.

5.1.1. Discussion of figures 6–9 (regimes 1 and 2α). The
results of the theory and the simulation agree very well
for small averaging times. Only a small fluctuation of the
simulation curve around the theoretical curves occurs, which
is caused by deviations of the SNRs for the simulated signal.
The simulation results can be further improved by using a
higher number M of measurements, equation (21). However, a
significant discrepancy between theory and simulation occurs
at great averaging times. The reason is the demodulation
threshold of the phase measurement, which occurs at a SNR
of 9 dB, see equation (11). In the theory this threshold was
not taken into account, so that a deviation from the simulation
curve results. Regarding e.g. the regime 1, the time-dependent
SNR is given by SNR(t) ∼ exp[−(t/τ )2], see equation (12).
Its logarithmic value SNRdB = 10 log(SNR) turns out to be

SNRdB = SNRdB(t = 0) − 4.34(t/τ )2. (22)

The demodulation threshold is reached at a signal time tD =
−τ ln(10−a), with a = (SNRdB(t = 0) − 9 dB)/10 and τ

as half the 1/ e signal duration. Two arbitrarily chosen values
SNRdB(t = 0) = 20 and 30 dB correspond to the signal times
of tD = 112 and 155 µs for reaching the threshold. Since a
phase measurement from these signal times is not possible, it
dominates the resulting measuring error. Therefore the signal
time and averaging time can be set equal as an approximation.
Figures 6 and 7 show that there is a strong increase of the
measuring error at these averaging times.

5.1.2. Discussion of figures 10 and 11 (regime 2β). The
quantization of the signal amplitude was considered in
section 4.2 as a signal-independent noise process. So the same
optimal averaging times as for thermal noise (regime 2α) are
obtained, see table 1. Equivalent SNRdB values can be defined
according to equation (8) for the quantization noise:

SNRdB = 10 log[SNR]

= 10 log{1.5(2b − 1)2 exp[−2(t/τ )2]}
∼= 6b + 1.8 − 8.69(t/τ )2 (23)
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Figure 9. The statistical frequency measuring error versus the
averaging time, for unweighted QDT (case A), with a thermal noise
process (regime 2α) and constant sampling number (regime (ii)).

Figure 10. The statistical frequency measuring error versus the
averaging time, for unweighted QDT (case A), with a quantization
noise process (regime 2β) and constant sampling frequency
(regime (i)).

Figure 11. The statistical frequency measuring error versus the
averaging time, for unweighted QDT (case A), with a quantization
noise process (regime 2β) and constant sampling number
(regime (ii)).

where b is the number of bits and the time-dependent signal
power A2(t) = A2

0 exp[−2(t/τ )2] giving

SNR = a2
eff

σ 2
Q

= A2(t)

2σ 2
Q

(see equation (8)) is used.
In figures 10 and 11 simulation curves for some numbers

of bits are shown. The corresponding equivalent SNRs
are SNRdB(4 bit) = 25.8 dB, SNRdB(6 bit) = 37.8 dB,
SNRdB(8 bit) = 49.8 dB, SNRdB(10 bit) = 61.8 dB and
SNRdB(12 bit) = 73.8 dB. The theoretical curves in figure 10
and 11 have the same SNRs as those used in figures 6–9 in
order to compare the quantization noise with the thermal and
shot noise.

At small averaging times and high numbers of bits, a good
agreement with the theory results (see the curve of b = 8 bit,
i.e. SNR ≈ 50 dB). The otherwise occurring discrepancy can
be explained as follows. At a low number of bits, no fluctuation
of the quantization levels for adjacent sampling points takes
place. Therefore, the phase values are free of quantization
noise. A quantization resolution of 2 bits shall be considered.
Around b = 2 bits only a few quantization values occur, so that
the quantized phase is given by a curve with low noise. With
increasing signal time the number of bits b is reduced according
to equation (23) by �b = −1.44(t/τ )2. For other numbers of
bits b(t = 0) in figures 10 and 11 a reduction to e.g. b = 2 bits
occurs at the following signal times t : for b = 4 bits, t = 83 µs,
for b = 6 bits, t = 118 µs, for b = 8 bits, t = 144 µs
for b = 10 bits, t = 166 µs and b = 12 bits, t = 186 µs.
Beyond these signal times the quantization cannot be described
as a noise process. Therefore, the simulated curves for these
averaging times differ from those predicted by the theory of
quantization noise. For example, for 8 bits the simulation
deviates from the theoretical curve (SNR ≈ 50 dB) at the
above-determined averaging time of 144 µs; see figures 10
and 11. A further increase of the averaging time results in a
reduction of the number of bits until b = 0. The result for high
averaging times is that the various simulation curves converge
towards a smaller statistical error than do the theoretical curves
corresponding to the CRLB.

