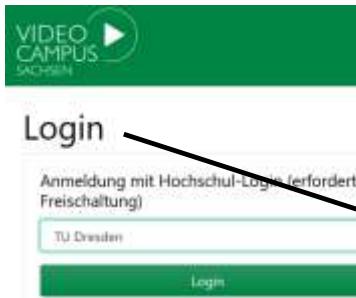


The imbedded video streams of this document are hosted by "video campus Saxony". Before starting the lecture please logon with your ZIH ID and password here:

Vacuum Technology WS 20/21

Virtually presented Lecture 9, Jan. 05, 2021

Prof. Dr. Johann W. Bartha


Inst. f. Halbleiter und Mikrosystemtechnik
Technische Universität Dresden

After Login at VCS Start
watching 1'st stream of the
lecture here

"VT L09 a 14:24

The imbedded video streams of this document are hosted by "video campus Saxony". Before starting the lecture please logon with your ZIH ID and password here:

This document including the
contained video streams is only
available to students of the lecture
„Vacuum Technology“
at TU-Dresden.

It must not be copied and published
outside of TUD!

It is intended for
TUD internal use only!

Please participate in the review of the teacher for this class!

Dear Students of the class Vacuum Technology in the WS 20/21,

First of all, I want to wish you a very happy, healthy and successful new Year! I was convinced, that I have sent you the following message below in mid-December and wanted to send a reminder now. Since I could not find it in my records, I am not so sure any more if I really have sent it. Therefore, I want to ask you urgently, to participate in this review and please do this as quick as possible since I do not know how long the questionnaire will be open.

Teaching in this web-based format is a general challenge for the students as well as for the teachers. In our department of ET+IT we ask every semester our students for an evaluation of the teacher's performance in the specific classes. This evaluation is handled by a TUD central department for quality analysis. I will later receive a summary of the results. Below, you find a link, that gets you to a questionnaire (English version), concerning Vacuum Technology. I urge all of you very much to participate.

Since we do not meet personally, it is even more important for me to learn, how the lecture is received.

This is the link: <http://befragung.zqa.tu-dresden.de/uz/sl/3tTb5m9h8xdd>

I appreciate any comment and thank you very much for your participation.

Many regards, take care and stay healthy

Johann W. Bartha

0. Introduction

Air pressure as a force to the walls of an empty container

1. Gas kinetic

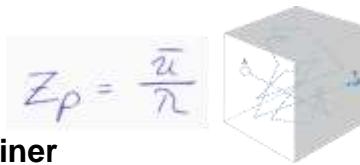
Pressure as momentum transfer, Mol & Molvolume, Pressure units Partial pressure, Boltzmann Velocity&Energy distribution, Impingement rate, monolayer coverage time, mean free path collision rate, Heat conduction

2. Pressure Ranges

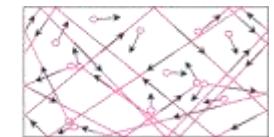
Viscous, Knudsen, Molecular flow, Rough-, Medium-, High-, Ultrahigh-Vacuum, adsorbed gas

3. Vacuum technical terms

4. Vacuum generation


5. Pressure measurement

0. Introduction


Air pressure as a force to the walls of an empty container

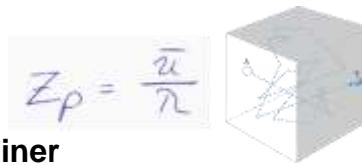
1. Gas kinetic

Pressure as momentum transfer, Mol & Molvolume, Pressure units Partial pressure, Boltzmann Velocity&Energy distribution, Impingement rate, monolayer coverage time, mean free path collision rate, Heat conduction

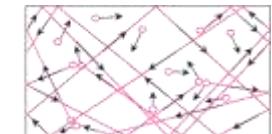
$$Z_v = \frac{n}{2} Z_p = \frac{P}{2kT} Z_p$$

2. Pressure Ranges

Viscous, Knudsen, Molecular flow, Rough-, Medium-, High-, Ultrahigh-Vacuum, adsorbed gas


3. Vacuum technical terms

4. Vacuum generation


5. Pressure measurement

0. Introduction

Air pressure as a force to the walls of an empty container

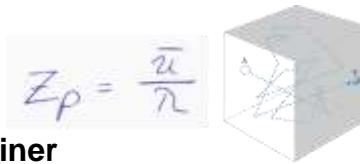
$$Z_v = \frac{n}{2} Z_p = \frac{P}{2kT} Z_p$$

1. Gas kinetic

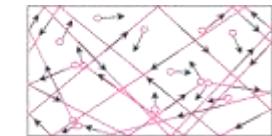
Pressure as momentum transfer, Mol & Molvolume, Pressure units Partial pressure, Boltzmann Velocity&Energy distribution, Impingement rate, monolayer coverage time, mean free path collision rate, Heat conduction

