

 1 / 13

Fakultät Elektrotechnik und Informationstechnik ● Institut für Automatisierungstechnik

ROS C++ STYLE GUIDE

Version 1.0, January 2018

1 Foreword
This document defines a style guide to be followed in writing C++ code for Robot Operating System within the

Institute of Automation. The style guide is based on the Google C++ style guide and official ROS style guide.

The readers are encouraged to read Google C++ style guide as a fundamental. Changes from official ROS style

guide are highlighted by red color. All new packages developed in the Institute of Automation should conform to

this guide.

2 Autoformatting of ROS Code
Why waste your valuable development time formatting code manually when we are trying to build amazing ro-

bots? Use a robot to format your code using "clang-format". You can find an auto formatting script for this style

guide here.

3 Naming
The following shortcuts are used in this section to denote naming schemes:

CamelCased: The name starts with a capital letter, and has a capital letter for each new word, with no under-

scores.

camelCased: Like CamelCase, but with a lower-case first letter

under_scored: The name uses only lower-case letters, with words separated by underscores. (yes, I realize that

under_scored should be underscored, because it's just one word).

ALL_CAPITALS: All capital letters, with words separated by underscores

3.1 Packages

ROS packages are under_scored.

This is not C++-specific, e.g.: youbot_gazebo.

3.2 Topics / Services

ROS topics and service names are under_scored.

This is not C++-specific, e.g.: /vel_cmd, /switch_off_motors.

3.3 Files

All files are under_scored.

Source files have the extension .cpp while header files have the extension .h. For every .cpp file, there is a corre-

sponding .h file with the same name. In general they take the module name, see Chapter 16.

Be descriptive, e.g., instead of laser.cpp, use hokuyo_topurg_laser.cpp.

If the file primarily implements a class, name the file after the class. For example the class ActionServer would

live in the file action_server.h.

3.4 Libraries

Libraries, being files, are under_scored.

Don't insert an underscore immediately after the lib prefix in the library name.

https://github.com/davetcoleman/roscpp_code_format

 2 / 13

Fakultät Elektrotechnik und Informationstechnik ● Institut für Automatisierungstechnik

E.g.:

3.5 Classes / Types

Class names (and other type names) are CamelCased

E.g.: class ExampleClass;

Exception: if the class name contains a short acronym, the acronym itself should be all capitals, e.g.: class Ho-

kuyoURGLaser;

Name the class after what it is. If you can't think of what it is, perhaps you have not thought through the design

well enough. Compound names of over three words are a clue that your design may be unnecessarily confusing.

See also: Google:Type Names

3.6 Variables

In general, variable names consist only of nouns and adjectives. They are under_scored and begin with specified

qualifier to identify the data type, e.g.: ui_voltage_level, f_max_acc. Possible qualifiers are listed in Table 3.1.

Table 3.2: Prefix for data type

Data type Qualifier of Data type

usigned char uc

signed char sc

char c

int i

unsigned int ui

unsigned long ul

long l

unsigned char * puc

signed char * psc

char * pc

unsigned long * pul

long * pl

fload f

double d

long double ld

float * pf

double* pd

lib_my_great_thing ## Bad

libmy_great_thing ## Good

https://google.github.io/styleguide/cppguide.html#Type_Names

 3 / 13

Fakultät Elektrotechnik und Informationstechnik ● Institut für Automatisierungstechnik

long double * pld

struct * ps

function pointer pfn

void v

Be reasonably descriptive and try not to be cryptic. Longer variable names don't take up more space in memory.

Integral iterator variables can be defined without data type qualifier, such as i, j, k. i is always on the outer loop, j

on the next inner loop and so on.

The pointer-qualifier “*” must stay near the name, not the data type, e.g.: unsigned int *ui_voltage_level.

STL iterator variables should indicate what they're iterating over, e.g.:

Alternatively, an STL iterator can indicate the type of element that it can point at, e.g.:

3.7 Constants

Constants are in principle not allowed, define macros with ALL_CAPITALS instead of defining constants.

E.g.:

Member variables

Variables that are members of a class (sometimes called fields) are under_scored, with a trailing underscore

added.

E.g.:

3.8 Global variables

Global variables should almost never be used (see below for more on this). When they are used, global variables

are under_scored with a leading g_ added.

