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Solutions to the exercises of chapter 1: Introduction 
 
Exercise 1.1  
Function principles of microsystems are shown in Figure 1.2 in the book: 
a) The silicon strain gauge changes its resistance R0 in relation to strain ε (see Section 7.2.5a 

in the book):  
 Strain ε  resistance R = R0+∆R(ε). 
b) Between the two sides of the thinned pressure plate of the silicon sensor chip acts differen-

tial pressure p. This leads to a deformation, i.e. a displacement of the pressure plate. On the 
surface - in the different areas of the pressure plate – the bending causes tensile stress 
(σ > 0) or compressive stress (σ < 0), or strained (ε > 0) or compressed (ε < 0) areas, re-
spectively. The resistors that are diffused into the pressure sensor chip will change accord-
ing to Example 1.1a in the book. Typically, a WHEATSTONE measuring bridge is used to 
transform the change in resistance into an electrical output voltage (see Example 7.8 in the 
book). Thus, the function principle corresponds to that in Figure 7.21 from the book. 

c) The measuring acceleration displaces the cantilever attached to the substrate at one side of 
the gate due to the cantilever`s inertia. A change in the distance between the cantilever lo-
cated on the gate potential and the source-drain area causes a change in the electric field 
strength and, consequently, in the current between source and drain. This corresponds to 
the operational principle of a field effect transistor with changeable gate voltage. 

 Acceleration → Displacement of cantilever → Changed current between source and drain. 
d) The working principle of this pressure sensor corresponds to that in Figure 1.2b in the 

book. However, in this case the pressure plate is not produced by local thinning, but by the 
silicon wafer itself, which is fixed to a polycrystalline silicon ring (in 1970, Si wafers still 
had a diameter of about ½ …¾ inch). 

 
Exercise 1.2  
a) Piezoresistive pressure sensor in Figure 7.23a in the book: 
 Function elements: - Bending plate 
  - Thick mounting rim 
  - Piezoresistors 
 Components: - Piezoresistive pressure sensor 
b) Micro-pump according to Figure 6.13b in the book: 
 Function elements:  - Inlet channel (RE, LE) 
  - Outlet channel (RA, LA) 
  - Inlet valve (RV1, CV1) 
   - Outlet valve (RV2, CV2) 
   - Pressure source (∆pS, C11) 
 Components: - Micro pumps 
c) Bolometer array (Figures 10.2 and 10.3 in the book): 
 Function elements: - Resistor (bolometer) element 
  - Absorption layer 
   - Contact columns 
  - Radiation reflector 
   - Contacting 
 Components:  - CMOS evaluation circuit 
   - Infrared bolometer 
 
Exercise 1.3 
See in the Internet. 
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Solutions to the exercises of chapter 2: Scaling and Similarity 
 
Exercise 2.1 
Efficiency η is a unitless number that describes the ratio between output and input energy of a 
system: 
  inoutη /WW= . 
For an electro-mechanical drive, it would be 
  elmechη /WW= . 
Exercise 2.2 

The REYNOLDS number describes the ratio between the force of inertia acting on fluidic par-
ticles in a flowing fluid and the viscous friction force.  
As a model, we use the fluid volume in a fluidic channel where a square plate with area 
A = a⋅a is moved on its upper side at speed u. The distance between the moveable plate and 
the fixed lower side of the fluidic channel (u = 0) is assumed to be a, too. A linear velocity 
profile will be formed between the moved plate and the fixed lower side of the fluidic channel 
(see Figure 6.6a in the book). Friction force FR for the plate’s movement is  

aua
a
uA

a
uAF ⋅⋅=⋅⋅=⋅⋅=⋅= μμμτ 2

R . 

Here, τ is the shear stress in the fluid and µ its dynamic viscosity.  
Force of inertia Fm can be calculated using the kinetic energy. In order to accelerate the fluid 
volume under the moved plate by speed u, the following energy has to be supplied  

sFumE ⋅=⋅⋅= m
2

kin 2
1 . 

Here, m = ρ⋅V = ρ⋅a3 and s is the average distance covered by the fluid volume under the 
plate. If the plate moves by distance a, this means that s = a/2. It results that 
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The resulting REYNOLDS number thus becomes 
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Here, ν = µ/ρ is the kinetic viscosity of the fluid.  
 
Exercise 2.3  

A dust particle adheres to the ceiling if its weight FG has a lower value than the electrostatic 
attractive force Fel to the ceiling: 

  elG FF <         (1) 
The weight amounts to 
 ggmF 3

G ρ ⋅=⋅=       (2) 
where ρ is the specific density,  the edge length of the dust particle and g the earth accelera-
tion (g = 9.81 ms-2). 

The electrostatic force results from equations 2.3 and 2.4 from the book and becomes 
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d el
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where Q is the charge of the dustcorn surface, C the capacitance, and x the distance between 
dust particle and ceiling. Surface charge Q on one side of the dust particle is given by the 
number of the surface atoms ( )2/ an = : 

e
a

Q ⋅





⋅=

2

2 

 
 

Factor 2 includes the fact, that the silicon lattice is formed by two cubic face-centred base 
lattices (see Table 3.4 in the book). Capacitance C corresponds to 

 
x

εC
2

0

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Applying equations 3 to 4, it results that  
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For the conditions in equation 1 and applying equations 2 and 5, it results that: 
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Equation (6) shows that - in the case that the dust particle adheres to the ceiling - the admis-

sible dimension scales with a-4. Using the values of e and ε0 in Appendix A1 in the book, 
ρSi = 2 300 kgm-3 and a = 0.543 nm, this specific case results in: 

 ( ) ( )
( ) ( ) 44911223

22-19

m100.543VmAs108.8542ms9.81kgm2.300
As101.60222

−−−−− ⋅⋅⋅⋅⋅

⋅⋅⋅
=  (7) 

and with 1 Ws = 1 kgm2s-2 
 
 m103.03 6⋅< . 
 

At first sight, this result appears to be wrong as the idea of a cube with an edge length of 
about 3 000 km that sticks to a ceiling only by electrostatic forces is hard to grasp. In our case, 
however, not the result is wrong, but the assumption that the cube only has a distance of 
a = 0.543 nm to the ceiling! If we look at a more realistic distance of a* = 1 µm and use the 
scaling factor λa = a*/a = 1.842 and the ratio 
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an admissible dust particle size will result: 
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This result much better corresponds to our own experience of that only small particles can 
adhere to the ceiling. The average distance of 1 µm between dust particle and ceiling is given 
by the surface roughness. The following remark is important regarding the result in equa-
tion 7. If we succeed in establishing an atomically close contact between two bodies with 
large areas, it is possible to generate very large electrostatic attraction. Wafer preparation for 
anodic bonding and for silicon direct bonding (see Sections 4.8.2-3 in the book) makes use of 
this fact. 
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Exercise 2.4  
Resonance angular frequency ω0 of the oscillating spring-mass-system in Figure 2.4 in the 

book is 

mn
ω 1

0 = . 

With  
3

m ρρ aVm ⋅=⋅=  
for a cubic mass (ρ density, Vm volume of the mass, a edge dimension of the mass cube), and  

2bEEA
n

⋅
==

  

for a spring with a square cross-section (   spring length, E Young’s modulus, A spring cross-
sectional area, b edge length of the spring cross-section), it results that 

⋅⋅
⋅

= 3

2

0 ρ
ω

a
bE . 

Using the reduction coefficients λundλλ ba ,  for the geometric dimensions a, b and   

0m0mb0ma λ,λ,λ  //bb/aa ===  
(indices 0 and m characterize the original and the miniaturized arrangement), it results that 

λλ
λ

ω
ω

3
00

m0

⋅
=

a

b . 

A larger dynamic range requires 

1
ω
ω

00

m0 > . 

For miniaturization ( ) 1λλ,λ ba <, , this can only be achieved by using λundλa . This 
means that for a larger dynamic range, mass m and spring length   should be reduced. 
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Solutions to the exercises of chapter 3: Materials 
 
Exercise 3.1  

Using equation 3.5 from the book, the right angle α = 90° between the two areas ( )111 ,, kh  
and ( )222 ,, kh  requires the condition 

α = 90° = arcos 0 
or  0212121 =++ kkhh .     (8) 

{100} silicon:  
As only one of the parameters 111 or, kh  adopts the value zero for {100} planes and as the 

corresponding value 222 or, kh  for {111} planes is ± 1, it is not possible to fulfil the condi-
tion in equation 8. The occurring angles can only be  

 °°=
±

= 26.125or74.54
3
1arccosα . 

{110} silicon: 
If it is possible to find combinations for 01 =  where 2121 kkhh −= , for instance, we can 

meet the requirement of equation 8. 
Examples:  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )111or111or111or111and011or011

111or111or111or111and011or110
 

{111} silicon: 
As it applies to any two {111} planes that 

1212121 === kkhh , 
the condition in equation 8 cannot be fulfilled. 
 
Exercise 3.2  

 According to Section 4.6 in the book, etchings in silicon that start from the wafer surface 
only have boundary planes with an inclination angle of maximum 90°. Undercuttings, i.e. 
structures that become wider with depth, cannot be produced without specific additional proc-
esses. In a (001) silicon wafer, only four {111} planes cut across the wafer surface: (111), 
( )111 , ( )111  and ( )111 . 

