

Faculty of Electrical and Computer Engineering, Communications Laboratory, Chair for RF and Photonics Engineering

Tabasco - Talbot effect based carrier generation with phase noise suppression

Part of the Priority Programme "Electronic-Photonic Integrated Systems for Ultrafast Signal Processing" (SPP 2111) Z. al-Husseini, N. Neumann, D. Plettemeier

Motivation

Millimeter wave carrier generation

- Basis for the expansion of existing frequency bands to millimeter wave
- Numerous applications: radar, wireless communication systems, hybrid opto-electrical systems

Fig. 1: application scenarios: wireless communication (left, fujitsu.com), car radar (right, ti.com)

Requirements and challenges

- Compact size, cost-effective production, reliability \rightarrow on-chip realization
- Low phase noise
- Upconversion based millimeter wave carrier generation implies intrinsic phase noise increase $PN_{increase} = 20 \log_{10} m$

10 1 Frequency / GHz

\rightarrow new approaches needed for millimeter wave generation with low phase noise

Proposed approach

Temporal Talbot effect based RF upconversion

- Frequency upconversion by constructive superposition of mth line in optical comb at the detector
- Upconversion scheme and phase noise suppression have been shown but
- Existing solutions rely on fiber optics \rightarrow bulky, stability issues
- \rightarrow electronic-photonic integrated solution needed

[Notaros, Jelena, et al. "Programmable dispersion on a photonic integrated circuit for classical and quantum applications." Optics Express 25.18 (2017): 21275-21285.]

Laser repetition rate 100 MHz (fixed due to existing laser source)

Fig. 5: Talbot effect based RF generation: principle (inset), phase noise dependency on multiplication factor and duty cycle (i.e. temporal pulse width / spectral comb width)

Advantages and challenges

• **Power efficient:** whole spectrum is used (in contrast to filtering

Output frequency 30 ... >100 GHz (limited by opto-electrical conversion)

Upconversion factor 300 ... 1000 (with existing laser source)

Required dispersion 12500 ... 42000 ps/nm (with laser pulse width, repetition rate and upconversion factor of existing source)

Tab. 1: Preliminary system parameters of Talbot effect based RF upconversion

Novelty and future extensions

- 1st time on-chip realization of Talbot effect based RF generation with cointegration of opto-electrical conversion in EPIC technology will pave the way for practical use of this approach
- Further integration as option for phase 2
 - Electronic functionality (e.g. hybrid upconversion with low phase noise optical 1st stage and integrated electronic 2nd stage, power amplifiers, ...)
 - Integrated pulse laser source for more compact device

- approaches
- Phase noise suppression: averaging effect due to different spectral contributions
- Flexible: dispersive element selects upconversion factor
- Broad spectrum / narrow pulses for noise improvement (may be shared)
- **Tunable dispersive element integrated** with O/E conversion

Gefördert durch

DFG Deutsche Forschungsgemeinschaft

