

The imbedded video streams of this document are hosted by "video campus Saxony". Before starting the lecture please logon with your ZIH ID and password here: Vacuum Technology WS 20/21 Virtually presented Lecture 7, Dec. 8, 2020

	=
Login	
Anmeldung mit Hochschul-Lo Freischaltung)	gie (erfordert
TU Drenden	-
Login	

Just click on the Login above, it brings you to the web-page

Prof. Dr. Johann W. Bartha

Inst. f. Halbleiter und Mikrosystemtechnik Technische Universität Dresden

After Login at VCS Start watching 1'st stream of the lecture here

VTL07 a 09:31

This document including the contained video streams is only available to students of the lecture "Vacuum Technology" at TU-Dresden. It must not be copied and published outside of TUD! It is intended for TUD internal use only!

Air pressure as a force to the walls of an empty container

1. Gas kinetic

Pressure as momentum transfer, Mol & Molvolume, Pressure units Partial pressure, Boltzmann Velocity&Energy distribution, Impingement rate, monolayer coverage time,

2. Pressure Ranges

- 3. Vacuum technical terms
- 4. Vacuum generation
- 5. Pressure measurement

Air pressure as a force to the walls of an empty container

1. Gas kinetic

Pressure as momentum transfer, Mol & Molvolume, Pressure units Partial pressure, Boltzmann Velocity&Energy distribution, Impingement rate, monolayer coverage time,

- 2. Pressure Ranges
- 3. Vacuum technical terms
- 4. Vacuum generation
- 5. Pressure measurement

Air pressure as a force to the walls of an empty container

1. Gas kinetic

Pressure as momentum transfer, Mol & Molvolume, Pressure units Partial pressure, Boltzmann Velocity&Energy distribution, Impingement rate, monolayer coverage time,

- 2. Pressure Ranges
- 3. Vacuum technical terms
- 4. Vacuum generation
- 5. Pressure measurement

 $Z_a = \frac{1}{4} n v_{mean}$

Air pressure as a force to the walls of an empty container

1. Gas kinetic

Pressure as momentum transfer, Mol & Molvolume, Pressure units Partial pressure, Boltzmann Velocity&Energy distribution, Impingement rate, monolayer coverage time,

- 2. Pressure Ranges
- 3. Vacuum technical terms
- 4. Vacuum generation
- 5. Pressure measurement

ECHNISCHE

DRESDE

Air pressure as a force to the walls of an empty container

1. Gas kinetic

Pressure as momentum transfer, Mol & Molvolume, Pressure units Partial pressure, Boltzmann Velocity&Energy distribution, Impingement rate, monolayer coverage time,

- 2. Pressure Ranges
- 3. Vacuum technical terms
- 4. Vacuum generation
- 5. Pressure measurement

$$Z_a = \frac{1}{4} n V_{mean}$$

Review L6

Air pressure as a force to the walls of an empty container

1. Gas kinetic

Pressure as momentum transfer, Mol & Molvolume, Pressure units Partial pressure, Boltzmann Velocity&Energy distribution, Impingement rate, monolayer coverage time,

- 2. Pressure Ranges
- 3. Vacuum technical terms
- 4. Vacuum generation
- 5. Pressure measurement

at 10⁻⁵ Pa (10⁻⁷mBar) a ML takes 40s (roughly 1 min)

O. Introduction

Air pressure as a force to the walls of an empty container

1. Gas kinetic

Pressure as momentum transfer, Mol & Molvolume, Pressure units Partial pressure, Boltzmann Velocity&Energy distribution, Impingement rate, monolayer coverage time,

- 2. Pressure Ranges
- 3. Vacuum technical terms
- 4. Vacuum generation
- 5. Pressure measurement

$$\mathcal{L}_a = \frac{1}{4} \mathbf{n} \mathbf{V}_{\text{mean}}$$

a=1·10¹⁹ [1/m²]

1

at 10^{-5} Pa (10^{-7} mBar) a ML takes 40s (roughly 1 min)

O. Introduction

Air pressure as a force to the walls of an empty container

1. Gas kinetic

Pressure as momentum transfer, Mol & Molvolume, Pressure units Partial pressure, Boltzmann Velocity&Energy distribution, Impingement rate, monolayer coverage time,

- 2. Pressure Ranges
- 3. Vacuum technical terms
- 4. Vacuum generation
- 5. Pressure measurement

$$Z_a = \frac{1}{4} n v_{mean}$$

In a vacuum chamber Al is evaporated from a crucible on a substrate.