 For (111) wafers, only ( )111 -, ( )111 and ( )111  planes as well as the (111) bottom plane are 
potential {111} lateral planes. 
For (110) silicon, there are six lateral boundary planes in addition to the (110) bottom plane. 
( ) ( ) ( ) ( )111,111,111,111 : 90.00° for ( )110 plane 
( ) ( )111,111 : 35.26° for ( )110 plane 
 The planes ( ) ( )111and111  are situated at an angle of 70.53° or 109.47°, respectively, in rela-
tion to the planes ( )111  and ( )111 . This results in the geometry in Figure 4.33 in the book. 
 
Exercise 3.3  

According to equation 3.13 from the book, it applies that 

( )2222

222222
11

111

1





++

++
−=

kh

hkkhss
E

 

with 1=== kh , 1212 m107.08 −−⋅= Ns and 1212
11 m107.68 −−⋅= Ns . It follows that 
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Exercise 3.4  

Using equation 3.16 from the book, the failure probability can be calculated as  

    ( ) ( ){ }kbF /σexp1σ −−= . 
At ambient temperature and according to Table 3.8 from the book, it is valid for {100}-Si 

that b = 3.73 · 109 GPa and k = 6.18. This results in failure probabilities F(σ) for the given 
tensile stresses: 
 

σ in 109 GPa F(σ) 
0.058 
0.58 
5.8 

6.7 · 10-12 
1.0 · 10-5 
0.9999998 

 
Exercise 3.5  
We can start again from equation 3.25 for the glass body in Figure 3.12 in the book: 

( )Fsnrυ += .      (9) 
We have a deformation step load: 

( )




≥
<

=
0für t
0für t 0

0u
tu

      (10)
 

Using complex frequencies s, the LAPLACE transformation results in 

( )
s

usu 1
0 ⋅= .     (11) 

We are looking for the progress of the mechanical stress  
 ( ) ( )/AtFt =σ .      (12) 

Using equations (9) to (12), it follows that: 

( ) ( ) ( )sυ
snrAA

sFs =
+

⋅==
11σ . 

Applying ( ) ( )sussυ ⋅= , it follows that 

( )

n
rsAn
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+

⋅=
1σ 0 . 

The LAPLACE inverse transformation, using the relationship 
te
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+
 

results in the solution  
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Due to the deformation at time t = 0 a mechanical stress is generated in the glass body, 
which relaxes over time due to the viscous properties (Picture 1). After an infinitely long time, 
the mechanical stress is completely eliminated. 
  

 
Picture 1: Stress relaxation in glass 
 
Exercise 3.6  

We can use equation 3.39 from the book to calculate film stress σPI in a polyimide layer of 
a Si wafer: 

Rh
hE 2 1

16
1σ

PI

Si

Si

Si
PI ν−
= ,      (13) 

where ESi, γSi and hSi are YOUNG’s modulus, POISSON’s ratio and the thickness of the silicon 
wafer and hPI is the thickness of the polyimide layer. As the diameter d = 150 mm of the Si 
wafer is much larger than the bowing of u = 10 µm, it applies for the relationship between the 
radius of curvature R in equation 13 and the given bowing according to equation 3.39 in the 
book.  

2
PI

2
Si

Si

Si
PI 14

3σ
d
u

h
hE

⋅⋅
−

=
ν

 

Using the values in Table 3.7 (ESi = 1.69·1011 N/m²; νSi = 0.063) and Table 3.10 from the 
book (hSi = 675 µm), it applies for (100) <110>-oriented silicon that 
 
 σSi = 9.84 · 106N/m² = 9.84 MPa. 
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Solutions to the exercises of chapter 4: Microfabrication 
 
Exercise 4.1  

See solution to Exercise 3.2 
 
Exercise 4.2 

We start from Figure 4.26 in the book (see picture 2 below) when constructing the etch rate 
diagram. The sidewalls of the structure, that form together with the wafer surfaces <110>-
oriented mask edges, are etched off with an undercutting rate of 110u RR = . On both right-
hand convex edges, sidewalls will form that are etched off with the maximum undercutting 
rate of maxu RR = . 

  

Picture 2: Relevant etch rates Rmax and R<110> Picture 3: Etching progress for anisotropic etching 
of the etch mask edges, with compensation mask  
part a) t = t0; b…f)  t = t0… 5t0 

 
After time t0, the undercutting in the different directions amounts to 0u tR ⋅ each (Picture 

3a). The structure is formed by the innermost etch fronts (Picture 3b). For the newly formed 
convex edges, there are no other fast-etching areas, which means that the existing sidewalls 
will be continuously removed. During the etching process it is possible that certain sidewalls 
disappear or are incorporated into other sidewalls due to reasons of geometry (Picture 3b→c).  

After a certain time, the compensation mask part is completely etched off which means a 
new convex edge forms (Picture 3e→f). From there, the undercutting process continues 
analogously. 
 
Exercise 4.3  

Picture 4 represents the geometrical relations of pressure plates that are produced using ani-
sotropic wet chemical deep etching or bond-and-etchback. 
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Picture 4: Pressure sensors, produced using a) anisotropic wet chemical deep etching and b) through bonding-
and-etchback 
 
Anisotropically etched pressure sensor (Picture 4a): 
 Total width bt is 

( )21mt 2 bbbb ++= , 
 

where bm is the plate width, b1 the assembly width, and b2 the space required for the etching 
inclination. The latter is related to etching depth h1 via angle α = 54.74° (see Figure 3.5d in 
the book): 

212 /hb = . 
 

 The etch depth h1 results from wafer thickness hwafer and plate thickness hm and becomes 
 

h1=hwafer-hm 
 

 For a 150 mm-Si-wafer, standard wafer thickness hwafer - according to Table 3.10 from the 
book – is hwafer = 675 µm. 
 With the given values hm = 25 µm, bm = 500 µm, and b1 = 100 µm, it results from equa-
tions above for the total chip width that  
 

( ) mm1.622222 mwafer1m21mt =−++=++= hhbbbbbb . 
 

This means that a square sensor chip requires a chip area of 22
t mm2.62== bA . 

Pressure sensor, manufactured through bonding-and-etchback (Picture 4b): 
Due to this specific kind of manufacturing, there is no spatial requirement for etching incli-

nations. Total width bt thus results in  
μm7002 1mt =+= bbb  

and the required total chip area  
22

t mm0.49== bA . 
This corresponds to less than 20 % of the chip area that is required for anisotropically 

etched pressure sensors. In microelectronics, chip prices are almost proportional to chip areas, 
which mean that there is a correspondingly large cost advantage. 
 
Exercise 4.4  

For estimating the projected range Rp, we can assume a symmetric distribution of oxygen 
ions both after the implantation according to equation 4.51 in the book and the formation of 
the SIMOX-SiO2-layer. This means that Rp lies exactly in the middle of the SiO2-layer: 

 nm400nm/2400nm200
2
1

2SiOSip =+=+= ddR , 
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where dSi and 
2SiOd are the layer thicknesses of the Si- and the SiO2-layer, respectively. This 

value corresponds to the interpolated value for the O+-ion implantation with an energy of 
200 KeV in Table 4.17 from the book. 

In addition, it follows from equation 4.51 in the book for z = Rp 
 

( )
p

*

p ΔRπ
nnRn

2max ==
  
or 

max2
Δ

nπ
nRp ⋅

=
∗

~
max

1
n

.    (14) 

 
As no data is provided for nmax or any n(z), ∆Rp cannot be calculated based on the given 

values. Depending on the implantation conditions, the scattering ∆Rp can vary. Typically, Rp 
mainly depends on energy E and the mass of the implanted ions, and ∆Rp on the ratio of the 
mass of the implanted ions and the atom lattice. It is quite easy to estimate whether – under 
the given conditions – real stoichiometric SiO2 has been formed. 

We start from the Si lattice cell in Figure 3.2c in the book, which has 8 corner atoms (that 
the lattice cell shares with another 7 lattice cells), 6 atoms on side wall (that are shared with 
the respective adjacent lattice cells) as well as 4 atoms in the volume of the base cell. This 
means that we have per lattice cell 

 846
2
18

8
1

=+⋅+⋅=SiN  

Si-atoms. For a complete oxidation, we need two O+-ions per Si-atom: 
 162 SiO ==+ NN . 

This means that the required density of O+-ions amounts to  

 
( )

323
33

O
O

cm101,0
nm0,543

16 −⋅===
+

+ a
N

n , 

where a is the lattice constant of Si. 
According to Figure 4.11 in the book, silicon thickness dSi,implantiert which results in a 

400 nm thick SiO2-layer is 
 15

SiOtimplantierSi, cm101.8nm1800,45
2

−⋅==⋅= dd . 
Thus, the required implantation dose becomes 

 218
timplantierSi,O cm101.8 −∗ ⋅=⋅= + dnn . 

This is a good correspondence to the value in the exercise. Deviations are due to the facts 
that the SiO2 layer in the SIMOX wafer is amorphous, which means that we cannot assume 
single-crystalline silicon. 

Assuming that for the O+-implantation during the SIMOX process, the maximum value 
should correspond to the above concentration of 323

O cm10 −=+n , it follows from equation 14 
that 

 nm40
cm10π2

cm10
π2

Δ 323

218

O

=
⋅

=
⋅

= −

−∗

+n
nRp . 

This value is half of the value that can be determined according to the reference in Ta-
ble 4.17 in the book and amounts to 77 nm. 
 