2. Pressure Ranges

Viscous, Knudsen, Molecular flow, Rough-, Medium-, High-, Ultrahigh-Vacuum, adsorbed gas


3. Vacuum technical terms

4. Vacuum generation


5. Pressure measurement

0. Introduction

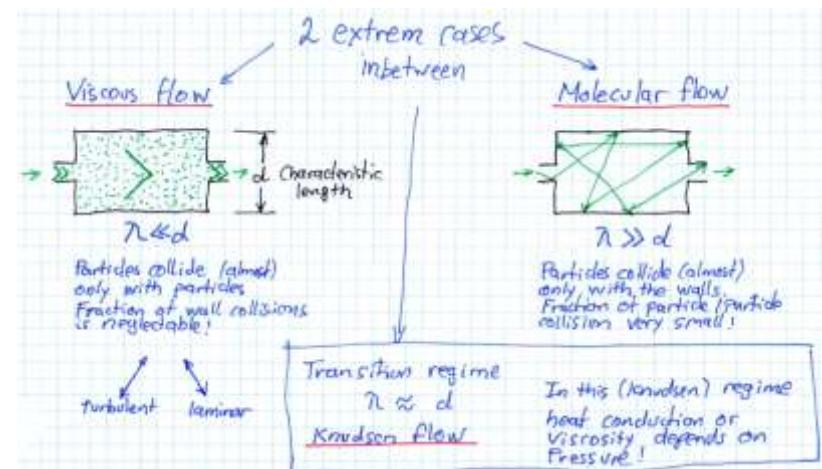
Air pressure as a force to the walls of an empty container

$$Z_v = \frac{n}{2} Z_p = \frac{P}{2kT} Z_p$$

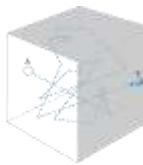
1. Gas kinetic

Pressure as momentum transfer, Mol & Molvolume, Pressure units Partial pressure, Boltzmann Velocity&Energy distribution, Impingement rate, monolayer coverage time, mean free path collision rate, Heat conduction

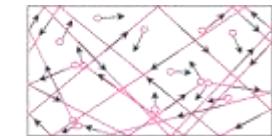
2. Pressure Ranges


Viscous, Knudsen, Molecular flow, Rough-, Medium-, High-, Ultrahigh-Vacuum, adsorbed gas

3. Vacuum technical terms


4. Vacuum generation

5. Pressure measurement



0. Introduction

Air pressure as a force to the walls of an empty container

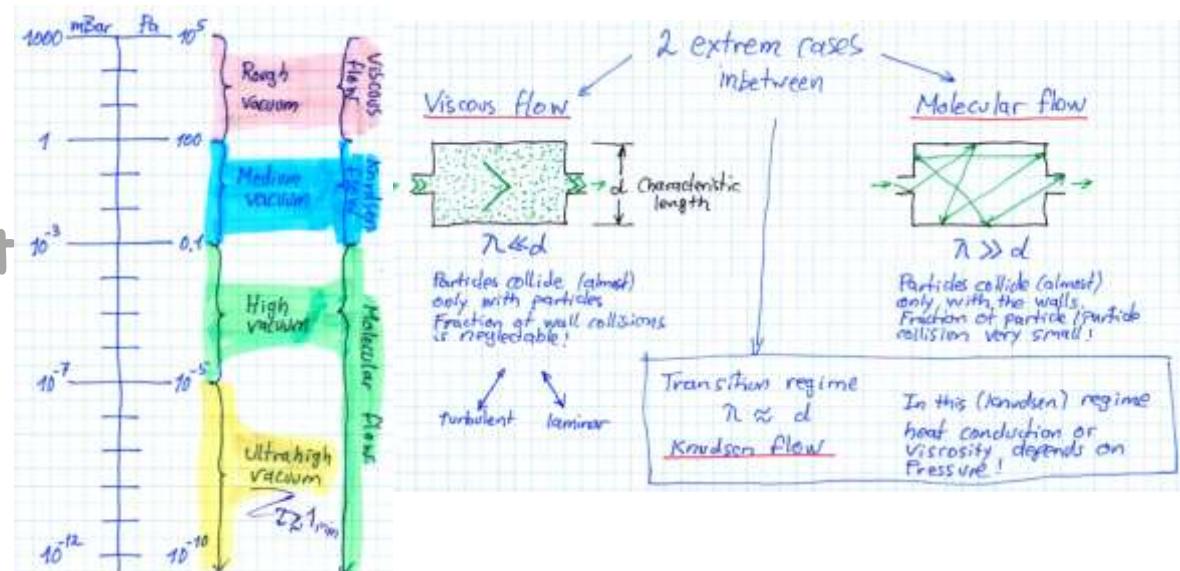
$$Z_p = \frac{\bar{u}}{n}$$

$$Z_v = \frac{n}{2} Z_p = \frac{P}{2kT} Z_p$$

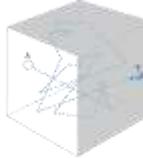
1. Gas kinetic

Pressure as momentum transfer, Mol & Molvolume, Pressure units Partial pressure, Boltzmann Velocity&Energy distribution, Impingement rate, monolayer coverage time, mean free path collision rate, Heat conduction