In a vacuum chamber Al is evaporated from a crucible on a substrate.

Inside of the recipient we have residual gas like O_2

VTL07b 23:06

In a vacuum chamber Al is evaporated from a crucible on a substrate.

Inside of the recipient we have residual gas like O_2

The film growing is therefore not pure aluminum but a mixture of Al and $Al_2O_3!$

VTL07b 23:06

In a vacuum chamber Al is evaporated from a crucible on a substrate.

Inside of the recipient we have residual gas like O_2

The film growing is therefore not pure aluminum but a mixture of Al and $Al_2O_3!$

To get an idea on the requirements of the vacuum, we ask, at which pressure is the impingement rate of Al and O_2 equal. (Worst case! - Sticking coefficient = 1?)

Now we assume an Al growth rate of 1μ m/min and a monolayer thickness of 0.3 nm.

VTL07b 23:06

In a vacuum chamber Al is evaporated from a crucible on a substrate.

Inside of the recipient we have residual gas like O_2

The film growing is therefore not pure aluminum but a mixture of Al and $Al_2O_3!$

To get an idea on the requirements of the vacuum, we ask, at which pressure is the impingement rate of Al and O_2 equal. (Worst case! - Sticking coefficient = 1?)

Now we assume an Al growth rate of 1μ m/min and a monolayer thickness of 0.3 nm.

B07a

Impingement rate of Al:	1ML = 0.3 hm
1µm/min = 3,310 ³ ML/min res	spectively 55ML/s
1f 1ML=21.10 ¹⁹ Al/m ² -	$Z_{\text{AL}} = 5.510^{20} \text{ AL/m}^2 \text{ s}$
Impingement rate of O2 when a	oguivalent to that of AL:
P= ZA (2TT MKT Poz ZA=Zoz!	m = 32 amv $K = 1,38 \cdot 0^{28} \frac{Mm}{K}$ T = 293 K
⇒ Poz-0 9 Pa ÷	2.10 mBar
Co: tamination b	relaw 1% => Pres= 2.10
Expected value in P	raxis PAS 10 mBar mBar

Impingement rate of Al: 1ML = 0.3 nm $1\mu\text{m/min} = 3.3 \ 10^3 \text{ ML/min}$ respectively. if $1ML = 1 \cdot 10^{19} \text{ Al/m}^2 \Rightarrow$

 $Z_{AI} = 5,5.10^{20} \text{ Al/m}^2 \cdot \text{s}$

Impingement rate of O_2 when equivalent to that of AI:

55ML/s

55ML/s

Impingement rate of AI: 1ML = 0.3 nm $1\mu\text{m/min} = 3.3 \ 10^3 \text{ ML/min}$ respectively. if $1ML = 1 \cdot 10^{19} \text{ Al/m}^2 \Rightarrow$

 $Z_{AI} = 5,5.10^{20} \text{ Al/m}^2 \cdot \text{s}$

Impingement rate of O_2 when equivalent to that of Al:

Relation between pressure and impingement rate:

$$P = Z_{A} \sqrt{2\pi} m KT \qquad m = 32 amu \\ K = 1,38 \cdot 10^{23} \frac{Nm}{K} \\ P_{o_{2}} \qquad \chi_{AL} = Z_{o_{2}} \qquad T = 293 K \\ \Rightarrow P_{o_{2}} = 0,019 P_{a} \cong 2 \cdot 10^{-4} mBar$$