Exercise 4.5  

We will look at the arrangement in Figure 4.53 using the geometry variables of Figure E.2 
in Appendix E (both see in the book). The adhesion in the case without nubs is determined by 
the adhesion area ( ) bxA ⋅−= B . The nubs in Figure 4.53 from the book reduce the adhesion 
area to  
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( ) AB λ⋅⋅−= bxA   
where λA is the scaling factor of the adhesion area (0 ≤ λA ≤ 1). Thus, the surface energy in 
equation E.9 in the book is modified to  

( )bxγCE −−= s0 . 
A further derivation, analogous to Appendix E, then leads to a modified equation E.12 from 

the book: 
( )bxγCE −−= s0  

Critical length km  of an unsupported cantilever spring according to Figure 4.53b in the 
book increases in relation to an unstructured arrangement according to  

4

mk0

km

λ
1

=


 . 

For λm = 0.01, for instance, the nub structure will reduce the adhesion area to one hundredth 
part, and this means that the critical length increases by factor 3.2. 
 
Exercise 4.6 
 

 

Thermal oxidation 
Al vapour deposition 
Structuring of the Al- and the SiO2-layer 

 

DRIE (with passivation of sidewalls) 

 

Isotropic gaseous-phase etching with passivated sidewalls for undercut-
ting/opening-up of bulk structures (on the trench bottom) 
Etching of the sidewall passivation. Isotropic gaseous-phase etching of the 
total structure for undercutting the Al/SiO2 spring structure 

Picture 5: Production of the AIM structure 

 
Exercise 4.7 
 

 

Thermal oxidation 
Structuring of the SiO2-layer 
 

 

Boron diffusion in Si (B+-concentration ca. 1020 B+/cm3) down to a depth of 5 µm  
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Isotropic Si-etching (wet chemical etching or gaseous-phase etching) 
 

 

SiO2 removal 
Si-etching with EDP etching solution (selective etch stop on highly-doped p++-Si) 

Picture 6: Manufacturing process for hemisphere structure 
 
Exercise 4.7  
 
Processing Si pressure plate Poly-Si pressure plate SiO2 or Si3N4 pressure plate 
Two-step 
processing 

BS: Anisotropic wet chemical 
Si etching (see Fig-
ure 4.2 j,k) 

FS: Deposition and structuring 
of a SiO2 sacrificial layer 

FS: Deposition of the poly-Si 
layer 

BS: Anisotropic wet chemical 
Si etching to the SiO2 
sacrificial layer 

BS: SiO2 sacrificial layer 
etching 

BS: Anisotropic wet chemical 
Si etching to the 
SiO2/Si3N4-(etch stop) 
layer (analogous to Pic-
ture 4.2 j,k) 

One-sided 
processing 
(surface 
micro-
machining) 

See for instance [KNESE07]: 
- n-doping of a perforated 
lattice structure on the surface 
of a p-Si wafer 
- Transformation of p-Si 
underneath the n-Si lattice 
structure by anodization into 
porous Si  
- Creation of a cavern under-
neath the n-Si lattice by H2 
prebake 
- Si-Epitaxy layer on
 self-supporting n-Si  lattice 

FS: Surface micromachining 
standard technology according 
to Figure 4.49 in the book 
 

FS: SiO2-layer deposition  
FS: Si3N4-layer deposition and 
structuring (uncovered SiO2-
range in the middle forms 
sacrificial layer) 
FS: SiO2-layer deposition and 
structuring (etching channel 
for sacrificial layer etching) 
FS: Si3N4 cover 
layer (functional layer) 
FS: SiO2-sacrificial layer 
etching via etching channel 
FS: Anisotropic Si-etching
 (opening up the V-trench 
beneath the etched-off SiO2 
sacrificial layer range in order 
to create space for sufficiently 
large displacements of the 
Si3N4 pressure plate) 

Two-wafer 
processing 
(bonding-
and-
etchback) 

Manufacturing as in Picture 
4.45 

 Wafer #1: Anisotropic wet 
chemical etching of Si 
through SiO2/Si3N4-etch mask 
Wafer #2: SiO2 or Si3N4 
deposition  
Wafer #1 and #2: Anodic 
bonding, etchback of wafer #2 
to SiO2-/Si3N4-layer 

FS front side, BS back side 
 
[KNESE07] K. Knese, S. Armbruster, H. Benzel, H. Seidel: Neue oberflächenmirkomechanische Technologie zur 
Herstellung kapazitiver Sensoren auf Basis von porösem Silizium. In: Mikrosystemtechnik Kongress 2007, 15. 
bis 17. Oktober. Proceedings. Berlin, Offenbach: VDE-Verlag 2007. S. 131 – 134. 
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Exercise 4.9 
 

 

Implantation of p-Si-piezoresistors in the n-Si-epitaxial layer of 
a p-Si-wafer 
RIE-etching 
 

 

FS: Isotropic wet chemical Si-etching 
BS: Anisotropic wet chemical Si-etching 
(prior to this, deposition and structuring of the corresponding 
SiO2/Si3N4 etch mask layers) 

 

 

Wafer #1 and #2: 
Silicon direct bonding 
Anodic bonding to the pre-structured glass substrate 
Etchback of the p-Si-substrate of wafer #1 to n-Si-epitaxial 
layer 

Picture 7: Manufacturing process for the acceleration sensor 
 
Exercise 4.10 
According to ISO 286,  the function of tolerance factors i is used to determine the values of 
the basic tolerances of qualities IT 5 … IT 18 (grades of basic tolerance) for rated dimensions 
of up to 500 mm. Equation i = 0.45 3 D  + 0.001D is used to calculate tolerance factor i.  
Here, D = 21DD   is the geometric mean of the corresponding rated dimension range and D1, 
D2 are the range limits. For basic tolerance grades IT 5 … IT 7, it applies that  

TIT5 = 7∙i 
TIT6 = 10∙i 
TIT7 = 16∙i 

(for each successive quality, the basic tolerance increases by the factor 1.6, e.g. TIT12 = 160⋅i). 
For rated dimensions 1 … 6 mm, the following table provides basic tolerances for basic tol-

erance grades IT 5 … IT 7 as well as their proportion in percent of the rated dimension. The 
percentage in brackets refers to the geometric mean value D of the corresponding rated di-
mension range. It illustrates that the proportion of the tolerance rapidly increases with de-
creasing rated dimension. For rated dimensions lower than 1 mm, this tendency becomes 
stronger (see Table 1 and Picture 8).  

 
Table 1. Basic tolerance grades IT 5 … IT 7 and their proportion in percent of the rated dimension 

N mm D mm i µm TIT5 μm TIT5/N % TIT6 μm TIT6/N % TIT7 μm TIT6/N % 

1 … 3 1.732 0.542 4 0.13 … 0.4 (0.23) 6 0.2 … 0.6 (0.35) 10 0.33 … 1.0 
(0.58) 

3 … 6 4.243 0.734 5 0.08 … 0.17 (0.12) 8 0.13 ... 0.26 
(0.19) 

12 0.2 … 0.4 (0.28) 
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Picture 8. Basic tolerance grades IT 5 … IT 7 and their proportion in percent of the rated dimension 

 
There is a large demand for new developments in the area of dimensioning and tolerances 

as well as test and measurement technology for microcomponents: Design of function-
oriented tolerating basics (especially for rated dimensions smaller than 1 mm), control of  
existing as well as introduction of new parameters for describing microcomponent character-
istics (e.g. dimensions, form deviations, waviness, roughness, three-dimensional surface pa-
rameters, structure-oriented parameters), new measuring strategies and technologies (measur-
ing function surfaces with a resolution in the nanometer range, short measuring times, number 
and distribution of measuring points), standards for tolerances, measuring and control proce-
dures. 
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Solutions to the exercises of chapter 5: Packaging 
 
Exercise 5.1  
Yaw rate sensor (Figure 1.7 in the book): 
• electrical: - Metallization (conducting lines) of the acceleration 

sensors  
• mechanical: - Glass substrate (mechanical carrier) 
 - Thick rim of Si chip (mechanical reinforcement, bonding area to the  
  glass substrate) 
• sensorical: - Acceleration sensors 
 - Oscillating mass as yaw-rate sensitive oscillating structure  
• thermal: - Si-chip for heat dissipation 
• protective: - Glass substrate 
 - Si cover with glass seal (both for hermetic casing) 
 
Ink-jet print head: 
• electrical: - Contacting of actuator elements 
• mechanical: - Casing 
• sensorical: - None 
• thermal: - Micro-heater for ink-jet generation 
 - Ink chamber for heat loss dissipation 
• protective: - Casing 
 
Infrared bolometer focal plane array (Figures 10.2 to 10.4 in the book): 
• electrical: - Bond pads 

- Contact reinforcement 
- Contact holes 

• mechanical: - Carrier wafer 
 - Contacting columns 
• sensorical: - Bolometer pixel 
• thermal: - Si wafer as heat sink 
• protective: - Si carrier wafer 
 - Casing 
 
Exercise 5.2  

Fixed (investment) costs FKm for the monolithic integration amount to € 10 million and 
cannot be influenced. Therefore, we have to check whether and how much the unit cost VKm 
can be reduced. According to equation 5.3 from the book, it applies that: 

 
n

FKFKVKVK hm
hm

−
−≤ , 

if for an assumed number of units n the monolithic integration (index m) is more economical 
than the hybrid integration (index h). Applying the given values n = 106, FKm = 107 €, 
FKh = 106 €, VKh = 15 €, it results that  
 €6m ≤VK . 
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As casing and encapsulation cost 2 € per sensor, there remain 4 € for the monolithic pro-
duction of one acceleration sensor. There are mainly two ways to reduce the current chip pro-
duction cost of 10 € to 4 €: 
• Increasing the yield by factor 2,5 (only possible if it is currently 40 % or below), 
• Reducing the chip area to 40 % (production costs are approximately proportional to the 

chip area). 
 