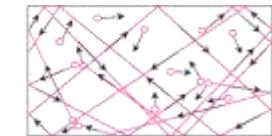
2. Pressure Ranges


Viscous, Knudsen, Molecular flow, Rough-, Medium-, High-, Ultrahigh-Vacuum, adsorbed gas

3. Vacuum technical terms


4. Vacuum generation

5. Pressure measurement



0. Introduction

Air pressure as a force to the walls of an empty container

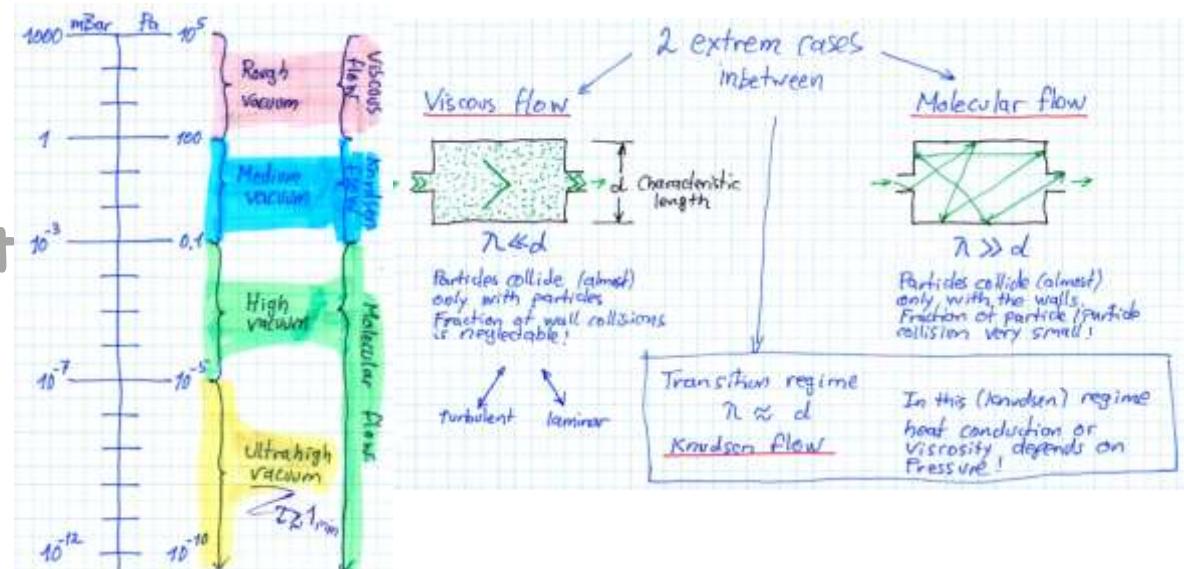
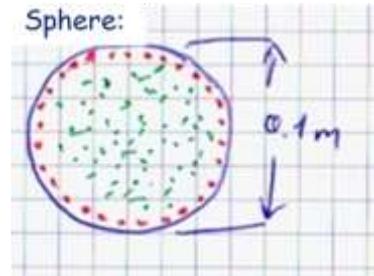
$$Z_p = \frac{\bar{u}}{n}$$

$$Z_v = \frac{n}{2} Z_p = \frac{P}{2kT} Z_p$$

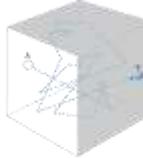
1. Gas kinetic

Pressure as momentum transfer, Mol & Molvolume, Pressure units Partial pressure, Boltzmann Velocity&Energy distribution, Impingement rate, monolayer coverage time, mean free path collision rate, Heat conduction

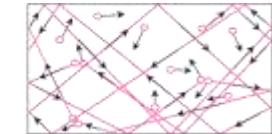
2. Pressure Ranges



Viscous, Knudsen, Molecular flow, Rough-, Medium-, High-, Ultrahigh-Vacuum, adsorbed gas

