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Review L5

L05

0. Introduction
Air pressure as a force to the walls of an empty container

1. Gas kinetic
Pressure as momentum transfer, Mol & Molvolume, Pressure units Partial pressure, Boltzmann Velocity&Energy

distribution, 

2. Pressure Ranges

3. Vacuum technical terms

4. Vacuum generation

5. Pressure measurement
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Exercise:
Scenario: Vacuum based dry etching of a Si trench!

How many gas particles reside at a pressure of 0,1 Pa 
(10-3 mBar) at a temperature of 23 ⁰C inside of a 
1x1x1 µm3 trench?

Homework:
“VT L06  b   08:26

L05

https://videocampus.sachsen.de/m/764a59cee00a51785be4cbc384d9eecf35c5005c6da8bf97d41c941902c628b9cbbbac5a0b467ba2f92b1c972c640cdab891951ec61a184feaa8ed95320a5050
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Exercise:
Scenario: Vacuum based dry etching of a 
Si trench!

How many gas particles reside at a 
pressure of 0,1 Pa (10-3 mBar) at a 
temperature of 23 ⁰C inside of a 1x1x1 
µm3 trench?

Homework:

L05
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μm2

However, for an assessment concerning the etch rate, 
the important question is not how many gas particles 
are inside the trench, but how many gas particles 
enter the trench per time unit. 

“VT L06  c   49:25

https://videocampus.sachsen.de/m/01582a54c190102f27f84fad76892402deb4de1338d0df49c144974f29294a06332774242a81871104330bbd242c705da93101ee0a518c5021f94b1e622db76a
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μm2

Impingement Rate Za / Surface  collision rate 

However, for an assessment concerning the etch rate, 
the important question is not how many gas particles 
are inside the trench, but how many gas particles 
enter the trench per time unit. 

This rate of particles 
approaching a surface unit 
per time unit is called 

Impingement Rate or 
Surface collision rate Za
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Impingement Rate Za / Surface  collision rate 

However, for an assessment concerning the etch rate, 
the important question is not how many gas particles 
are inside the trench, but how many gas particles 
enter the trench per time unit. 

This rate of particles 
approaching a surface unit 
per time unit is called 

Impingement Rate or 
Surface collision rate Za Impgmt
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https://videocampus.sachsen.de/m/01582a54c190102f27f84fad76892402deb4de1338d0df49c144974f29294a06332774242a81871104330bbd242c705da93101ee0a518c5021f94b1e622db76a


© J. W. Bartha 2020   

TUD internal use only!

Slide: 19

B06b



© J. W. Bartha 2020   

TUD internal use only!

Slide: 20

B06c



© J. W. Bartha 2020   

TUD internal use only!

Slide: 21

Impingement Rate
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Info-Box
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Surface collision rate

# of particles which 
hit the surface 
per area - and time unit

Za = ¼ n vmean
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Remember?
“VT L06  d   06:02

Exercise:
Scenario: Vacuum based dry etching of a 
Si trench!

How many gas particles reside at a 
pressure of 0,1 Pa (10-3 mBar) at a 
temperature of 23 ⁰C inside of a 1x1x1 
µm3 trench?

https://videocampus.sachsen.de/m/87cfd6fa3b8839a4d406f2daa39c1f5b8f345ff1d24bdd2a2198779c9d4be343b42fb0f46a31742ffaf44f6966cf3cf09122433954b7306c41b513889477f729
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How many Ar particles 
approach the trench opening 
(1X1 µm2) at a pressure of 0.1 
Pa (1·10-3mBar) and a 
temperature of 20ºC ?

Exercise:
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How many Ar particles 
approach the trench opening 
(1X1 µm2) at a pressure of 0.1 
Pa (1·10-3mBar) and a 
temperature of 20ºC ?

Exercise:

Impgmt
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How many Ar particles 
approach the trench opening 
(1X1 µm2) at a pressure of 0.1 
Pa (1·10-3mBar) and a 
temperature of 20ºC ?

Back to our calculation:
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How many Ar particles 
approach the trench opening 
(1X1 µm2) at a pressure of 0.1 
Pa (1·10-3mBar) and a 
temperature of 20ºC ?

Question: Is this much?

How to get this number into a picture?

Back to our calculation:
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Shade balls as Monolayer

https://www.nytimes.com/2015/08/13/us/in-california-millions-of-shade-
balls-combat-a-nagging-drought.html

“VT L06  e   17:53

https://www.nytimes.com/2015/08/13/us/in-california-millions-of-shade-balls-combat-a-nagging-drought.html
https://www.nytimes.com/2015/08/13/us/in-california-millions-of-shade-balls-combat-a-nagging-drought.html
https://videocampus.sachsen.de/m/c78152f218a02f7a33706ba6c6291b54ba12d60da159920aa01e7907ab120323b7b07a563e9308762efa4db2e0c89b6c43946316d94d409216239ad077013aec
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There is a certain density of adsorption sites a at the 
surface.

We make the following assumptions: 
i) Every arriving particle adsorbs i.e. Sticking coefficient =1 

(not generally valid!)
ii) The growth in the second layer does not start before

every site in the first layer is occupied 
(also not generally valid!)

Monolayer coverage
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There is a certain density of adsorption sites a at the 
surface.

We make the following assumptions: 
i) Every arriving particle adsorbs i.e. Sticking coefficient =1 

(not generally valid!)
ii) The growth in the second layer does not start before

every site in the first layer is occupied 
(also not generally valid!)

Q: Which time τ is required for the formation of a complete monolayer?