However, on the other hand, the systematic error of the
centre frequency is greater for long averaging times. Unbiased
frequency measurements also at the tails of pulse signals
require a high number of bits for the ADC. Considering a
typical LDV signal, with a SNRdB(t = 0) of 20 dB, the usually
obtained resolution of 8 bits is sufficient, compare figures 6
and 8 with 10.

5.2. Investigations of the weighted QDT (case B)

The weighted QDT is analysed in terms of the dependence
on the averaging time. As described in section 2, to achieve
efficient frequency measurements, a heteroscedastic signal
has to be weighted, see equation (4). The investigations
are accomplished for two regimes (1, i) and (2α, i) with
SNR(t = 0) = 30 dB, see figures 12 and 13. It was
shown in section 4.5 that the QDT achieves the CRLB of
a signal, so that the theoretical curves have the minimum
measuring error. Different weighting functions are used for the
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Figure 12. The statistical frequency measuring error versus the
averaging time, for weighted QDT (case B), with a shot noise
process (regime 1) and constant sampling frequency (regime (i)).
Several weighting functions for the phase were used. For
comparison, the result of a complex FFT technique with a Hanning
window and seven-point arithmetic mean interpolation is shown.

theory
simulation

0 50 100 150 200
10

20

30

40

50

(SNR=30dB)

no

weighting

with validation

C-FFT

st
a

n
d

a
rd

d
e

v
ia

ti
o

n
[H

z
]

averaging time [µs]

w A~ w A~ 2

w A~ 2

1/e burst

duration

Figure 13. The statistical frequency measuring error versus the
averaging time, for weighted QDT (case B), with a thermal noise
process (regime 2α) and constant sampling frequency (regime (i)).
Several weighting functions for the phase were used. For
comparison, the result of a complex FFT technique with a Hanning
window and seven-point arithmetic mean interpolation is shown.

simulation in order to attain the optimal weighting suggested by
equation (14). In regimes 1 and 2 the weightings w(t) ∼ A(t)

and w(t) ∼ A2(t), respectively, have to be used. As shown
in figures 12 and 13, the CRLB is exactly reached with these
weighting functions. At great averaging times beyond 155 µs
(see section 5.1), the signal drops below the demodulation
threshold, resulting in the discrepancy between theory and
simulation shown; see figure 12.

The weighting according to equation (4) is defined
by the variance of the phase values. Equation (14) uses
the proportionality between the phase variance and signal
amplitudes. It is valid beyond the demodulation threshold of
SNR > 9 dB. Otherwise a weighting function with validation
is used; it is set to w ≡ 0 for SNR < 9 dB, see figures 12
and 13.

Besides results from the weighted QDT, simulation results
of the unweighted QDT (see section 5.1) and the complex FFT

0 50 100 150 200
0

50

100

150

200

250

st
a

n
d

a
rd

d
e

v
ia

ti
o

n
[H

z
]

averaging time [µs]1/e signal

duration

100kHz center frequency

50dB

29dB

20dB

16dB
theory
simulation

Figure 14. The statistical frequency measuring error versus the
averaging time. The signal is generated with an arbitrary signal
generator; for unweighted QDT (case A), with a thermal noise
process (regime 2α) and constant sampling frequency (regime (i)).

technique are also shown. As can be seen from figures 12
and 13 the same dependence of the measuring error on the
averaging time results for the weighted QDT and the complex
FFT technique. The FFT has in reality no demodulation
threshold, but the measuring error is slightly greater than the
CRLB. It is mainly caused by deviations at the interpolation of
the discrete frequency spectrum values for low period numbers
[4, 13]. Since the number of periods in the centre of the signal
is small, a significant increase of the measurement error at
small averaging times occurs, see figures 12 and 13.