E.g.,:

std::list<int> pid_list;

std::list<int>::iterator int_it;

std::list<int> pid_list;

std::list<int>::iterator pid_it;

#define SAMPLE_CONST 7

int i_example_int_;

// I tried everything else, but I really need this global variable

int g_i_shutdown;

 4 / 13

Fakultät Elektrotechnik und Informationstechnik ● Institut für Automatisierungstechnik

3.9 Namespaces

Namespace names are under_scored and based on module/package name.

3.10 Function / Methods

In general, function and class method names are camelCased, their arguments are under_scored (variables). The

name begins with a prefix to identify the returned data type (refer to Table 3.3), e.g.:

Functions and methods usually perform an action, so their names should consist of a verb and a noun. The name

must clearify what they do:

Classes are often nouns. By making function names verbs and following other naming conventions programs can

be read more naturally.

Table 3.4: some preferred verbs for actions

Verb possible meaning of the action

Add add an item to a list

Adjust align a value

Apply assign a new value

Calc execute an algorithm to get a value

Check verify sth.

Clear reset to default state

Ctrl control sth.

Cvrt convert

Decr reduce the value

Get read date from another module

Read read date from hardware

Init initialization

Lookup get a predefined value in a table

Manage

Reset data or state reset

Start start a process

Stop stop a process

Test run a test

Update change value or state

Propagate move on to next step

Is ask for a logical status

int iCheckForErrors() //instead of iErrorCheck()

void vDumpDataToFile() //instead of vDataFile().

int iExampleMethod(int i_example_arg);

 5 / 13

Fakultät Elektrotechnik und Informationstechnik ● Institut für Automatisierungstechnik

Most variables and functions should be declared inside classes. The remainder should be declared inside

namespaces.

4 Formatting
Your editor should help you format code in a consistent style, as described in this document. It is well showed in

ROS editor help, how to set up your favorite editor including Vim, Emacs, Eclipse, indent and Qt Creator.

4.1 Code Block

Please indent each code block by at least two space, never use literal tab characters (this can be done in the set-

ting of your editor). Braces, both open and close, go on their own lines (no "cuddled braces"). E.g.:

Braces can be omitted if the enclosed block is a single-line statement, the block stay in the same line after the

construction. However, always include the braces if the enclosed block is more complex.

Hier is a larger example:

if(a < b)

{

 a=b// do stuff

}

else

{

 b=a// do other stuff

}

 1 /*

 2 * A block comment looks like this...

 3 */

 4 #include <math.h>

 5 class Point

 6 {

 7 public:

 8 Point(double xc, double yc) :

 9 x_(xc), y_(yc)

 10 {

 11 }

 12 double distance(const Point& other) const;

 13 int compareX(const Point& other) const;

 14 double x_;

 15 double y_;

 16 };

 17 double Point::distance(const Point& other) const

 18 {

 19 double dx = x_ - other.x_;

 20 double dy = y_ - other.y_;

 21 return sqrt(dx * dx + dy * dy);

 22 }

 23 int Point::compareX(const Point& other) const

 24 {

 25 if (x_ < other.x_)

 26 {

 27 return -1;

 28 }

 29 else if (x_ > other.x_)

 30 {

http://wiki.ros.org/EditorHelp

 6 / 13

Fakultät Elektrotechnik und Informationstechnik ● Institut für Automatisierungstechnik

4.2 Line Length

Maximum line length is 120 characters.

4.3 #ifndef Guards

All headers must be protected against multiple inclusion by #ifndef guards, the name of the compiler switcher

builds up as _FILE_NAME_CAPTAL_H_. E.g.:

This guard should begin immediately after the license statement, before any code, and should end at the end of

the file.

5 Commentary & Documentation
The source code must be coded with comments, but it is not necessary to leave a comment for each line. The

comment must declare “what” happened, “how” does it happened and how the parameters are interpreted.

In the beginning of every file, a file header comment according to Doxygen guideline have to be left. Each func-

tion receive a block comment to explain its tasks, inputs and returned values.