Answer:  τ= a/Za = 4a/n·vmean (► Depends on pressure mass and temperature!)

A common “thumb value” for a in vacuum technology is: ? 

Monolayer coverage
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There is a certain density of adsorption sites a at the 
surface.

We make the following assumptions: 
i) Every arriving particle adsorbs i.e. Sticking coefficient =1 

(not generally valid!)
ii) The growth in the second layer does not start before

every site in the first layer is occupied 
(also not generally valid!)

Q: Which time τ is required for the formation of a complete monolayer?

Answer:  τ= a/Za = 4a/n·vmean (► Depends on pressure mass and temperature!)

A common “thumb value” for a in vacuum technology is: ? 

Monolayer coverage

AdsSites



© J. W. Bartha 2020   

TUD internal use only!

Slide: 37

B06e



© J. W. Bartha 2020   

TUD internal use only!

Slide: 38

There is a certain density of adsorption sites a at the 
surface.

We make the following assumptions: 
i) Every arriving particle adsorbs i.e. Sticking coefficient =1 

(not generally valid!)
ii) The growth in the second layer does not start before

every site in the first layer is occupied 
(also not generally valid!)

Q: Which time τ is required for the formation of a complete monolayer?

Answer:  τ= a/Za = 4a/n·vmean (► Depends on pressure mass and temperature!)

A common “thumb value” for a in vacuum technology is: a=1·1019 [1/m2] 

This turns out for a typical gas particle like  Ar  with a diameter  Φ=0.3nm
in a checkered arrangement a=1/Φ2 = 1·1019 [1/m2] 

Monolayer coverage

Ar  with a diameter  Φ=0.3nm
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How long is the 
monolayer coverage 
time?
Based on a pressure of 
0.1 Pa (1·10-3mBar) and 
a temperature of 20ºC 

Hypothetically we are assuming Ar with a sticking 
coefficient of 1 (Non realistic, but for a “cryo-surface” 
possible)
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How long is the 
monolayer coverage 
time?
Based on a pressure of 
0.1 Pa (1·10-3mBar) and 
a temperature of 20ºC 

Hypothetically we are assuming Ar with a sticking 
coefficient of 1 (Non realistic, but for a “cryo-surface” 
possible)

t MonoL
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How long is the 
monolayer coverage 
time?
Based on a pressure of 
0.1 Pa (1·10-3mBar) and 
a temperature of 20ºC 

Hypothetically we are assuming Ar with a sticking 
coefficient of 1 (Non realistic, but for a “cryo-surface” 
possible)
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How many Ar particles 
approach the trench opening 
(1X1 µm2) at a pressure of 0.1 
Pa (1·10-3mBar) and a 
temperature of 20ºC ?

Question: Is this much?

How to get this number into a picture?
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How many Ar particles 
approach the trench opening 
(1X1 µm2) at a pressure of 0.1 
Pa (1·10-3mBar) and a 
temperature of 20ºC ?

Question: Is this much?

How to get this number into a picture?
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ML coverage time and pressure:

Or:
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At 0,1 Pa (10-3mBar) a ML takes 4ms 
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At 0,1 Pa (10-3mBar) a ML takes 4ms 

at 10-5 Pa (10-7mBar) aML takes 40s (roughly 1 min) 
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At 0,1 Pa (10-3mBar) a ML takes 4ms 

at 10-5 Pa (10-7mBar) aML takes 40s (roughly 1 min) 

and at atmosphere a ML takes 4,4 ns!
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With the given assumptions: 
i) Every arriving particle adsorbs i.e. Sticking coefficient =1 

(not generally valid!)
ii) The growth in the second layer does not start before

every site in the first layer is occupied 
(also not generally valid!) 

Which pressure yields a growth rate of 1 monolayer (ML) per second?

At 0,1 Pa (10-3mBar) a ML takes 4ms 

at 10-5 Pa (10-7mBar) aML takes 40s (roughly 1 min) 

and at atmosphere a ML takes 4,4 ns!
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At 1·10-5 Pa we have 1 ML/40s    =>   P(1ML/s) = 1·10-5 Pa·40 = 40 ·10-5 Pa
= 4 ·10-6 mBar

With the given assumptions: 
i) Every arriving particle adsorbs i.e. Sticking coefficient =1 

(not generally valid!)
ii) The growth in the second layer does not start before

every site in the first layer is occupied 
(also not generally valid!) 

Which pressure yields a growth rate of 1 monolayer (ML) per second?

At 0,1 Pa (10-3mBar) a ML takes 4ms 

at 10-5 Pa (10-7mBar) aML takes 40s (roughly 1 min) 

and at atmosphere a ML takes 4,4 ns!
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At 1·10-5 Pa we have 1 ML/40s    =>   P(1ML/s) = 1·10-5 Pa·40 = 40 ·10-5 Pa
= 4 ·10-6 mBar
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(not generally valid!)
ii) The growth in the second layer does not start before

every site in the first layer is occupied 
(also not generally valid!) 

Which pressure yields a growth rate of 1 monolayer (ML) per second?
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© J. W. Bartha 2020   

TUD internal use only!

Slide: 52

An example on the practical meaning of that

“VT L06  f   01:32

https://videocampus.sachsen.de/m/03426da1e5013af486957a89f56db908aec7c7c881f8cdfc2d569d082c000b56e9e60d434901c5e71272d6c2b6be51fbffd4fd54ab738604336a5ddee5e227ae
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Vacuum chamber 
or recipient

Crucible with Aluminum
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