Exercise 5.3  
Thermal adjustment of the pressure sensor in Figure 5.2 from the book using 
• a fixed assembly with adjusted temperature coefficient of linear expansion: anodic bonding 

between Si sensor chip 1 and glass counter-body 2, 
• mechanical stress decoupling by highly elastic intermediate layer: embedding the com-

pound system of Si sensor chip 1/counter-body 2 via elastic soft glue points 3 and soft pro-
tective gel 7 in housing 4. 

 
Exercise 5.4  
Heat conduction paths from the piezoresistors 

→ Si pressure plate 3 → Si sensor chip 1 (largest part of the heat dissipation), 
→ Al-conducting lines 5 → insulating layer 4 → Si sensor chip 1, 
→ Al-conductin lines 5 → wire bond pads 6 → contact pins 7, 
→ surrounding air (mainly heat dissipation, rather seldom convection). 

 
Exercise 5.5  
Reasons for fatigue: cyclical mechanical or thermal loads 
Influencing factors: - Local stress concentration  
   - Surface roughness, condition 
   - Type of material 
   - Temperature, particularly temperature gradient in the material  
   - Material defects etc. 
Reasons for delamination: Separation of composite layers due to deficient adhesion 
Influencing factors: - Cyclical mechanical or thermal loads 
   - Impact effect etc. 
 
Exercise 5.6 
Inertial measurands (acceleration, rotational acceleration) affect even function elements and 
components within hermetically sealed housings, where the impact of other disturbances can 
be decoupled due to the hermetical sealing. For pressure sensors, it is necessary that the re-
spective pressure medium (e.g. air) can directly impact the sensor, which means that with that 
medium also disturbance variables can exercise an influence. 
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Solutions to the exercises of chapter 6:  
Function and Form Elements in Microsystem Technology 
 
Exercise 6.1 
Using equation 6.17 from the book, it applies for the eigenfrequency that 

y
a

aF
yF

m
cf N

N
e 2π

1
2π
1

2π
1

=== . 

For the given values of rated acceleration and eigenfrequency of the movable element, it results 
that  

y ≤ 
( )

μm.0.65
 2π 2

e

N =
f

a
 

 
Exercise 6.2 
Applying equation 6.55 from the book, it applies for the heat flow that moves due to heat 

conduction from the mirror plate to the frame that
thcd

thcd R
T∆

=Φ , with the thermal resistance 

for heat conduction being  

A
sR

λthcd = . 

The two silicon springs with thermal resistances Rth1, Rth2 act as a parallel circuit. Total thermal 

resistance thus becomes Rthtot =
2th1th

2th1th

RR
RR

+
⋅ . Due to Rth1 = Rth2 = Rth,, the result is  

.K/W1780
 W/Km156m60302

m1000
2 2
th

thtot μ

μ
=

⋅⋅⋅
==

RR  

The resulting heat flow is .mW7.33
K/W1780
K60

thcd ==Φ  

 
Exercise 6.3 
a)  Bulk micromachining with the oscillator moving perpendicularly to the wafer surface:  

ρ42π
1

ρ42π
1

2π
1

mm
3

2

mm
3

3

⋅⋅⋅
⋅⋅

=
⋅⋅

⋅⋅
==

lbl
hbE

hlbl
hbE

m
cfe . 

 With ∆fe = Sh⋅∆h, it results that hhffe ∆=∆ e , i.e. a relative thickness variation causes an 
identical relative variation of the oscillator’s eigenfrequency (Sh is the absolute sensitivity of 
the initial value fe in relation to parameter h). 

b) Surface micromachining with the oscillator moving laterally in relation to the wafer surface:  
Thickness h does not affect the oscillator’s eigenfrequency as it is not included in the equa-
tion for fe: 

ρ42π
1

ρ42π
1

2π
1

mm
3

3

mm
3

3

⋅⋅⋅
⋅

=
⋅⋅⋅⋅

⋅⋅
==

lbl
bE

hlbl
hbE

m
cfe . 

 For the relative variation of the oscillator’s eigenfrequency, it then applies that 
bbffe ∆=∆ e . Using the mask, it is possible to very precisely set the measure for b. 

 
Exercise 6.4 
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The damping of movable micromechanical elements can be affected by gas pressure, gas 
type, gap distance and the structure of the oscillating plates (perforation, grooves). If the plate 
moves parallel to the fixed surface, the pressure in the air gap will not change. The damping 
effect results from the gravity forces in the fluid (slide-film damping).  

If the plate moves vertically to the fixed surface, pressure will act on the gas. The gas par-
tially escapes through the gap between movable and fixed plate and produces friction losses 
(squeeze-film damping). Especially when the gaps are narrow and plate frequency is high, 
part of the gas cannot escape from the gap and will be compressed. These two physical phe-
nomena produce a force on the plate which can be represented as a complex expression. The 
real component acts as damping kS, the imaginary component as an additional spring cs, which 
changes the system’s stiffness. Both effects are related to pressure and frequency. The fre-
quency of the oscillating mass when real and imaginary force is identical is called cut-off fre-
quency. For frequencies below cut-off the damping component is larger (keff = k + ks(ω)), for 
working frequencies below cut-off, the stiffness component is dominating (ceff = c + cs(ω)). 
Typical plate dimensions in the millimetre range and typical gap distances of 1 ... 6 µm pro-
duce cut-off frequencies below 1 kHz.  

For vertical plate movements, the effect of gases in narrow gaps is described as molecular 
or viscous flow; there is also a transitional range. In order to describe the three ranges, we use 
the KNUDSEN number, i.e. the ratio between gap size and mean free path of the molecules 
(see also Section 6.2 Fluidic Elements in the book).  
 
Exercise 6.5 
a) Applying the spring equation, it results for the stiffness acting on the probe ball that 

.
max,

maxT
,T

yx
yx s

Fc =  

 The springs are arranged in series: both springs are loaded by the same force, the spring 
paths add up.  

 This results in .
SF

maxT

max,

maxT
,T ss

F
s
Fc

yx
yx +

==     

With 
F

maxT
F c

Fs =  for the glass fibre and 
yc

lFs
,Srotx

2
FmaxT

S =  for the silicon spring (from 

ϕ
⋅

=
ϕ

= FmaxT
Srotx,

lFMc y  and 
F

S

l
s

=ϕ ), it finally results that     

cTx,y = 2
FF,Srotx

,SrotxF

,Srotx

2
F

F,rotxS

2
FmaxT

F

maxT

maxT

1
1

lcc
cc

c
l

cc
lF

c
F

F

y

y

yy

⋅+

⋅
=

+
=

⋅
+

. 

 
b) The following table summarizes the values resulting for the spring stiffness cF of the glass 

fibre and for the effective spring stiffness cTx,y at the probe ball, based on the fibre lengths 

and diameters given in the task.  The spring stiffness of the glass fibre is cF = 3
F

4

64
π3

l
Ed . 

The spring stiffness acting on the probe ball thus becomes  

2
F

43
Frot

4
rot

,T π364
π3

ldElc
dcEc yx ⋅⋅+⋅
⋅⋅

= (see picture 9). 

 Using Pa1075 9⋅=E , cF  adopts the following values: 
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 Table 2. Spring stiffness of the glass fibre 

cF  in N/m 
lF dF = 18 µm dF = 40 µm dF = 50 µm 
1 mm 1.16  28.26 69.03  
2 mm 0.145  3.53 8.63 
3 mm 0.043  1.05 2.55  

 
At crot=15.3⋅10-6 Nm, the following values result for cTx,y: 
 
Table 3. Spring stiffness acting on the probe 

cTx,y in N/m 
lF  dF = 18 µm dF = 40 µm dF = 50 µm 
1 mm 1.08 9.93 12.43 
2 mm 0.14 1.84 2.65 
3 mm 0.04 0.68 1.02 

 

 
 

Picture 9. Spring stiffness acting on the probe ball 
 
c)   If the tactile force for smax has to lie in the range of FTmax = 30 … 250 µN, using  
   

max

maxT
,T s

Fc yx = , the spring stiffness at the probe ball has to be in the range of 

cTx,y = 1.5 … 12.5 N/m. Therefore, the fibre lengths and diameters corresponding to the 
shaded areas should be taken into consideration.    

d) The static sagging of the sensor element due to the silicon plate’s own weight is 

zstat = .m32.1 μ
Sz

=
c
G  The own weight of the glass fibre can be neglected in this calculation, it 

amounts to less than 2 %.    

e) The eigenfrequency of the sensor element in z-direction is  .Hz434
π2

1

P

Sz
ez ==

m
cf  

Exercise 6.6 
The density of the water is assumed to be 1000 kg/m3. The hydraulic diameter corresponds to 
the diameter of a cylindrical capillary. In this case, the WEBER number (equation 6.36 in the 
book) is  

11
626

H
2

101.39
72

10100)10(1001000
σ

ρWe −
−−

⋅=
⋅⋅⋅⋅

=
⋅⋅

=
Du . 
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The small WEBER number illustrates that - on the micro-scale - the surface tension is pre-
dominant und can therefore be used as an actuating principle.  
 