A comment must be there, when

 declaration of variables (if there is no Doxygen comment)

 Query datas

 31 return 1;

 32 }

 33 else

 34 {

 35 return 0;

 36 }

 37 }

 38 namespace foo

 39 {

 40 int foo(int bar) const

 41 {

 42 switch (bar)

 43 {

 44 case 0:

 45 ++bar;

 46 break;

 47 case 1:

 48 --bar;

 49 default:

 50 {

 51 bar += bar;

 52 break;

 53 }

 54 }

 55 }

 56 } // end namespace foo

 57

#ifndef _CHARGE_CONTROL_H_

#define _CHARGE_CONTROL_H_

...

#endif

 7 / 13

Fakultät Elektrotechnik und Informationstechnik ● Institut für Automatisierungstechnik

 loops and branches

 complex calculation

Comments, which are related to a single line, should be written either over this line or in the end of this line.

Only single line comment is allowed to use “//”, others must use “/* … */”. If the variable is a physical value, the

unit must be given. Comments are not allowed to be nested.

All functions, methods, classes, class variables, enumerations, and constants should be documented. Doxygen is

used to auto-document the source code. Doxygen parses your code, extracting documentation from specially for-

matted comment blocks that appear next to functions, variables, classes, etc. Doxygen can also be used to build

more narrative, free-form documentation.

See the rosdoc page for how to auto-generate documentation with ROS package semantics. Refer to XXX for

Doxygen guideline.

6 Console Output
Instead of printf, cout or their friends, use rosconsole for all the outputting needs. It offers macros with both

printf and stream-style arguments. rosconsole output goes to corresponding console window, in which the pro-

gram is running. We prefer rosconsole because it is

 color-coded

 controlled by verbosity level and configuration file

 published on the topic /rosout, and thus viewable by anyone on the network.

 optionally logged to disk

 sorted by different levels (normal, warning, error etc.)

7 Preprocessor directives (#if vs #ifdef)
For conditional compilation (except for the #ifndef guard in header explained in Chapter 4.3), always use #if in-

stead of #ifdef.

The code might be compiled with turned-off debug info lik:

Always use #if, if you have to use the preprocessor. This works fine and does the right thing, even if DEBUG is

not defined at all.

8 Output Arguments
Output arguments to methods or functions (i.e. variables that the function can modify) are passed by pointer, not

by reference. E.g.:

By comparison, when passing output arguments by reference, the caller (or subsequent reader of the code) can’t

tell whether the argument can be modified without reading the prototype of the method.

#if DEBUG

 temporary_debugger_break();

#endif

cc –c lurker.cpp –DEBUG=0

int iGiveExampleMethod(int i_input, float *pf_output)

http://wiki.ros.org/rosdoc

 8 / 13

Fakultät Elektrotechnik und Informationstechnik ● Institut für Automatisierungstechnik

9 Namespaces
Use of namespaces to scope your code is encouraged. The naming advice is given in Chapter 3.9. Use of using-

directives in header files is strictly forbidden. It pollutes the namespace of all code that includes this header.

Namespaces do not add an extra level of indentation.

It is acceptable to use using-directives in a source file, but it is preferred to use using-declarations, which pull in

only the names you intend to use.

E.g.; instead of this:

do this:

10 Inheritance
Inheritance is the appropriate way to define and implement a common interface. The base class defines the inter-

face, and the subclasses implement it.

Inheritance, used to provide common code from a base class to subclasses, is discouraged. In most cases, the

subclass could instead contain an instance of the base class and achieve the same result with less potential for

confusion.

When overriding a virtual method in a subclass, always declare it to be virtual, so that the reader knows what’s

going on.

Multiple inheritance is strongly discouraged, as it can cause intolerable confusion.

11 Functions
11.1 Parameters

When defining a function, parameter order is: inputs, then outputs, at last input&output. Input parameters are

usually values or const references, while output and input/output parameters will be pointers to non-const.

 All parameters passed by reference must be labeled const.

11.2 Function Length

No hard limit is placed on function length, but prefer small and focused functions. If a function exceeds about 40

lines, think about whether it can be broken up without harming the structure of the program.