3. Vacuum technical terms


4. Vacuum generation

5. Pressure measurement



0. Introduction

Air pressure as a force to the walls of an empty container

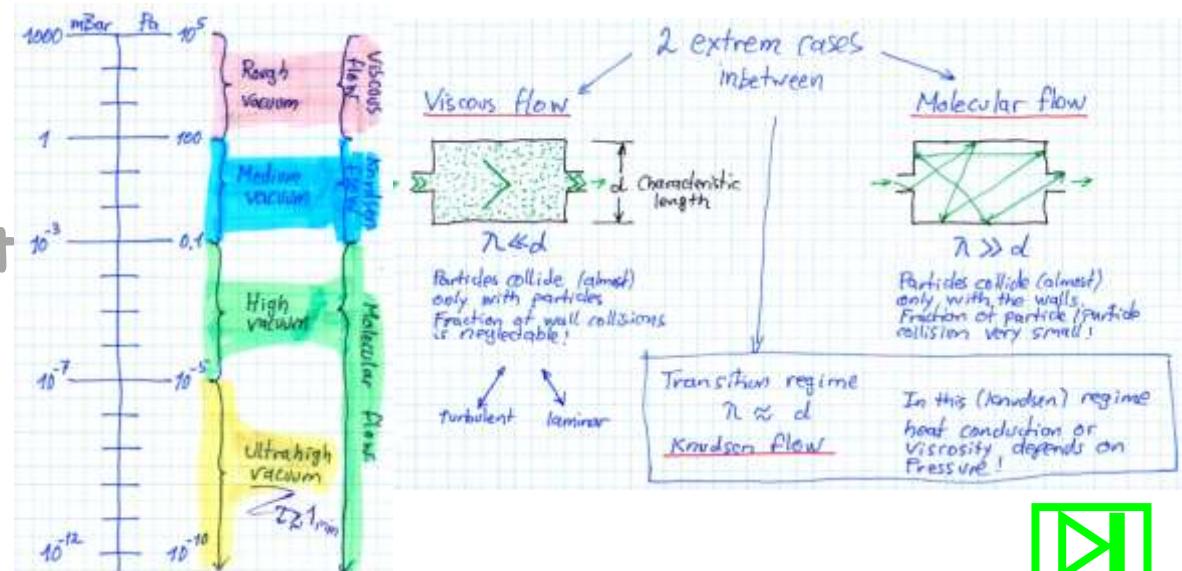
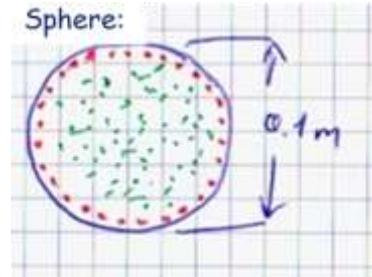
$$Z_p = \frac{\bar{u}}{n}$$

$$Z_v = \frac{n}{2} Z_p = \frac{P}{2kT} Z_p$$

1. Gas kinetic

Pressure as momentum transfer, Mol & Molvolume, Pressure units Partial pressure, Boltzmann Velocity&Energy distribution, Impingement rate, monolayer coverage time, mean free path collision rate, Heat conduction

2. Pressure Ranges



Viscous, Knudsen, Molecular flow, Rough-, Medium-, High-, Ultrahigh-Vacuum, adsorbed gas

3. Vacuum technical terms

4. Vacuum generation

5. Pressure measurement

3. Vacuum technology terms

TRIVAC D 40 B

Pumping speed (50 Hz): 40 m³/h

Pumping speed (60 Hz): 48 m³/h

Ultimate pressure: 2 x 10⁻³ mbar

Please [login](#) to see prices.

Motor:

Please select

1

Add to shopping cart

Compare

Add to wishlist

Product questions?

3. Vacuum technology terms

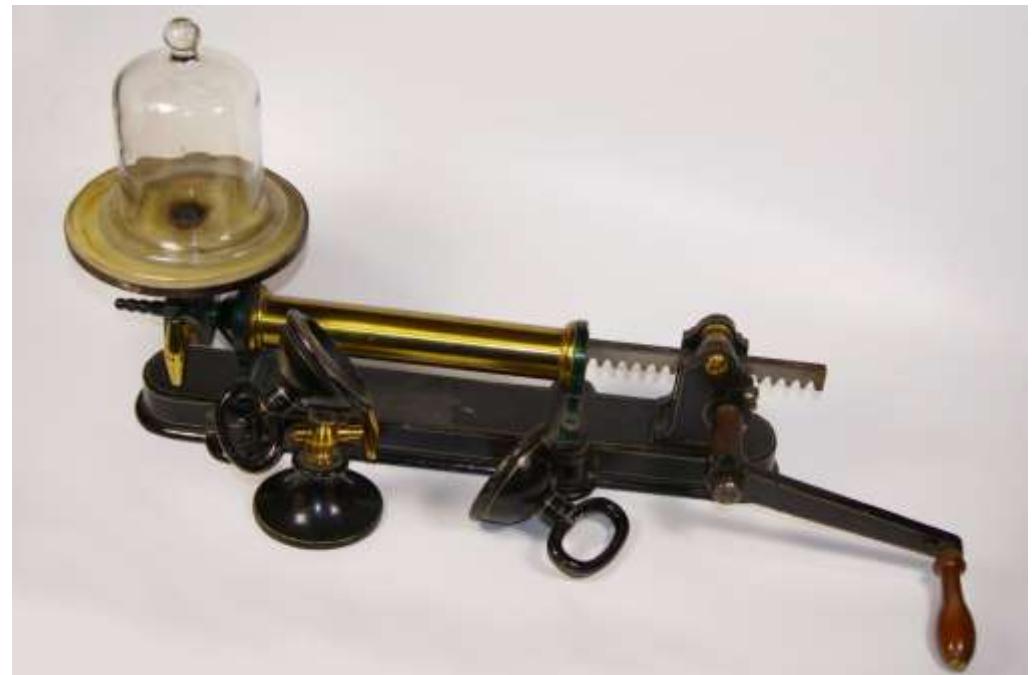
TRIVAC D 40 B

Pumping speed (50 Hz): $40 \text{ m}^3/\text{h}$

Pumping speed (60 Hz): $48 \text{ m}^3/\text{h}$

Ultimate pressure: $2 \times 10^{-3} \text{ mbar}$

Please [login](#) to see prices.