6. Experimental verification

In addition to the computer simulation, an experimental proof
of the theory is acquired. To simplify the investigations, the
unweighted QDT is used only with the thermal noise regime 2α

and a sampling of constant frequency (regime i). In figure 8
the simulation curve for case A, regime 2α, (i) was shown.
A verification of this result is accomplished by using first a
signal generator and secondly an experimental LDV system.
These two investigations were carried out with the same signal
processing system, using a two-channel 8-bit PC-based data
acquisition card with maximum 1024 sampling points per
channel. The difference to Nmax = 1025 of the simulation
can be neglected. The QDT system has been implemented by
means of the software LabVIEW on a PC (personal computer).
The use of the signal generator includes the acquisition of
data for the examination of errors, but allows the generation
of signals with known parameters. Therefore, it is a suitable
extension from the numerical simulation. A final verification
is achieved by the LDV system, although controlling the signal
parameters is more difficult.

(i) An arbitrary signal generator (LeCroy LW 420) was used
to synthesize the signals. Two uncorrelated Gaussian
random processes are generated and superposed on the
deterministic pair of signals in quadrature. The frequency
error has been calculated in the same way as described in
section 5, see equation (21). Repetitions of measurements
with M = 50 were carried out. In figure 14 the measuring
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errors obtained for various values of SNRdB(t = 0) are
shown. It can be concluded from figure 14 that there
is an excellent agreement of theory and measurement in
the range above the demodulation threshold. The optimal
averaging time is approximately given by the 1/ e signal
duration, see table 1 for regime 2, (i). Quantization effects
of the arbitrary generator, having 11-bit resolution, as
well as from the PC data acquisition card, having 8-bit
resolution, cannot be detected in the measurement result.

(ii) A heterodyne LDV system, see figure 1, is used to generate
the measurement signal. A measurement volume with a
full 1/ e2 diameter of �x = 23/2w = 340 µm and a
spacing of d = 10 µm of the fringe system has been
generated. In order to obtain a defined measurement
signal, a scattering wire was moved by a chopper through
the measurement volume with a velocity of about v =
3.4 m s−1. The signal generated has a duration of about
�t = 23/2τ = 100 µs and a frequency of approximately
f = 340 kHz. Owing to the PIN photo-diode used,
the thermal noise process dominates. By evaluation of
the FFT spectrum, SNRdB(t = 0) was estimated to be
approximately 20 dB. The measuring error of the centre
frequency was determined by means of equation (21),
using M ′ = M − 1 = 49 in the denominator, since the
expectation value is unknown in principle for experimental
data.

The optimal averaging time is determined as approxi-
mately the 1/ e signal duration, figure 15. Hence, the theo-
retical result for regime 2, (i) is experimentally proved, see ta-
ble 1. However, a significantly higher relative frequency error
of �f̂ /f̂ ≈ 2.25 kHz/340 kHz ≈ 0.7% occurs, in compari-
son with the theoretical result of �f̂ /f̂ ≈ 80 Hz/340 kHz ≈
0.02%, see figure 8. It may be caused by disturbances in the
generated signals arising from laser power fluctuations, drift
of the chopper circle velocity and instabilities of the used scat-
tering wire. Furthermore, estimation of the arrival time of the
burst signal [2] and the signal envelope have to be considered.
A simplified QDT algorithm, assuming a symmetrical Gaus-
sian signal has been used; compare with equation (15), figure 2.
The asymmetrical signal generated requires an adaptive def-
inition of the evaluation time interval in order to reduce the
measuring error.