12 Exceptions
Exceptions are the preferred error-mechanism as opposed to returning integer error codes. All exceptions, which

can be thrown by your package/function/method, must be documented properly. Exceptions are not allowed in

destructors or callbacks invoked indirectly.

using namespace std; // Bad, because it inports all names from std and polute the namespace

namespace std::list // I want to refer to std::list as list

{

} // namespace std::list

namespace std::vector // I want to refer to std::vector as vector

{

void vFoo();

} // namespace std::vector

void vFoo(const string &rs_in, string *ps_out);

 9 / 13

Fakultät Elektrotechnik und Informationstechnik ● Institut für Automatisierungstechnik

When your code can be interrupted by exceptions, ensure that held resources will be deallocated when stack var-

iables go out of scope.

13 Assertions
Use assertions to check preconditions, data structure integrity, and the return value from a memory allocator. As-

sertions are better than writing conditional statement that will rarely, if ever, be exercised.

Do not call assert() directly, instead use one of these functions, declared in ros/assert.h (part of rosconle pack-

age):

Do not do work inside an assertion; only check logical expressions. Depending on compilation settings, the as-

sertion may not be executed.

14 Tests
See gtest.

14.1 Obtaining gtest

Gtest has been converted to a rosdep and is available in ros_comm

14.2 Google Test (gtest)

We use GoogleTest, or gtest, to write unit tests in C++. The official documentation for gtest is here:

https://github.com/google/googletest

Also refer to http://www.ibm.com/developerworks/aix/library/au-googletestingframework.html

These pages give some tips, and examples for writing and calling unit tests in ROS code. For language-inde-

pendent policy and strategy for testing, see UnitTesting.

14.3 Code structure

By convention, test programs for a package go in a test subdirectory. For a simple package, it is usually suffi-

cient to write a single test file, say test/utest.cpp.

14.4 Writing tests

The basic structure of a test looks like this:

/** ROS_ASSERT asserts that the provided expression evaluates to

 * true. If it is false, program execution will abort, with an informative

 * statement about which assertion failed, in what file. Use ROS_ASSERT

 * instead of assert() itself.

 */

#define ROS_ASSERT(expr) ...

/** ROS_BREAK aborts program execution, with an informative

 * statement about which assertion failed, in what file. Use ROS_BREAK

 * instead of calling assert(0) or ROS_ASSERT(0).

 */

#define ROS_BREAK() ...

http://wiki.ros.org/gtest
https://github.com/google/googletest
http://www.ibm.com/developerworks/aix/library/au-googletestingframework.html
http://wiki.ros.org/UnitTesting

 10 / 13

Fakultät Elektrotechnik und Informationstechnik ● Institut für Automatisierungstechnik

14.5 Test naming conventions

Each test is a "test case," and test cases are grouped into "test suites." It's up to you to declare and use test suites

appropriately. Many packages will need just one test suite, but you can use more if it makes sense.

Test suites are CamelCased, like C++ types

Test cases are camelCased, like C++ functions

14.6 Building and running tests

Add your test to your package's CMakeLists.txt like so:

These calls will cause the utest executable to be built during the main build (a simple make), and will put it in

TBD. Note that unlike rosbuild, specifying directory hierarchy in the target declaration is not allowed. You can

run the test with make test. You can also just run the test executable directly, e.g.:

14.7 Test Out

The console output from a test will look something like this:

 1 // Bring in my package's API, which is what I'm testing

 2 #include "foo/foo.h"

 3 // Bring in gtest

 4 #include <gtest/gtest.h>

 5

 6 // Declare a test

 7 TEST(TestSuite, testCase1)

 8 {

 9 <test things here, calling EXPECT_* and/or ASSERT_* macros as needed>

 10 }

 11

 12 // Declare another test

 13 TEST(TestSuite, testCase2)

 14 {

 15 <test things here, calling EXPECT_* and/or ASSERT_* macros as needed>

 16 }

 17

 18 // Run all the tests that were declared with TEST()

 19 int main(int argc, char **argv){

 20 testing::InitGoogleTest(&argc, argv);

 21 return RUN_ALL_TESTS();

 22 }

catkin_add_gtest(utest test/utest.cpp)

./bin/test/utest

 11 / 13

Fakultät Elektrotechnik und Informationstechnik ● Institut für Automatisierungstechnik

When run as make test, each test will also generate an XML file, in:

 $ROS_ROOT/test/test_results/<package-name> if you're running ROS cturtle

 ~/.ros/test_results if you're running ROS Diamondback.