Exercise 6.7 
Here, the characteristic geometry is the diameter. Therefore, the KNUDSEN number is  

00611.01039.1
1010
1011.6λKn 11

6

8

=⋅=
⋅
⋅

== −
−

−

HD
. 

The Knudsen number lies between 0.1 and 0.001. Therefore, we will use the continuum 
model with the NAVIER-STOKES equation and gliding condition at the wall. 
 
 
Exercise 6.8  
During the operation of the sensor, the forced convection of the thermal resistance decreases 
resulting in a decrease of the thermal time constant τth = Cth⋅Rth.       
 
Exercise 6.9  
The temperature at the lower side of the silicon substrate in the range of the heater structure is 
illustrated in the thermal equivalent circuit for the stationary case in Figure 6.17b in the book 
at the outgoing side of thermal resistance R1Si  (point ϑlower side in the picture 10). For the sta-
tionary case, we apply the simplifications provided in Example 6.6.  
The total effective thermal resistance then corresponds to the series connection of R1Ox + R1Si, 
i.e. Rthcd = (0.56 + 1.07) KW-1 = 1.63 KW-1.  
For a supplied heating effect of PHeat = Φ = 1.6 W, the resulting temperature difference in 
relation to the heater temperature is ∆T = PHeat⋅Rthcd = 2.5 K. 
  

 
Picture 10. Thermal equivalent circuit of the air flow sensor 
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Solutions to the exercises of chapter 7: Sensors and Actuators  
 
Exercise 7.1  
Using the circuit in Figure 7.3a in the book, it results for the electrical side 

υ
jω
AI

Cjω
VVV 0

K
Wc

1
−=+=  

or transposed 

  VCjωυ
Y

VCjωυCAI KKK0
1

+=+=
 
   (15) 

with      

K0

1
CA

Y = .     (16) 

For the mechanical right-hand side in Figure 7.3a in the book, it applies that 

  I
jω
Aυ

njω
FFF 0

Wn
1

+=+=


      

and inserting equation 15  

  VCAυ
jω
CA

njω
F K0

K
2
01

+

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
+=


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The term in the bracket can be expressed as  
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K
2
0

111111
njωnnjω
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njω

=



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


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with   

K
2
0

c
1
CA

n =  

and   

cK

111
nnn

+=
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or   

C

C
K nn

nnn
+
⋅

=


 . 

Applying equation 16, it follows from equations 17 and 18 that 

V
Y

υ
njω

F 11

K

+= . 

Equations 15 and 16 correspond to the lumped circuit in Figure 7.3b in the book or the set of 
equations 7.11 in the book, respectively. 
 
Exercise 7.2  
For a capacitor arrangement where one electrode is fixed and a second electrode can only 
move towards the other electrode (effective plate area is constant a·b, plate distance d is vari-
able), it results, in analogy to equation 7.14 from the book, that 

d
CV

d
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b
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with   



Gerald Gerlach; Wolfram Dötzel. 
Solutions for exercises for “Introduction to Microsystem Technology: A Guide for Students”  

Version from 25.11.2009 
 23 

d
abεC = . 

It results that  

2

2

el 2 d
abεVF −=  

For s = 0 (no movement in d-direction) and V = V0 + ∆V, in analogy to equation 7.18, it re-
sults that 
  

00

20
0

el

UUUU,s s
Q

d
abεV

V
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=== ∂
∂

=⋅−=
∂
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. 

 
It results that 

s
n
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d
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d
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020
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or after the transition to harmonic, sinusoidal variables ( )sjωυ,QjωI == : 

υ
njω
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d
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d
abVCjωI
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020

02

+−=

−=
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Exercise 7.3  
a), b)  

If we apply supply voltage Vx to a HALL element with thickness d and have a supply current 
Ix, a magnetic field BZ will induce a HALL voltage due to the HALL effect 

 x
HZ

y I
d
RBV ⋅=      (19) 

RH characterizes the HALL constant 

 




⋅−
⋅

=
Si-nfür    

Si-pfür   
H ne

pe
R  ,    (20) 

where e is the elementary charge and p and n the charge carrier density of the electrode or the 
holes, respectively, in the HALL element. In addition, there is OHM’s conductivity in x-
direction 

 xxx IRV =        
As both effects occur simultaneously if current Ix flows, applying equations (19) and (20), it 

results that 

 y
HZ

x
x

x
1 V

RB
dV

R
I

⋅
+= .     (21) 

Due to symmetry, it has to apply at the same time in y-direction that: 

 xy
HZ

y
1 V

R
V

RB
dI

y

+
⋅

= .     (22) 

c) Equations (21) and (22) characterize two different types of transducer. 
• The relationship (Vx, Ix) ↔ (Vy, Iy) constitutes a reversible stationary transducer. Coupling 

only occurs in the case of magnetic field component BZ ≠ 0. 
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• The HALL sensor for magnetic field measuring utilizes the relationship Vy = f(BZ). This 
represents a parametric transducer. When measuring the voltage without current Vy (Iy = 0) 
and using equation 18, it results the relationship between voltages Vx and Vy 

 y
HZ

y
x V

RB
Rd

V −=        

 and using equation 17 

  x

x

y

HZ
y

1

1 I

R
Rd

RBV
−

=      (23) 

 equation 23 – as opposed to equation 19 – takes into account that Vx is not zero.  
 
Exercise 7.4  

The operating principle of the piezoresistive force sensor in Figure 7.25 from the book in 
principle corresponds to that of the piezoresistive pressure sensor in Figure 7.21 from the 
book, with the exception that instead of pressure p a force F acts on a cantilever beam which 
is clamped on one side: 
Force F → mechanical strain εL,Q or stress σL,Q → changes in relative resistance rL (x = 0) or 
rL ( )=x → change in bridge output voltage Vout/V0. 

According to [LENK01], it applies for the displacement of the cantilever beam which is 
clamped on one side that 
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3
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
 === . 

The surface stress of the cantilever beam is  
( )



xx 21
ε

ε
0

L −=
     (24)

 

with  

( ) F
Ebh

shx ⋅⋅==== 202L0 330εε 


.   (25) 

Due to symmetry, it applies according to equation 23 that 
( ) ( ) 0LL εε0ε ==−== xx  

The strain-stress ratio for a wide cantilever beam (εQ = 0) is according to equation 3.8 from 
the book with 0σZ =   

 QLL σσ1ε
E
υ

E
−=      (26) 

 0σ1σε QLQ =−−=
EE

υ .     (27) 

It directly follows from equation 27 that  
LQ σσ υ=      (28) 

and thus from equation 26 

LL σ1ε
E
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or  
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 L2L ε
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Applying equations (29), (24) and (25), it results that 
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The further derivation follows the procedure in Example 7.8. 
The output voltage of a piezoresistive full-bridge structure becomes in analogy to equation 
7.122 in the book 

 ( )L21L
0

out

2
1 rr

V
V

−≈  (31) 

where rL1 and rL2  are the relative change in resistivity of the resistors at x = 0 or at x =  , re-
spectively. It applies for the longitudinal resistors that: 
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and applying equations 28 and 30 
( ) ( ),0σππ LQLL2L1 =+=−= xυrr  

equation 31 becomes 
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⋅
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1
3ππ   

With πL = -πQ = 5 · 10-10 m²/N, ν = 0.063 and the given geometric dimensions, it results for 
this specific structure that 

μV0.07
N10m10mm10.996

mm0.53/Nm104.685V10 324
210

out =
⋅⋅⋅

⋅⋅⋅⋅= −−
−V  

This voltage is much too low for feasible technical applications which need output voltages in 
the mV range. This requires a sensitivity that is four orders larger. This could be achieved, for 
instance, by reducing cantilever thickness (the square of which is included in the output volt-
age) to 1 µm and the cantilever width to 1/100. 
 
[Lenk01] Lenk, A, Pfeifer, G., Werthschützky, R. (2001) Elektromechanische Systeme (Electromechanical Systems). Berlin: 
Springer.  
 
Exercise 7.5  
In the case of very small cantilever beams we have to use equation 7.126 from the book. 
However, - as opposed to very wide cantilever beams - there is no lateral bending in the case 
of very small cantilever beams. As a boundary condition, it applies for thin cantilever beams 
in addition to σ3= 0 also σQ = 0 instead of εQ = 0. Using equation 7.126, it then follows that 

 
.εεσπ

εεσπ

QLLQLQ

QQLLLL

KK
KK

+⋅=

+⋅=
     (32) 

Equation 3.8 from the book results in 

.σε;σ1ε LQLL E
υ

E
−==  

Inserting into equation 32, it results that 

( ) ( ).ν1π;1π LQQQLL KK
E

KK
E

−=ν−=  
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Solving for KL and KQ, in analogy to Example 7.9, it results that 

( ) ( ).ππ
1

;ππ
1 LQ2QQL2L ν⋅+

ν−
=ν⋅+

ν−
=

EKEK  

As opposed to equation 7.131 from the book, the last one include the term E/(1 – ν²) instead 
of E/(1 – ν). The K factors for small cantilever beams are therefore smaller by factor  

(1 – ν) / (1 – ν²) = 1/(1 + ν) = 1/1.063 = 0.941 
compared to wide cantilever beams. For other crystal orientations in silicon with a much lar-
ger POISSON's ratio υ (see Table 3.7 in the book), the loss in sensitivity is much higher. 
 