55ML/s

Impingement rate of Al: 1ML = 0.3 nm $1\mu\text{m/min} = 3.3 \ 10^3 \text{ ML/min}$ respectively. if $1ML = 1.10^{19} \text{ Al/m}^2 \Rightarrow$

 $Z_{AI} = 5,5.10^{20} \text{ Al/m}^2 \cdot s$

Impingement rate of O_2 when equivalent to that of AI:

Relation between pressure and impingement rate:

$$P = Z_{A} \sqrt{2\pi} m KT \qquad m = 32 amu
K = 1,38 \cdot 10^{23} \frac{Nm}{K}
P_{o_2} \qquad T = 293 K
\Rightarrow P_{o} = 0.019 P_{a} \cong 2 \cdot 10^{-4} mBar$$

If the contamination should be below 1% then it must be: $P_{\text{Residual}} < 2.10^{-6} \text{ mBar}$ Expected in praxis is $P_{\text{recipiant}} \sim 10^{-6} \text{ mBar}!$

Resistivity vs. residual pressure

Resistivity vs. residual pressure

И

"VTL07 c 1:02:53

http://www.falstad.com/gas/fullscreen.html

Mean free path

The mean free path is the mean path length that a molecule traverses between two successive impacts with other molecules.

Mean free path

The mean free path is the mean path length that a molecule traverses between two successive impacts with other molecules.

Mean free path

impacts with other molecules.

The mean free path is the mean path length that a molecule traverses between two successive

B07b

B07c

Proof that I is indeed -he mean free path mtp # N The mean value of all particles is the sum of all occurring pathes 5 divided by the initial Particle # No! - At the distance between k and k+dk are satisfied & Newdy Jartscles XX+dx - These particles possed the length X so the total path way of these particles is X + d-War)dx NUS - No e-ng x = Noe-dx - So the total sum of all occurring pather is X=1 > N= 8 Integral: 5=Jax NW dx = Jax Noe and dx 5=2N. TXET = 2 No 1/2 = No Formula Table Since S=NG R 5 = n = f q.e.d.

Consideration of different cases
$$g_{s}=(\pi \tau h)^{2}\pi$$

(D) target and colliding particles are identical
 $T_{f}=T_{2}=T$ \Rightarrow $g_{s}=(2\pi \tau)^{2}\pi = 4\pi \tau^{2}$
 $T_{z}=\pi 4\pi \tau^{2}$

(all iding particles are very small
(electrons in a gas
$$\rightarrow$$
 plasma)
 $T_1 \ll T_2 = T$ $T_1 = \frac{1}{12TT^2}$

(3) In case calliding and tareal perholes are equal
in thermal equilibrium
$$T_1 = \frac{1}{1.14T^2 \sqrt{2}} = \frac{KT}{P 4T T^2 \sqrt{2}}$$

Mean free path & effective collision cross section Probability for a collision J Particle Particle density n= FIAX or J=n.F.AX Collision cross section for No colliding $q_{s} = (r_{7} + T_{2})^{2} T T$ Q: How many particles arrive at X without collision? Probability for a scattering event: | W = Area of all collision cross sections From N oppraching particles $W = \frac{J \cdot q_s}{F}$ AN become scattered with probability W N $\Delta N = -W \cdot N = -\frac{2 \cdot 2s}{F} \cdot N = \frac{n \cdot x \cdot 2s}{K} \cdot N$ Path at which No drops to Ny/o has the meaning of . $\frac{\Delta N}{N} = -R q_s \Delta X \qquad \qquad \Delta X = -R q_s dX \qquad \qquad \qquad \Delta N = -R q_s dX$ mean free path 1 No. Boundary condition N(x) = No e = No e dx N(x=0) = No

95 - (FitTe) ETT Consideration of different cases $n = \frac{1}{\alpha} = \frac{1}{nq_s}$ (1) target and colliding particles are the same: $Y_1 = T_2 = T = 7 q_s = (2T)^2 T = 4T T^2$ R= nATT2 Colliding particles are very small (electrons in a gas -> plasma) $\gamma_1 \mathcal{C} \mathcal{C}_2 \qquad \mathcal{R} = \frac{1}{\mathcal{R} \mathcal{T} \mathcal{T} \mathcal{T}^2}$ In case colliding and target particles are in thermal equilibrium $\lambda = \frac{1}{n \pi 4 r^2 \sqrt{2}} = \frac{\kappa_1}{P 4 \pi r^2 \sqrt{2}}$

Example: mfp of Ar (\emptyset =0,376 nm) at RT and 1·10⁻⁵ mBar or 1 10⁻³ Pa?