7. Discussion

The standard deviations of case A, and case B of the QDT
are compared. According to equation (17) the quotient of the
measuring errors are given by

�f̂case A/�f̂case B =
[( (N−1)/2∑

i=1

i2 exp[m(i/τ)2]

)1/2

×
( (N−1)/2∑

i=1

i2 exp[−m(i/τ)2]

)1/2][ (N−1)/2∑
i=1

i2

]−1

∼
[(∫ tA/2

t=0
t2 exp[m(t/τ)2] dt

)1/2

×
(∫ tA/2

t=0
t2 exp[−m(t/τ)2] dt

)1/2][ ∫ tA/2

t=0
t2 dt

]−1

(24)
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Figure 15. The statistical frequency measuring error versus the
averaging time. The signal is generated by means of a heterodyne
laser Doppler velocimeter; for unweighted QDT (case A), with a
thermal noise process (regime 2α) and constant sampling frequency
(regime (i)).

where continuous functions of the weighting are used, with
m = 1 and m = 2 for the regimes 1 and 2, respectively.
Premising the regime 1, the minimum measuring error of
case A is obtained at an averaging time of topt = 1.018τ2

√
2,

i.e. approximately the 1/ e2 signal duration, see table 1. In
contrast, case B results in a minimum measuring error, which
asymptotically approaches the CRLB for tA → ∞, see
figures 12 and 13. Using the optimal averaging times, a
quotient of �f̂case A/�f̂case B = 1.3302 results for the two
cases A and B. The measuring error of case A is about 33%
higher than that of case B, which is equal to the CRLB. About
67% of the square root of the information content of the signal
is therefore used.

However, due to the occurring demodulation threshold,
the available averaging time is practically limited. Using the
averaging time topt of case A also for case B, the measuring
error of case A is only 16% higher than that of case B. Then
the measuring error of case B is about 15% above the CRLB.
These results are valid for regime 1 as well as for regime 2 of
the noise processes.

The information content of the signal, resulting in
the CRLB (see section 2), is exploited by the weighted
QDT. In contrast, the unweighted QDT also incorporates
the noisy phase values from the tails of the signal into the
determination of the centre frequency (section 4.5). According
to equation (17), these uncertain phase values greatly affect the
measurement result, since they are multiplied by the square of
the signal time in the calculation of the centre frequency. The
increase of the measuring error in comparison with case B is
therefore elucidated and this answers the questions in section 3.

An optimal averaging time also results from using the
counter technique, see table 1. However, a significantly higher
measuring error can be observed. Assuming a signal with
a constant amplitude, the standard deviation can be written
as �f̂Counter = (πtA SNR1/2)−1 [26], where the averaging
time tA and the signal frequency f̂ correspond to the zero
point number n: tAf̂ = 2n, see section 1. The quotient of
the measuring error of the counter technique and the CRLB,
equation (18), can be expressed as �f̂Counter/�f̂CRLB

∼=
(N/1.5)1/2, where N is the number of uncorrelated measured
values. For example, a typical number N = 512 of
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measurement values yields a quotient of 18.5. However, it
is strongly dependent on the noise bandwidth B of the signal
(section 4.5).

As shown in figures 12 and 13, the measuring error of the
FFT technique and the weighted QDT decrease monotonically
with increasing averaging time. The uncertainty of the
measuring value in the tails of the signal also increases the
noise density of the FFT spectrum, but the impact on the
spectral line of the Doppler signal can be neglected. Therefore,
the evaluation of the signal in the frequency domain is not
susceptible to the noise disturbances at small signal amplitudes.
However, at very low SNRs beyond 0 dB, the noise floor can
exceed the spectral line and result in a demodulation threshold
of the frequency measurement. In the LDV signal processing
this does not occur, because only signals with SNR > 0 dB can
be triggered in the time domain. The reductions in quality of
the signal due to signal clipping and quantization have a minor
effect on the measuring error of the FFT technique. This has
been taken advantage of in 1-bit FFT frequency measurement
techniques [38].

The weighted QDT has similar characteristics to the FFT
technique (figures 12 and 13). The influence of uncertain
measurement values is reduced by the weighting factor, see
section 5.2. However, two differences between QDT and FFT
have to be pointed out. (i) The weighting has to be calculated.
Therefore, the measuring error of the QDT is also dependent on
the accuracy of the weighting function. (ii) The phase values
exhibit a demodulation threshold, which cannot be reduced
by weighting. Therefore, the QDT requires a signal of high
quality, but then the CRLB can be reached exactly.