Exercise 7.6 

Surface and near-surface micromachining often use capacitive comb structures. A comb 
system (interdigital finger structure, interdigital capacitor, comb drive) consists of adjacent 
fixed and movable fingers, which are designed as a repetitive structure (see picture 11). The 
cyclically repeated section is the elementary cell.  

 

 
 

Picture 11. Comb cell 
 

Comb cells can be used for sensoric and actuating function structure (e.g. for force genera-
tion).  The capacitive sensitivities or effects, respectively, always exist in all three spatial di-
mensions. An elementary cell can contain up to three separate electrically controllable elec-
trode areas. 

The spring suspension defined in the design will determine the operational direction. In the 
operational direction, the spring suspension has the largest flexibility. In the other spatial di-
rections, the suspension should be as stiff as possible, in order to reduce the cross-
sensitivities. Operating directions can be horizontal in relation to the orientation of the bridge, 
horizontally transversal to the orientation of the bridge or vertical. Horizontally moved comb 
structures - according to Table 7.3b from the book - show a very good linearity in the over-
lapping range of the movement. As opposed to this, transversally moving comb cells are al-
ways non-linear, according to Table 7.3a in the book.  

For horizontally moved comb cells (according to Table 7.3b,c - area variations), corre-
sponding electrode areas are electrically connected, which means that finally there will remain 
only two electrodes with an active capacity, i.e. there is a parallel circuit with many small 
plate capacitors. This means that for small structural dimensions it is possible to generate 
comparatively large capacity changes dC(x)/dx and therefore comparatively large forces for 
actuating applications  

x
xCV

x
WF

d
)(d

2d
d 2

el
el ⋅==  

and the corresponding transformation currents for sensoric applications  

t
x

x
xCV

t
xCVtI

d
d

d
)(d

d
)(d)( polpol ⋅== . 

The change in capacity is only related to the area, but not to the electrode distance. The effect  
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d
anVF ⋅⋅

⋅=
ε2

2

2

el , 

i.e. the electrostatic driving power reached by the comb drives is mainly determined by num-
ber n of the comb arms as well as comb depth a and capacitor gap d that can be achieved 
given the technologically feasible tolerances.  

Comb cells can be used to generate comparatively large movements in the wafer plane. As 
opposed to plate capacitors with distance variation, it is possible to achieve a linear electro-
mechanical transfer function. 

Transversally moved comb cells (according to Table 7.3a – distance variation) constitute 
differential capacitors. A comb movement in the given direction produces for each comb fin-
ger and its fixed counter-electrode different, non-linear capacity functions. Measurand x pro-
duces an opposite change of both capacities, while other variables (e.g. humidity h, tempera-
ture ϑ) effect both capacities in the same direction. It applies for the two capacities of an ele-
mentary cell that  

.ε)(;ε)( 222111 CC
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The differential signal ∆C(x) = ∆C1 – (-∆C2) is measured as follows: 
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A series expansion results in  
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For small x, the series can be interrupted after the linear term:  
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The differential principle thus causes the sensitivity to double in relation to measurand x. In 
addition, it causes a linearization of the output signal as well as suppresses other variables. 
The effect becomes obvious if the output signals of both capacities are expanded in a TAYLOR 
series as functions of both variables (x, h):  
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It results for the differential signal ∆C that 

∆C = C(+x,h) – C(-x,h) = 







⋅⋅

⋅
+⋅ hx
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δδ
),(δ

δ
),(δ2 00

2
00 . 

The linear term of variable h and the purely square terms do not have any effect on differ-
ential signal ∆C. What remains is the effect of the mixed square term.  

Figure 8.8 in the book shows that the output characteristic of a micromechanical actuator 
for a differential capacitor operation is linearized by the polarisation voltage. Figure 8.9 in the 
book illustrates the doubling of the sensitivity for a micromechanical sensor for a differential 
capacitor operation. The difference between capacitive transformation currents due to capaci-
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tances C1, C2   and the subsequent current-voltage-transformation generates the output signal 
of the sensor. 

Differential capacitors are also used for sensors in closed-loop operations in order to meas-
ure capacity and - at the same time - electrically generate compensation forces.  
 
Exercise 7.7 
a) The limit acceleration aG has to produce a displacement of the mass by 1 µm, i.e. accel-

eration force Fa has to compensate the spring’s restoring force at a displacement of 1 µm: 
 Fa = FF  with Fa = m⋅a and FF = ctot·x. It results that 

23
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23
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2
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xca ==

⋅
=

⋅
= . 

 Spring stiffness ctot thereby results from the parallel connection of two S-springs, whose 
spring stiffness cS can be calculated according to equation (6.29) from the book. 

 From the given numerical values, it results that: mass m = 92·10-11 kg, spring stiffness 
ctot= 50·10-3 N/m, aG ≥ 54.4 m/s2  (≅ 5.54⋅g). 

b) At aG = 54.4 m/s2, the contact force is FK = 0. 
c) The mounting position of the sensors determines whether and how the own weight of the 

mass (G = mg = 9⋅10-9 N) has to be included into the calculation of aG: aGmax = 64 m/s2,    
aGmin = 44 m/s2.  

d) In order to produce a contact force FK ≥ 1 µN, we need an acceleration 
m

FFa Kclose += , 

with Fclose = ctot·x = 50·10-9 N.  
Applying the given numerical values, it results that a = 1141 m/s2 ≅ 116 g. 

e) According to equation 7.57 from the book 
d

tnV
x
xCVF ε2

2d
)(d

2

22

el == .  

The voltage has to be large enough to produce a displacement of x = 1 µm. That requires 
a force of Fel = Fclose = ctot·x = 50·10-9 N. With number of comb arms n =  8, electrode 

distance d = 1 µm, structure depth t = 10 µm, it results that ..
tn
dxcV V48

ε
tot =

⋅⋅
⋅

=  

f) If contact force FK ≥ 1 µN is to be produced during the self-test, the required voltage in-
creases to Vself test = 38.5 V.  

 
Exercise 7.8 
For determining the relation of displacement angle ϕ of a 1D torsional mirror (see picture 12) 
and voltage V at the electrode surfaces, we can use the torque equilibrium Mmech = cϕ⋅ϕ = Mel: 

ϕcM /el=ϕ . 

The spring stiffness of the torsional spring is LGIc /2 t ⋅⋅=ϕ , with It being the torsional resis-
tance and G the shear modulus. For a torsional spring with a rectangular cross-section w×h, it 
results that It = w⋅h3⋅k1. Depending on the ratio w/h, factor k1 can assume values of 
k1 = 0.140 … 0.333. For trapecoidal spring cross-sections (fabricated by wet chemical etch-
ing), the term for the torsional resistance would be much more complex. The difference in It is 
comparatively small if you change width w but keep thickness h constant, for instance. There-
fore it is usually sufficient to consider the rectangular cross-section. 
In the following, we will calculate the electric torque for the case represented in the pic-
ture 12. That means that only the electrode under the right side of the mirror plate is con-
trolled by voltage V. 
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Picture 12. 1D torsional mirror 

 
It applies for the electrostatic force acting on the movable mirror plate that  
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The capacity function C(x) for the right side of the plate capacitor is  
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Note: Force Fel strives to increase the capacity, i.e. to reduce plate distance d. As the direc-
tion of the electrostatic force acting on the electrodes coincides with the direction of the dis-
tance reduction, it applies that -dd = dx and dC/dx = -dC/dd. 

If the mirror plate is displaced due to the acting force (ϕ > 0), the actual distance x = r⋅tanϕ 
between movable mirror plate and base electrode decreases depending on distance r to the 
rotational axis (depending on whether we take the fixed base electrode or the movable mirror 
electrode as reference base, we can also write x = r⋅sinϕ instead of x = r⋅tanϕ. For the angles 
we look at (ϕ ≤ 10°), it is sufficiently precise to apply sinϕ ≅ tanϕ, therefore the distinction is 
not critical).   

We arrive at the electric torque Mel acting on the right side of the mirror plate if we sum up 
all partial torques dMel that act on the narrow strips with area dA = a⋅dr and that each have a 
distance to the base electrode of d − x =  d − r⋅tanϕ. 
For each partial torque, it applies that .rFM ⋅= elel dd  
The summation is carried out within the limits of r = 0 … b.  
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Substituting z = d – r⋅tanϕ , it results that dr = − dz/tanϕ  and subsequently 
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With
d

bA ϕ⋅
=

tan , it results that  







−
+−⋅

⋅
⋅⋅

=
A

AAaVM
1

)ln(1
tan2

ε
2

2

el ϕ
. 

Note: For static displacement, it will apply that b⋅tanϕ < d/3 due to the pull-in effect. There-
fore, A will lie in the range of A = 0 … 0.333. For resonant operation, the pull-in effect does not 
play any roll. In that case, we have to include the relation ϕres ≅  Q⋅ϕstat). 
 
It finally results that  
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Stating the relation of angle and voltage ϕ = f(V) is not trivial, as there are several steady 
states for a given voltage V. Reversely it is possible though to unambiguously determine the 
voltage V required for a given displacement angle ϕ: 
The ratio voltage-angle V(ϕ) is 
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For a square mirror plate (mirror length a = 2⋅b), it results that  
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Example: φ(V) characteristic, analytically calculated with MathCad (see picture 13) 
a = 4 mm, b = 2 mm, spring length L = 1.9 mm, spring thickness h = 20 µm, spring width 
w = 40 µm, electrode base distance d = 280 µm, controlling voltage V = 0 … 550 V. 
 