Motor:

Please select

Pumping speed,
Pumping power,
Gas flow,
Residence Time,
Gas flow conductance L

3. Vacuum technology terms

Pumps from the late 17'th century

<https://skd-online-collection.skd.museum/Details/Index/328901>

3. Vacuum technology terms

A pump is capable to convey a certain volume per time unit, which is called:

Pumping speed $S = \Delta V / \Delta t$ for example in l/s or in m³/h

(does not say anything about the amount of gas being transported)

3. Vacuum technology terms

A pump is capable to convey a certain volume per time unit, which is called:

Pumping speed $S = \Delta V / \Delta t$ for example in l/s or in m³/h

(does not say anything about the amount of gas being transported)

Quantification of amount of gas via $P \cdot V$ for example as [mBar·l]

The transported amount of gas per time unit is the Pumping- throughput or power

$Q = \Delta(P \cdot V) / \Delta t = P \cdot S$ for example in [mBar·l/s]

3. Vacuum technology terms

A pump is capable to convey a certain volume per time unit, which is called:

Pumping speed $S = \Delta V / \Delta t$ for example in l/s or in m^3/h

(does not say anything about the amount of gas being transported)

Quantification of amount of gas via $P \cdot V$ for example as [mBar·l]

The transported amount of gas per time unit is the Pumping- throughput or power

$Q = \Delta(P \cdot V) / \Delta t = P \cdot S$ for example in [mBar·l/s]

Q corresponds to a Gas flow. The common unit for Gas flow is [sccm] which stands for Standard Cubic Centimeter per Minute. For larger flow another common unit is [slm] which stands for Standard Liter per Minute.

3. Vacuum technology terms

A pump is capable to convey a certain volume per time unit, which is called:

Pumping speed $S = \Delta V / \Delta t$ for example in l/s or in m^3/h

(does not say anything about the amount of gas being transported)

Quantification of amount of gas via $P \cdot V$ for example as [mBar·l]

The transported amount of gas per time unit is the Pumping- throughput or power

$Q = \Delta(P \cdot V) / \Delta t = P \cdot S$ for example in [mBar·l/s]

Q corresponds to a Gas flow. The common unit for Gas flow is [sccm] which stands for Standard Cubic Centimeter per Minute. For larger flow another common unit is [slm] which stands for Standard Liter per Minute.

Standard (STP) means: 0°C and 1 Bar. or 760 Torr or 101300 Pa

In that case we have within the mole volume of 22414 cm^3 $6,023 \cdot 10^{23}$ particles.

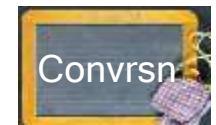
3. Vacuum technology terms

A pump is capable to convey a certain volume per time unit, which is called:

Pumping speed $S = \Delta V / \Delta t$ for example in l/s or in m³/h

(does not say anything about the amount of gas being transported)

Quantification of amount of gas via $P \cdot V$ for example as [mBar·l]


The transported amount of gas per time unit is the Pumping- throughput or power

$Q = \Delta(P \cdot V) / \Delta t = P \cdot S$ for example in [mBar·l/s]

Q corresponds to a Gas flow. The common unit for Gas flow is [sccm] which stands for Standard Cubic Centimeter per Minute. For larger flow another common unit is [slm] which stands for Standard Liter per Minute.

Standard (STP) means: 0°C and 1 Bar. or 760 Torr or 101300 Pa

In that case we have within the mole volume of 22414 cm³ $6,023 \cdot 10^{23}$ particles.

3. Vacuum technology terms

A pump is capable to convey a certain volume per time unit, which is called:

Pumping speed $S = \Delta V / \Delta t$ for example in l/s or in m^3/h

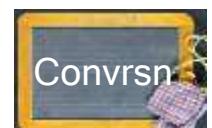
(does not say anything about the amount of gas being transported)

Quantification of amount of gas via $P \cdot V$ for example as [mBar·l]

The transported amount of gas per time unit is the Pumping- throughput or power

$Q = \Delta(P \cdot V) / \Delta t = P \cdot S$ for example in [mBar·l/s]

Q corresponds to a Gas flow. The common unit for Gas flow is [sccm] which stands for Standard Cubic Centimeter per Minute. For larger flow another common unit is [slm] which stands for Standard Liter per Minute.