The features of the various signal processing techniques
can be summarized as follows. (i) Time domain characteristics,
resulting in e.g. the counter technique and unweighted QDT,
can be realized with little technical effort and achieve a high
data rate. However, a signal of high quality is necessary
and definite averaging times have to be used in order to
achieve a high measuring accuracy. (ii) With frequency domain
characteristics, resulting in e.g. FFT and weighted QDT, in
principle, the CRLB is asymptotically reached with great
averaging times. However, the computer load is higher than
that for time domain processors. As shown in figures 12 and 13
the weighted QDT exhibits the lowest measuring error of all
the signal processing techniques discussed. Furthermore, the
measuring error is in principle independent of the occurring
period number. These advantages of the QDT are relevant for
signals with a high SNR (>9 dB). Fields of application are e.g.
flow LDV measurement of micro-turbulence with small eddies,
sound-wave-caused accelerations [3], droplet accelerations
[14], vortices after nozzles [15] and small velocities in
biomedical flows. However, besides the evaluation of a single
signal, the random occurrence of the signals has to be taken
into account [39]. The random passages of the tracer particles
through the measurement volume result in velocity samples of
the flow, which are irregularly spaced in time. At low tracer
particle rates, the measurement of velocity fluctuations is not
free of bias due to aliasing in the sampling process. Therefore
suitable estimators for the processing of LDV signal series have
to be used, see [2, 40].

8. Conclusions

The quadrature demodulation technique (QDT) is presented
as a precise frequency measuring procedure for single-tone
signals, with inherently high SNR. The main advantages of
the QDT are the independence of the frequency determination
from the occurring signal period number and the shape
of the signal envelope. For instance, precise frequency
measurements of burst signals having only a fraction of one
period can be accomplished. In this work, for the first
time, a rigorous investigation of the frequency measuring
error for noisy pulsed signals has been accomplished. The
results are proved to agree with the Heisenberg uncertainty
relation. Furthermore, the theoretical results are verified by a
Monte Carlo simulation, by using a signal generator and by
experimental measurements with a laser Doppler velocimeter.

Two LSMs are applied for the QDT. (i) For the unweighted
QDT it is shown that the minimum measuring error is reached
for averaging times of approximately 1/ e and 1/ e2 signal
duration, respectively, assuming dominating thermal and shot
noise of the photo-electrical signal, respectively. Therefore,
the signal processing has to consider these optimal averaging
times in order to obtain good results. (ii) For the weighted
QDT, using a defined weighting of the measurement values, the
frequency measuring error is monotonically reduced towards
the CRLB with increasing averaging time. In comparison with
the unweighted QDT, a lower measuring error is reached, but
the weighting has to be determined and the data rate of the
centre-frequency calculation is lower. The unweighted QDT
can be recommended for simple signal processing with good
measuring accuracy, whereas the weighted QDT is the right
choice for high precision measurements of frequency, e.g. of
small velocity fluctuations in micro-turbulent flows.

This paper also communicates results on general aspects
of the optimal processing of noisy single-tone Gaussian pulse
signals. Viewed formally, Gaussian signals are not easy to
handle, since they have theoretically an infinite signal duration.
However, a suitable definition of the signal duration can be
found in the context of the information content of the signal.
Since the quality of the signal strongly decreases at the signal
trailers, the main part of the information content lies in the
centre of the signal. Using an unweighted QDT, an averaging
time of approximately the full 1/ e2 signal duration �t results
in an optimal measuring result, assuming regime 1. Also the
weighted QDT uses the main information content at the signal
duration �t , leading to a measuring error that exceeds the
CRLB by only 15%, see section 7. Larger averaging times
require greater efforts in memory and calculation for the LSM.
Furthermore, they are limited due to the occurrence of the
demodulation threshold. It can be argued that the full 1/ e2

duration can be viewed as the right choice for the evaluation of
the signal time interval, assuming noise regime 1, i.e. the shot
noise process.