 
Picture 13. φ(V) characteristic 

 
Function Mel = f(ϕ) is not defined for ϕ = 0. The effective torque at ϕ = 0 can be derived 

from the effect on the non-displaced mirror plate (ϕ = 0, x = 0), for which it applies that 
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hand mirror plate, i.e. at distance b/2 to the rotational axis:  
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For a square mirror plate a = 2⋅b, it results that .
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Exercise 7.9 
a) The presented frame of the approach opening is complemented with a u-shaped PMMA 

„light conductor“ that coincides with the frame. Its opening faces the torsional mirror. 
The laser beam is coupled to the u-shaped light-conducting PMMA frame und led to a 
photo sensor that is situated at the front of the PMMA frame. When a flying object inter-
rupts the light curtain produced by the laser at any point, the light signal at the photo sen-
sor will be interrupted too.  
In order for the laser beam to hit the flying object at least once, the minimum sampling 

rate has to be ms6.3
km/h50
cm5with

2
1

sampling ===∆
∆

≥
v
lt

t
f . 

It results that Hz140sampling ≥f . 
In order to increase detection probability, we use fe ≅ 300 Hz as the eigenfrequency of the 
resonance operated micromechanical torsional mirror. 

b) The distance between mirror and approach opening has to be 

cm6.53
25tan
cm25

)tan(2α
cm25

tanα
cm25

mechopt

====


L . 

c) The edge length 2⋅b of the square mirror has to be larger than the diameter of the laser 
beam, e.g. Amirror = 4×4 mm2 (selected). 

d) Minimum thickness D of the mirror wafer results from summing up electrode base dis-
tance and mirror thickness: D = d + h.  

 Electrode base distance d has to be sufficiently large for the fully displaced mirror plate 
not to hit the counter-electrode: )αtan( mech⋅> bd . With b = 2 mm and αmech = 12.5 °, it 
results that d > 443 µm. Selected: d = 450 µm. Mirror thickness h results from solu-
tion e). 

e) Using the equation for the eigenfrequency of the torsional mirror  
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 we arrive at length l of a torsional spring  
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 Inserting into this equation the respective relations for It and J and using It = w⋅h3⋅k1, 
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⋅+⋅⋅⋅=⋅+= 2 , w/h = 2, k1(w/h = 2) = 0.229 and 

  4⋅b2>>h2  it results that  
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. 

 Here, cϕ is the spring stiffness for torsion, J the mass moment of inertia, 2⋅b the edge 
length of the mirror, h the thickness of mirror and torsional spring, w = 2⋅h the width of 
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the torsional spring, G the shear modulus, m the mirror mass, ρ the density and It the tor-
sional resistance. . 
Applying the values G(w/h = 2) = 55 GPa, b = 2 mm, ρ = 2330 kg/m3 and fe = 300 Hz, 
for the free design parameters spring length l and spring width w, it results that ratio 

( )36 μm/107.35mm/ wl ⋅⋅= − , i.e. l ∼ w3,  
 
 Table 4. Micromirror design parameters 

w/µm l/mm 
20 0.285 
30 0.964 
34 1.40 
36 1.67 
38 1.96 
40 2.28 
60 7.71 

 
The values preferred due to technological reasons are highlighted in grey. We select 
w = 40 µm, which results in h = 20 µm, and for thickness D of the mirror wafer (see 
task d), the result is D ≥ 470 µm.  

Torque equilibrium Mmech = Mel results in voltage V, that is required to statically displace 
the square mirror by αstat = αmech  
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bA tanα⋅
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 (Note: See also solution 7.8. In Exercise 7.9, displacement angle and spring length have 
different denominations: displacement angle α instead of ϕ, spring length l instead of L).  
 
Due to αres

 = Q⋅αstat and Q = 100, the above equation has to solved for an angle of 
αstat = αmech = 0.125 °.  
The values of α = 0.125 °, w = 40 µm, h = 20 µm, k1 = 0.229, G = 55 GPa, b = 2 mm, 
d = 450 µm, L = 2.28 mm, ε = 8.8542⋅10-12 As/Vm result in 
V(ϕstat = 0.125 °) ≅ 208 V.  
Regarding the electrode base distance, we have to take into account the difference between 
static and dynamic operation of the micromechanical torsional mirror (see also Exer-
cise 7.8): For a static displacement, b⋅tanα < d/3 due to the pull-in effect. Therefore, it ap-
plies that A ≤ 0.333.  
During resonant operation of the mirror, the pull-in effect does not play any role. In that 
case, A usually assumes very small values. For the electrode base distance d, we have to 
take into account the relation ϕres ≅ Q⋅ϕstat though. 
With the calculated or selected values for b, l, h, w, V, the requirements regarding eigenfre-
quency and displacement angle are met.  

f) The speed of the flying object determines according to solution a) the required minimum 
sampling frequency and thus the necessary eigenfrequency of the mirror.  

g) If we want to detect the flight direction in addition to the passing of a flying object, we could 
arrange two of the approach openings represented in Figure 7.27 one after the other.  
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Exercise 7.10 
Retaining force F results from the electrostatic force Fel generated by the drive, minus the 
restoring force FF of the springs:  

Fel FFF −= . 
Using the given values for the number of comb arms n = 40, effective length of the capacitor 
plates L = 200 µm, wafer thickness as well as plate width h = 50 µm, plate distance in steady 
position d0 = 9 µm, shift path to end stop u = 7 µm, operating voltage V = 50 V, spring con-
stant c = 18 N/m and ε0 = 8.85⋅10-12 As/Vm, the following equations and numerical values 
result: 

Electrostatic force (plate capacitor) 2
2

0
el 2

ε V
d
AF ⋅= .   

The effective capacitor area is 27 m104 −⋅=⋅⋅= hLnA  and the plate distance at end position is 
m102 6

0
−⋅=−= udd . 

Therefore, it results that Fel = 1.48 mN. The restoring force of both springs is  
mN25,02F =⋅⋅= ucF . 

The retaining force is F = 1.23 mN. 
 
Exercise 7.11 
a) The mass is suspended above cantilever springs. Three cantilevers with stiffness c are 

arranged parallel, and this arrangement comprises four pairs connected in series. Total 
stiffness therefore is as follows: 
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34tot ==  

In each case, one cantilever spring is bent in an s-shape.  
Spring stiffness of a cantilever spring with height h and width b, being bent by width b 
in a plane: 
 

3

3

l
bhE

c x=  

 
 

Picture 14. In-plane deflection of cantilever 
 
Using the equation of the eigenfrequency of the structure  
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and applying transformations, the required cantilever length becomes  

( )
3

21
2

0
2

3

2
3

mmf
hbE

l x

+
=

π
. 

Numerical value: l = 259.4 µm. 

b) Applying 2
el 2

1 CVW =  and ( )
d

hqbC x+
= 0ε , it results for the electrostatic force that  

( )
d

hV
d

qbhV
qq
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xx 22d
d

d
d 2

0ü
2

0el
el

εε
=




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

 +
== . 

 Each finger of the comb drive  at the seismic mass has two electrode gaps. The total force 
results therefore from multiplying by 2n. Two comb drives with 30 fingers each act in 
one direction.  

 The mechanical spring force is xqcF 6Spring = . The equilibrium of forces can be used to 
derive the static displacement: 

elSpring 22 FnF ⋅=  

d
hVnqc x 2

46
2

0ε=  

cd
hVnqx 3

2
0ε= . 

 At 5 Volt, the static displacement is 0,73 nm. 
c) If damping is weak, the oscillation amplitude increases in case of resonance by the reso-

nance quality factor. Micromechanical structures are mainly damped by the surrounding 
gas. The pressure-related dynamic viscosity can be used to influence the damping of the 
structure. Reducing the pressure in the sensor housing can be used to increase the me-
chanical quality.  

d) )ωcos(ˆwith,2 01012C tqqvvmF xx ω==Ω=   
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01012
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y
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.
ω

ˆ
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0

x
y

qnTq Ω
=  

 Taking into account a resonance quality factor of 1000, at 200 °/s the amplitude of the 
detection movement of the secondary oscillator  amounts to approximately 1.11 µm. 

 
e) The two capacities are measured differentially (see also Solution 7.6). The capacity is 

calculated as follows: 
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 For small qy, it results that  
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 For n = 20 fingers, the capacity change is 0.57 pF/µm. Taking into account the results in 
Exercise d), it becomes 3.16 fF/°/s. 

 
f) A direct voltage (polarization voltage Vpol) over the detection electrodes can be used to 

affect the mechanical stiffness of the secondary oscillator (c2). For small displacements, 
the following electrostatic force applies: 












+
−

−
⋅⋅= 22

2
pol

el )(
1

)(
1ε

2 yy qdqd
A

V
F . 

 
 It opposes the spring force: 

el2tot FqcF y −= . 
 The stiffness is defined as a derivation of the force after the displacement: 
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 and, for qy  0, it results that: 
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 The equation shows that the resulting stiffness can be reduced by using a polarization 

voltage. The eigenfrequency of the secondary oscillation can be dimensioned slightly 
higher than the primary frequency. Using a polarization voltage, this frequency can sub-
sequently be adjusted. 