Standard (STP) means: 0°C and 1 Bar. or 760 Torr or 101300 Pa

In that case we have within the mole volume of 22414 cm^3 $6,023 \cdot 10^{23}$ particles.

Therefore (uncorrected for RT):

$$1 \text{ sccm} = 101300 \text{ Pa} \cdot 10^{-3} \text{ l} / 60 \text{ sec} = 1,7 \text{ Pa} \cdot \text{l/s} \text{ or } 17 \cdot 10^{-3} \text{ [mBar} \cdot \text{l/s] also}$$

$$1 \text{ sccm} = 6,023 \cdot 10^{23} \text{ particles} / 22414 \text{ cm}^3 \cdot \text{min} = 2,69 \cdot 10^{19} \text{ Molecules or Atoms/min}$$

STP : 0°C $\leftarrow \Delta$

$1 \text{ atm} \cong 760 \text{ Torr} \cong 101300 \text{ Pa}$

$1 \text{ Mol} \cong 22414 \text{ cm}^3 \cong 6,022 \cdot 10^{23} \text{ Particles}$

$$1 \text{ sccm} = \frac{6,022 \cdot 10^{23}}{22414} \frac{\text{Molecules}}{\text{min}}$$

$$1 \text{ sccm} = \left(2,69 \cdot 10^{19} \frac{\text{Molecules}}{\text{min}} \right) \quad 1 \text{ sccm!}$$

or

$$1 \text{ sccm} = \frac{101300 \text{ Pa} \cdot 10^{-3} \ell}{60 \text{ sec}} = 1,7 \frac{\text{Pa} \cdot \ell}{\text{s}}$$

or

$$1 \text{ sccm} = \left(17 \cdot 10^{-3} \right) \frac{\text{m Bar} \cdot \ell}{\text{s}}$$

(room temp)

Gas flow corrected for RT:

$$1 \text{ sccm} \xrightarrow{20^\circ\text{C}} \text{Unit "standard ccm / minute"} \text{ sccm}$$

$$1 \text{ sccm} = \frac{1013,25 \text{ mBar} \cdot 0,0091}{60s} \cdot \frac{293,15 \text{ K}}{273,15 \text{ K}} = 0,018124 \frac{\text{mBar} \cdot \text{L}}{\text{s}}$$

conversion factor

Unit "standard liter per minute" slm

$$1 \text{ slm} = \frac{1013,25 \text{ mbar} \cdot 1l}{60s} \cdot \frac{293,15 \text{ K}}{273,15 \text{ K}} = 18,124 \frac{\text{mbar} \cdot \text{l}}{\text{s}}$$

$$1 \text{ sccm} = 1,8 \text{ Pa l/s} = 18 \cdot 10^3 \text{ m Bar l/s} = 2,89 \cdot 10^{19} \text{ particles/min!}$$

STP : 0°C

$1 \text{ atm} \cong 760 \text{ Torr} \cong 101300 \text{ Pa}$

$1 \text{ Mole} \cong 22414 \text{ cm}^3 \cong 6,023 \cdot 10^{23} \text{ Part.}$

$$1 \text{ sccm} = \frac{6,023 \cdot 10^{23} \text{ Molecules}}{22414 \text{ min}}$$

$$1 \text{ sccm} = 2,69 \cdot 10^{19} \frac{\text{molecules}}{\text{min}}$$

or

$$1 \text{ sccm} = \frac{101300 \text{ Pa} \cdot 10^{-3} \text{ l}}{60 \text{ sec}} = 1,7 \frac{\text{Pa} \cdot \text{l}}{\text{s}}$$

or

$$1 \text{ sccm} = 17 \cdot 10^{-3} \frac{\text{mBar} \cdot \text{l}}{\text{s}}$$

Gas flow corrected for RT:

$$Q = p \cdot \frac{dV}{dt}$$

Q Gasflow
 P Pressure
 V Volume
 t time

Unit "standard ccm per minute" sccm

$$1 \text{ sccm} = \frac{1013,25 \text{ mbar} \cdot 0,0011}{60 \text{ s}} \cdot \frac{293,15 \text{ K}}{273,15 \text{ K}} = 0,018124 \frac{\text{mbar} \cdot \text{l}}{\text{s}}$$

Unit "standard liter per minute" slm

$$1 \text{ slm} = \frac{1013,25 \text{ mbar} \cdot 11}{60 \text{ s}} \cdot \frac{293,15 \text{ K}}{273,15 \text{ K}} = 18,124 \frac{\text{mbar} \cdot \text{l}}{\text{s}}$$

$$1 \text{ sccm} = 1,8 \text{ Pa} \cdot \text{l/s} = 18 \cdot 10^{-3} \text{ m} \cdot \text{Bar} \cdot \text{l/s} = 2,89 \cdot 10^{19} \text{ Particle / min}$$