It is stated that the statistical measuring error of the QDT
is dependent only on the signal duration �t and the SNR.
In section 4.5, its independence of other parameters like the
number of signal periods and sampling points has been shown.
The result obtained is in agreement with the Heisenberg
uncertainty relation. Therefore, frequency measurements at
the fundamental limit of uncertainty can be accomplished by
the QDT.
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Appendix A. Linear regression

The standard deviation of the centre frequency of the burst
signal is derived by means of the LSM. The sum of the least
squares S of the differences between the straight regression
line, equation (3), and the measured phase values has to be
minimized. The partial derivatives of S (section 2) are set to
zero:

∂S

∂â
= −2

∑
i

(φMi − â − b̂ti )wi = 0.

∂S

∂b̂
= −2

∑
i

(φMi − â − b̂ti )tiwi = 0

The solution of the two equations results in

â =
∑

i

(φMiwi)

/∑
i

wi − b̂

(∑
i

(tiwi)

/∑
i

wi

)

b̂ =
(

C
∑

i

φMiwi −
∑

i

φMitiwi

)/(
C
∑

i

tiwi −
∑

i

t2
i wi

)

C =
(∑

i

tiwi

)/∑
i

wi.

The factor C is zero for a symmetrical signal, see the Gaussian
signal in equation (5). Otherwise it can be set to zero by a
coordinate transformation. Then, the centre frequency of the
signal is given by

f̂ = b̂

2π
=
∑i=(N−1)/2

i=−(N−1)/2 tiφMiwi

2π
∑i=(N−1)/2

i=−(N−1)/2 t2
i wi

(A.1)

with N being an odd number of measurements. A similar
formula can be derived for an even number of measurements.

Assuming an equal weight distribution, i.e. wi = 1,
∀i ∈ Z, equation (A.1) can be simply written as

f̂ = b̂

2π
=
∑i=(N−1)/2

i=−(N−1)/2 tiφMi

2π
∑i=(N−1)/2

i=−(N−1)/2 t2
i

. (A.2)

Now, the standard deviation of the centre frequency will be
derived. First, the measuring error of the weighted regression
is considered on the basis of equation (A.1). According to the

law of propagation of error the statistical measuring error of
the phase values is given by

�b̂ =
[ i=(N−1)/2∑

i=−(N−1)/2

(
∂(ciφMi)

∂φMi

�φMi

)2 ]1/2

=
( i=(N−1)/2∑

i=−(N−1)/2

(ci�φMi)
2

)1/2

ci = tiwi∑i=(N−1)/2
i=−(N−1)/2(t

2
i wi)

where ci is a constant of the linear combination. Applying
equation (4), the standard deviation of the centre frequency
becomes

�f̂ = �φmin

2π(
∑i=(N−1)/2

i=−(N−1)/2 t2
i wi)1/2

(A.3)

where �φmin is the minimum standard deviation of the phase
values of the time series, see section 4.4. The sampling times
are assumed to be equidistant and can be written as

ti = iTS TS = tA/(N − 1) (A.4)

where TS is the sampling period, given by the sampling
frequency fs as TS = 1/fS , tA is the time duration of the
time series and N is the odd number of measurements. Using
equation (A.4), the denominator of equation (A.3) can be
written as
i=(N−1)/2∑

i=−(N−1)/2

t2
i wi = t2

A

(N − 1)2

i=(N−1)/2∑
i=−(N−1)/2

i2wi

= 2t2
A

(N − 1)2

(N−1)/2∑
i=1

i2wi. (A.5)

For the right-hand side of this equation a symmetrical
weighting function of the signal was assumed valid in order
to simplify the calculation. Considering a Gaussian burst
signal, this condition is fulfilled, see above. Applying these
simplifications to equation (A.3) the standard deviation of the
centre frequency is given by

�f̂ = �b̂

2π
= �φmin

(23/2πtA/(N − 1))(
∑(N−1)/2

i=1 i2wi)1/2
.