 
Exercise 7.12 
a) The torque results from summing up all partial torques Mk, that have been produced by 

the electrodynamic force acting on the individual conductors k (k = 1…n). For the partial 
torques, it applies that  

.kkkkkk rlBIrFM ⋅⋅⋅=⋅=  
 Here, rk states the distance of a conductor to the rotational axis of the movable element. 

Bk is the value of the current density and lk the length of the conductor, related to the 
x-coordinate of k (see figure). The current density is assumed to be constant along a con-
ductor and over the conductor’s width. For a symmetric current density distribution and a 
symmetric orientation of the movable element in the air gap, the total torque is  



Gerald Gerlach; Wolfram Dötzel. 
Solutions for exercises for “Introduction to Microsystem Technology: A Guide for Students”  

Version from 25.11.2009 
 36 

∑
=

⋅=
n

k
kMM

1
tot 2 , 

 where n is the number of circuit loops in the planar coil. 
 

Using the horizontal projection of the mirror plate and planar coil, we can derive the fol-
lowing values: 
• Conductor width b ≤ 50 µm, as: width of torsion bands = 50 µm.  
• Number of circuit loops: n = 2 mm/b 
• Conductor height h = 2 µm 

• OHM’s resistance of planar coil: ( )
hb

LDn
A

lR
⋅

+⋅⋅⋅=⋅= mmtot 2ρρ . 

Applying the equations for the electrodynamically generated torques to the current situa-

tion, we arrive at .
2

2 m
m

mtot mDLBInDLBInM ⋅⋅⋅⋅=⋅⋅⋅⋅⋅=   

Inserting the given values Lm = 14 mm, Dm = 4 mm, it results that for a required torque 
Mtot = 5.6⋅10-6 Nm the product has to be n⋅I = 0.4 A. 
For bmax = 50 µm (width of torsion band) and n⋅b = 2 mm, the number of circuit loops 
becomes n = 40, and consequently I = 10 mA (current density 100 A/mm2). 
 

 
 

Picture 15. Planar coil 
 

b) Using ( )
hb

LDn
A

lR
⋅

+⋅⋅⋅
=⋅= mmtot 2ρρ , the OHMic resistance of the planar coil at 

ρAl = 0.028 Ωmm2/m becomes R = 403.2 Ω.  
OHMic power dissipation thus becomes P = I 2⋅R = 40.32 mW. The expected temperature 
increase is calculated using 

 
A
RIRPT
⋅
⋅

=⋅=∆
K

2

th α
 with A = 2⋅D⋅L = 192 mm2 and αK = 10 W/m2K and becomes 

∆T = 21 K. 

c) No. From ( )
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A
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⋅
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n
b mm2
=  that 
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mm2α

2ρ

K
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22

.  

 Using the known numerical values, it results that 22A)/(131.25K/ nIT ⋅⋅=∆ and due to 
n⋅I = 04 A, it follows that 0.16131.25K/ ⋅=∆T = 21 K (see above), which means inde-
pendently of the selected parameters I, n. 
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c) If the distance between circuit loops of the planar coils has be 5 µm each and the number 
of circuit loops remains constant at n = 40, the conductor will become smaller than 
b = 50 µm. This means that R and consequently P and ∆T will increase.  
An alternative would be to retain width b = 50 µm and to decrease the number of circuit 
loops to approximately n = 36. This way, the current would have to be increased to 
I = 11.11 mA in order to generate the same torque. The OHMic resistance would decrease 
to 363 Ω. The OHMic power dissipation would amount to P = I 2⋅R⋅= 44.8 mW, i.e. ∆T 
would also increase.  

 
Exercise 7.13 
As an example for both actuator principles, we can use a micro-mirror with distance variation. 
We will present the corresponding advantages and disadvantages:  

 
Table 5. Advantages and disadvantages of electrostatic and electrodynamic actuation principles 

 
Micro-mirror, electrostatic drive  
(see Table 7.2, Figure 6.18 in the book)  

Micro-mirror, electrodynamic drive  
(see Figures 7.10, 7.11 in the book) 

Pros: 
- Small dimensions, resulting in large eigenfre-

quency  
- Capacitive localization is possible 
- Voltage-controlled 
Cons: 
- Only attracting forces possible 
- Damping in the air gap strongly non-linear 
- Electric driving torque depends on the square of 

the voltage. This function and its inverse cannot be 
continuously differentiated and have points of dis-
continuity  

- Controllability depends on mirror position 
- Controllability lost in the range of maximum dis-

placement 

Pros: 
- Damping can be assumed to be constant (no gap) 
- Force in the homogenous magnetic field is propor-

tional to the current. Attracting and repulsive forces 
can be generated.  

- The generated torque depends only on the angle; it 
can be considered to be constant for small dis-
placements 

- The magnetic driving torque can be affected from 
the outside by changing the magnetic flux density  

Cons: 
- Large dimensions due to planar coil on movable 

area  
-    Heat dissipation from planar coil 

 
Regarding control technology, the advantages of the electrodynamic driving principle prevail. 
A non-linear control of the electrostatic actuator is possible if all non-linear relations are ex-
actly known (damping, torsional spring, characteristic voltage-angle).  
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Solutions to the exercises of Chapter 9: 
Effect of Technological Processes on Microsystem Properties 
 
Exercise 9.1  
Material parameters: 
• YOUNG’s modulus 
• POISSON’s ratio 
• Conductivity of bulk Si 
• Conductivity of poly-Si 
• Temperature coefficient of linear expan-

sion of the Si chip 
• Temperature coefficient of linear expan-

sion of the glass substrate 

Process parameters: 
• Orientation of etch mask edges 
• Wafer orientation 
• Doping of Si chip 
• Poly-Si deposition  
• Anodic bonding Si-chip/glass substrate 

Geometric parameters: 
• Thickness of the oscillating mass 
• Width of the oscillating mass  
• Length of the oscillating mass  
• Spring width of the oscillating mass  
• Spring length of the oscillating mass  
• Spring thickness of the oscillating mass  
• Width, thickness, length of the poly-Si 

acceleration sensor structure  
• Chip dimensions 

Process parameters: 
• Etching time 
• Etching temperature 
• Temperature at the anodic bonding 
• Temperature and duration of poly-Si deposition 
• Temperature, pressure and duration of the metallization 

evaporation 

 
Exercise 9.2  
Plate thickness becomes uncritical when according to Table 9.3 or equation 9.26 from the 
book, respectively, it applies that 

 ( ) ( )
n

kSuFPu 1
relh,relij, ===     (33) 

With n = 5, it results that k = 0.45. 
 
According to Table 9.4 from the book  

( )
3

Δhhu =  

and applying equations 9.23 and 9.24 from the book 

( ) ( )
h
huSSu 2h −= .     (34) 

Thus, it applies that 

( ) ( )
( )zul

h
relh, Su

SuSu =  

where according to equation 9.21 from the book: 

( )
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3
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3
Δ 7zul
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−=

⋅±
=

±
=

SS
Su . 

Using equation (34), it results that 

( ) ( ) ( ) 10320
30.1

2
relh, ===

h
hu

S/
/hhuSSu . 
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From that, it follows that 

( ) ( )
320relh,

hSuhu ⋅=  

and using equation (33) 

 ( ) μm0.13
320

0.45
320

1
=⋅=⋅= hh

n
hu     (35) 

Using equation (35), the corresponding tolerance band will be  
( ) μm0.233Δ ±=⋅±=± huh . 

Exercise 9.3   
According to Exercise 9.2 from the book, a thickness deviation of μm0.1Δ ±≤h  is uncriti-
cal for the design. The corresponding thickness uncertainty is  

( ) μm0.058
3

Δ
=

±
=

h
hu  

and the sensitivity impact 

( ) ( )
Pa
V102.01

μm10
μm0.058

Pa
V103.462 86 −− ⋅=⋅⋅=−=

h
huSSu h . 

Width tolerance b contributes the largest uncertainty, but even the uncertainty contribution of 
width b is completely uncritical. 
 


	Exercise 1.1 
	Exercise 1.2 
	Exercise 1.3
	Force of inertia Fm can be calculated using the kinetic energy. In order to accelerate the fluid volume under the moved plate by speed u, the following energy has to be supplied 
	.
	The resulting Reynolds number thus becomes
	.
	Exercise 2.3 
	Exercise 2.4 
	Solutions to the exercises of chapter 3: Materials
	Exercise 3.1 
	Exercise 3.2 
	Exercise 3.3 
	Exercise 3.4 
	Exercise 3.5 
	Exercise 3.6 
	Exercise 4.1 
	Exercise 4.2
	Exercise 4.3 
	Exercise 4.4 
	Exercise 4.5 
	Exercise 4.6
	Exercise 4.7
	Exercise 4.7 
	Exercise 4.9
	Exercise 5.1 
	Exercise 5.2 
	Exercise 5.3 
	Exercise 5.4 
	Exercise 5.5 
	Exercise 5.6

	The two silicon springs with thermal resistances Rth1, Rth2 act as a parallel circuit. Total thermal resistance thus becomes Rthtot =. Due to Rth1 = Rth2 = Rth,, the result is 
	During the operation of the sensor, the forced convection of the thermal resistance decreases resulting in a decrease of the thermal time constant (th = Cth(Rth.      
	Exercise 7.1 
	Exercise 7.2 
	Exercise 7.3 
	Exercise 7.4 
	Exercise 7.5 

	Solutions to the exercises of Chapter 9:
	Effect of Technological Processes on Microsystem Properties
	Exercise 9.1 
	Exercise 9.2 
	Exercise 9.3  