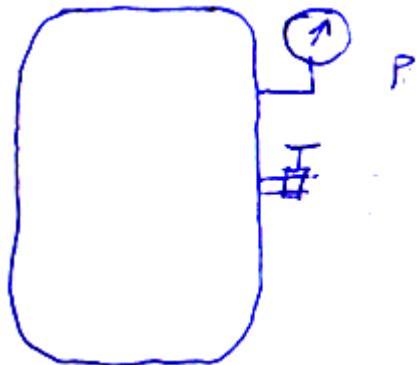
Gas flow corrected for RT:

$$Q = p \cdot \frac{dV}{dt}$$

Q Gasflow
 P Pressure
 V Volume
 t time

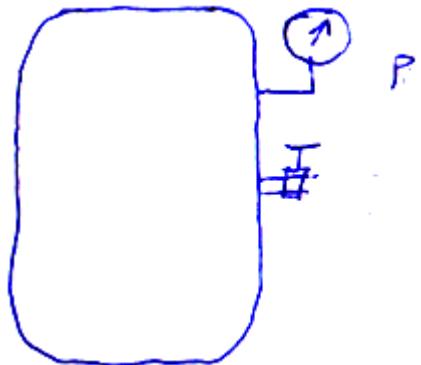
Unit "standard ccm per minute" sccm

$$1 \text{ sccm} = \frac{1013,25 \text{ mbar} \cdot 0,0011}{60 \text{ s}} \cdot \frac{293,15 \text{ K}}{273,15 \text{ K}} = 0,018124 \frac{\text{mbar} \cdot \text{l}}{\text{s}}$$

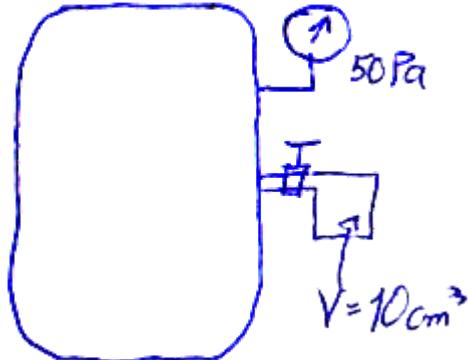

Unit "standard liter per minute" slm

$$1 \text{ slm} = \frac{1013,25 \text{ mbar} \cdot 11}{60 \text{ s}} \cdot \frac{293,15 \text{ K}}{273,15 \text{ K}} = 18,124 \frac{\text{mbar} \cdot \text{l}}{\text{s}}$$

1 sccm = 1,8 Pa · l/s = 18 10⁻³ m · Bar · l/s = 2,89 · 10¹⁹ Particle / min


Assessment of the chamber volume:

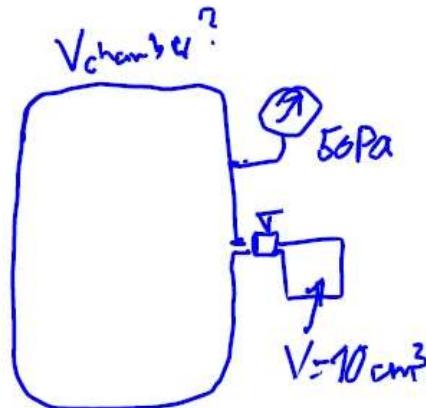
Assessment of the chamber volume:



"VT L09 c 35:40

Assessment of the chamber volume:

An evacuated and sealed vacuum chamber is connected via a valve with a reference container of 10 ccm volume at 1 Bar. After opening the valve the chamber pressure is 50 Pa


$$P \cdot V = \text{const} \Rightarrow P_{\text{chamber}} \cdot V_{\text{chamber} + \cancel{R_{\text{refVol}}}} = P_{\text{RefVol}} \cdot V_{\text{RefVol}}$$

$$V_X = V_{\text{chamber}} + \cancel{R_{\text{refVol}}} = \frac{P_{\text{RefVol}} \cdot V_{\text{RefVol}}}{P_{\text{chamber}}} = \frac{1 \cdot 10^5 \text{ Pa} \cdot 10 \text{ cm}^3}{50 \text{ Pa}}$$

↑ neglectable

$$V_{\text{chamber}} = 20000 \text{ cm}^3$$
$$= \underline{\underline{20 \text{ l}}}$$

Assessment of the chamber volume:

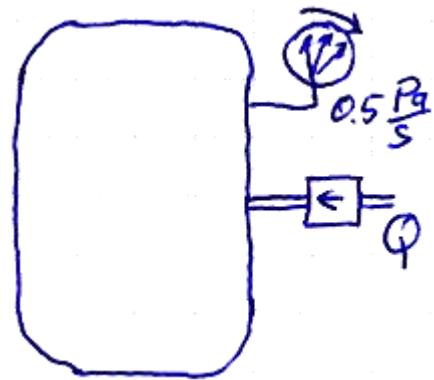
An evacuated and sealed vacuum chamber is connected via a valve with a reference container of 10 cm³ volume at 1 Bar. After opening the valve the chamber pressure is 50 Pa.