Example: mfp of Ar (\emptyset =0,376 nm) at RT and 1·10⁻⁵ mBar or 1 10⁻³ Pa?

Example: mfp of Ar (\emptyset =0,376 nm) at RT and 1·10⁻⁵ mBar or 1 10⁻³ Pa?

Mean Free Path

https://www.tecscience.com/thermodynamics/kin etic-theory-of-gases/mean-freepath-collision-frequency/

Mean free path

The mean free path is the mean path length that a molecule traverses between two successive impacts with other molecules. It depends upon molecular diameter d_m and temperature T in accordance with the following equation

Mean free path

 $k \cdot T$ $P \pi \cdot \sqrt{2} \cdot d_2^2$

ĩ

and is of significance for the various flow types of a gas in a vacuum.

http://www.falstad.com/gas/

Mean Free Path

P.4TT 52 V2

Determination of the atomic radius

Abbrev.	Gas	C* = λ · p [cm · mbar]
H ₂	Hydrogen	12.00 · 10 ⁻³
He	Helium	18.00 · 10 ⁻³
Ne	Neon	12.30 · 10 ⁻³
Ar	Argon	6.40 · 10 ⁻³
Kr	Krypton	4.80 · 10 ⁻³
Xe	Xenon	3.60 · 10 ⁻³
Hg	Mercury	3.05 · 10 ⁻³
02	Oxygen	6.50 · 10 ⁻³
N ₂	Nitrogen	6.10 · 10 ⁻³
HĈI	Hydrochloric acid	4.35 · 10 ⁻³
CO ₂	Carbon dioxide	3.95 · 10 ⁻³
H ₂ Ó	Water vapor	3.95 · 10 ⁻³
NĤ _a	Ammonia	4.60 · 10 ⁻³
C ₂ H ₅ OH	Ethanol	2.10 · 10 ⁻³
CL	Chlorine	3.05 · 10 ⁻³
Air	Air	6.67 · 10 ⁻³

Table III: Mean free path I

Values of the product c* of the mean free path λ (and pressure p for various gases at 20 °C (see also Fig. 9.1)

P.4TT J2 V2

Determination of the atomic radius

T=293 /s K=1,38 10 23 = 6.4 10 3 mBor an = 0.188 nm

Abbrev.	Gas	$C^* = \lambda \cdot p$ [cm · mbar]
H ₂	Hydrogen	12.00 · 10 ⁻³
He	Helium	18.00 · 10-3
Ne	Neon	12.30 · 10 ⁻³
Ar	Argon	6.40 · 10 ⁻³
Kr	Krypton	4.80 · 10 ⁻³
Xe	Xenon	3.60 · 10 ⁻³
Hg	Mercury	3.05 · 10-3
0,	Oxygen	6.50 · 10 ⁻³
N ₂	Nitrogen	6.10 · 10 ⁻³
HĈI	Hydrochloric acid	4.35 · 10 ⁻³
CO ₂	Carbon dioxide	3.95 · 10 ⁻³
H ₂ Ó	Water vapor	3.95 · 10 ⁻³
NĤ ₂	Ammonia	4.60 · 10 ⁻³
C2H2OH	Ethanol	2.10 · 10 ⁻³
Cĺ,	Chlorine	3.05 · 10 ⁻³
Air	Air	6.67 · 10 ⁻³

Table III: Mean free path I

Values of the product c* of the mean free path λ (and pressure p for various gases at 20 °C (see also Fig. 9.1)

»Wissen schafft Brücken.«