(A.6)
Next, the measuring error of an unweighted regression has
to be derived. The estimation of the centre frequency is
given by equation (A.2). However, the phase values of LDV
signals generally have a different measuring error. In order to
determine their centre frequency error, the weighting has to be
considered. The measuring error is derived by analogy to the
calculation of the weighted regression:

�b̂ =
[ i=(N−1)/2∑

i=−(N−1)/2

(
∂(ciφMi)

∂φMi

�φMi

)2 ]1/2

=
( i=(N−1)/2∑

i=−(N−1)/2

(ci�φMi)
2

)1/2

ci = ti∑i=(N−1)/2
i=−(N−1)/2 t2

i

.
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Applying equations (4) and (A.4) the standard deviation of the
centre frequency is given by

�f̂ = �b̂

2π
= �φmin(

∑(N−1)/2
i=−(N−1)/2 t2

i /wi)
1/2

2π
∑(N−1)/2

i=−(N−1)/2 t2
i

.

Using equation (A.5), the standard deviation turns out to be

�f̂ = �b̂

2π
= �φmin(

∑(N−1)/2
i=1 i2/wi)

1/2

(23/2πtA/(N − 1))
∑(N−1)/2

i=1 t2
i

. (A.7)

The presumption of a symmetrical weighting wi of the time
series and an odd number of phase values N does not affect
the universal validity.

Appendix B: The Heisenberg uncertainty relation

The uncertainty relation between the position x and the
momentum p as canonic, conjugated variables was formulated
by Heisenberg in 1927: �x�p � h/(4π), where �x and �p

are the standard deviations of the expectation values of position
and momentum and h is Planck’s quantum. A Gaussian
distribution of both variables gives the minimum values h/(4π)

of the inequality. For an optical wave pulse propagating along
the x-axis, the substitution x = ct can be made, where c is the
velocity of light and t is the retardation time. The momentum
can be written as p = hf/c, where f is the frequency of
the optical wave or also of an electrical signal. Then the
Heisenberg uncertainty relation can be formulated as

�t�f � 1/(4π) (B.1)

where the variances are defined as (�t)2 = ∫
t2[A(t)]2 dt/∫

[A(t)]2 dt and (�f )2 = ∫
f 2[A′(f )]2 dt/

∫
[A′(f )]2 df

with A(t) = A0 exp[−(t/τ )2] and A′(f ) as its Fourier
transformation. The standard deviation of the time-dependent
function can be interpreted as the half 1/e duration of the
Gaussian pulse signal. Spectral broadening of the wave
corresponds to the standard deviation of the frequency. The
measuring error of the centre frequency �f̂ is proportional to
the signal line width �f .

The optical wave can be considered as a photon ensemble
in terms of quantum mechanics. Then the momentum can
be written as p = E/c, where E is the energy of the
photon ensemble. The standard deviation turns out to be
�p = �E/c = �nhf/c, where n is the number of photons
and hf is the single photon energy. The phase φ of the wave is
given by φ = 2πf t and its standard deviation can be written
as �φ = 2πf �t = 2πf �x/c, where the relation x = ct

is used, see above. Then the Heisenberg uncertainty relation
reads [9]

�φ�n � 1
2 . (B.2)

The standard deviation of the number of photons can be
investigated with photon statistics. A coherent laser beam
exhibits a Poisson distribution of the number of photons:
p(n) = 〈n〉n[exp(−〈n〉)]/n!. This expression describes the
quantum noise of the photon ensemble. It is equal to the shot
noise of the electron current for an ideal photo-detector with
100% quantum efficiency.

It is pointed out that a lower phase variance than that
for shot noise processes can be achieved by using so-called
squeezed light, causing e.g. anti-bunching of the photons. Its
variance is reduced, however, only at certain phase angles of
the sinusoidal signal. Furthermore, squeezed light is usually
suppressed by dissipation processes, which occur e.g. during
the scattering of light in LDV systems.

The SNR of coherent light is assumed to be SNR =
〈n〉/�n = 〈n〉1/2, so equation (B.2) can be written as �φ �
1/(2〈n〉1/2) ∼ SNR−1/2. Using the proportionality of the
average optical power to the number of photons P ∼ 〈n〉
results in �φ ∼ P −1/2 ∼ A−1/2. This result is equal to
equation (12), which was derived for the phase measurement of
a signal with superposed shot noise, see section 4.2. Together
with equation (18) the proportionality �f̂ ∼ �φ ∼ P −1/2

is obtained, with �φmin set to �φ. In conclusion, the optical
power is a fundamental parameter of the frequency measuring
error.
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