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Reliability Engineering meets Artificial Intelligence (Al)

Deep learning based error detection?

Al for error detection

* Conventional Fault Detection and Isolation methods shows low performance Cyber-Physical System (CPS)
with the increasing of systems complexity.

* Deep learning techniques, e.g., training a neural network to distinguish between
normal and erroneous system behavior, are promising solution.
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Cyber-physical systems (CPS)

* Consist of numerous heterogeneous components.

* Generate big data.

* Form complex interactions and system operational profiles.
* Prone to various errors types.
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The signals of a CPS are mainly time series da.ta. B e iﬁ‘:’&:ﬂ( e
* Recurrent neural networks (RNN) can use an internal state (memory) to process N e
sequences of inputs and are applicable to error detection in time-series data. poslisiocuis 48 C!D C?D S
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Reliability evaluation of safety-critical Al applications?

Safety-critical Al applications Add, 50 operations in the network
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* The next generation of functional safety standards has to define appropriate verification and ] 4
validation techniques and fault tolerance mechanisms. % 60 ; r)
¢ Itis crucial to understand how different hardware faults affect the accuracy of Al applications. £ 504 x - +
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¢ Our fault injection framework manipulates the outputs of TensorFlow mathematical operations: & a0+ +
For each operation type, the user can specify a fault type as well as an error injection probability. S . . ; :
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