 To make sure where they are generated on your system, you can run: rosrun rosunit test_results_dir.py

The generated XML looks something like this:

We will eventually have a way of parsing and rendering these results into a web-based dashboard.

15 Deprecation
To deprecate an entire header file within a package, you may include an appropriate warning:

To deprecate a function, add the deprecated attribute:

To deprecate a class, deprecate its constructor and any static functions:

[==========] Running 3 tests from 1 test case.

[----------] Global test environment set-up.

[----------] 3 tests from MapServer

[RUN] MapServer.loadValidPNG

[OK] MapServer.loadValidPNG

[RUN] MapServer.loadValidBMP

[OK] MapServer.loadValidBMP

[RUN] MapServer.loadInvalidFile

[OK] MapServer.loadInvalidFile

[----------] Global test environment tear-down

[==========] 3 tests from 1 test case ran.

[PASSED] 3 tests.

<?xml version="1.0" encoding="UTF-8"?>

<testsuite tests="3" failures="1" disabled="0" errors="0" time="25" name="AllTests">

 <testsuite name="MapServer" tests="3" failures="1" disabled="0" errors="0" time="25">

 <testcase name="loadValidPNG" status="run" time="24" classname="MapServer">

 <failure message="/Users/gerkey/code/ros-pkg/world_mod-

els/map_server/test/utest.cpp:56
Failed
Uncaught exception : This is OK on OS X"

type=""/>

 </testcase>

 <testcase name="loadValidBMP" status="run" time="0" classname="MapServer" />

 <testcase name="loadInvalidFile" status="run" time="1" classname="MapServer" />

 </testsuite>

</testsuite>

#warning mypkg/my_header.h has been deprecated

ROS_DEPRECATED int myFunc();

class MyClass

{

public:

 ROS_DEPRECATED MyClass();

 ROS_DEPRECATED static int myStaticFunc();

};

 12 / 13

Fakultät Elektrotechnik und Informationstechnik ● Institut für Automatisierungstechnik

16 Program Structure
16.1 module

The entire program is expediently implemented in various modules. Each module consists of a source file and a

header file. For each source (.cpp), there should be a corresponding file (.h) with the same module name. An ab-

breviation should be assigned to each module and shown in the block comment of the file. To allocate the func-

tion main()efficiently, the module including main() must have the key word main_module.

The header file descripts normally the module interface, it is user-oriented. On the opposite, the source file im-

plements the module and is developer-oriented. For this reason, the comments about module interface should be

left in .h file and module intern function should be explained in .cpp file. There must be only one comment for

each function to reduce maintenance effort and error potential.

16.2 Structure of a Header File

All of a project's header files should be listed as descendants of the project's source directory without use of

UNIX directory shortcuts . (the current directory) or .. (the parent directory).

Use standard order for readability and to avoid hidden dependencies: Related header, C library, C++ library,

other libraries' .h, your project's .h.

In dir/foo.cpp, whose main purpose is to implement the stuff in dir/foo.h, order your includes as follows:

1. dir/foo.h.

2. C system files.

3. C++ system files.

4. Other libraries' .h files.

5. Your project's .h files.

file: charge_control.h

Example:

Module – Battery charge control

source file: charge_control.cpp

header file: charge_control.h

module abbreviation: CHA

Example:

File: foo/server/fooserver.cpp

#include "foo/server/fooserver.h"

#include <sys/types.h>

#include <unistd.h>

#include <hash_map>

#include <vector>

#include "base/basictypes.h"

#include "base/commandlineflags.h"

#include "foo/server/bar.h"

 13 / 13

Fakultät Elektrotechnik und Informationstechnik ● Institut für Automatisierungstechnik

block comment w.r.t. Doxygen-guideline

#ifndef _CHARGE_CONROL_H_

#define _CHARGE_CONROL_H_

//==

// includes

#include

//==

// data types

//==

// interface macros and variables

// ===

// module functions

#endif // _CHARGE_CONROL_H_

/***/

16.3 Structure of a Source File

file: charge_control.c

block comment w.r.t. Doxygen-guideline

// ===

// includes

#include "charge_contol.h"

// ===

// external module variables

// ===

// internal module variables

// ===

// module functions

// = eof: charge_control.c

/***/