$$P \cdot V = \text{const} \Rightarrow \underbrace{P_{\text{chamber}} \cdot V_{\text{chamber, RefVal}}}_{\text{after opening}} = \underbrace{P_{\text{ref}} \cdot V_{\text{RefVal}}}_{\text{before opening}}$$

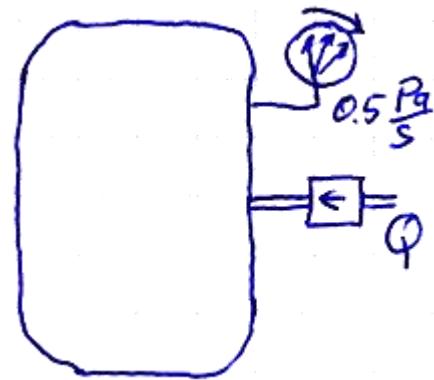
$$V_x = V_{\text{chamber}} \cancel{+ V_{\text{ref}}} = \frac{P_{\text{ref}} \cdot V_{\text{RefVal}}}{P_{\text{chamber}}} = \frac{1 \cdot 10^5 \text{ Pa} \cdot 10 \text{ cm}^3}{50 \text{ Pa}}$$

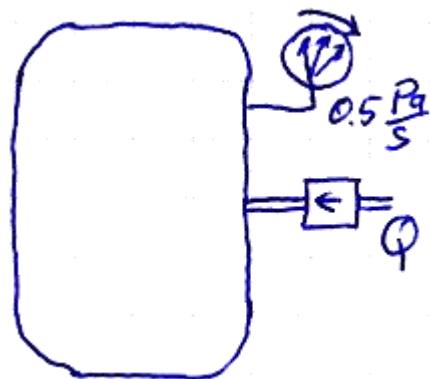
$T_{\text{neglectable}}$

$$V_{\text{chamber}} = 20000 \text{ cm}^3 \\ = \underline{\underline{20 \text{ l}}}$$


Very "tricky" device!

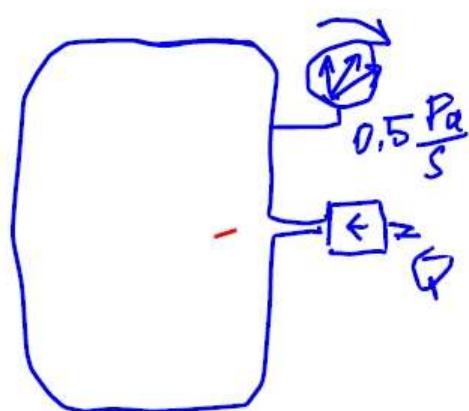
Important for many
processes -


But requires
frequent calibration


Assessment of the gas flow:

Assessment of the gas flow:

Assessment of the gas flow:

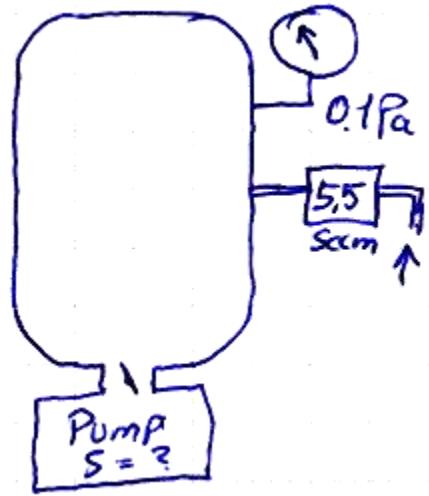


How many sccm gas flow into the chamber, when a pressure raise of 0,5 Pa/s is measured?

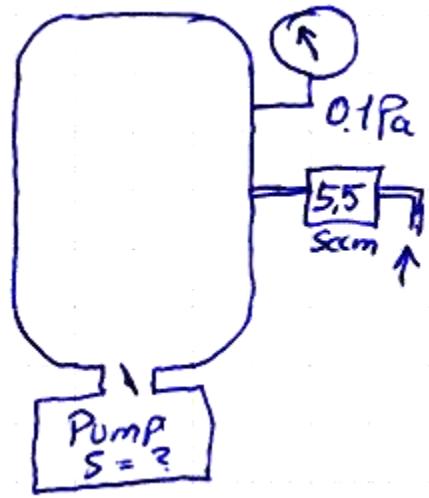
$$Q = \frac{\Delta (P \cdot V)}{\Delta t} / (V = \text{const}) \Rightarrow Q = \frac{V \cdot \Delta P}{\Delta t}$$

$$Q = \frac{0,5 \text{ Pa} \cdot 20 \text{ l}}{1 \text{ s}} = 10 \frac{\text{Pa l}}{\text{s}} = \underline{\underline{5,5 \text{ sccm}}}$$

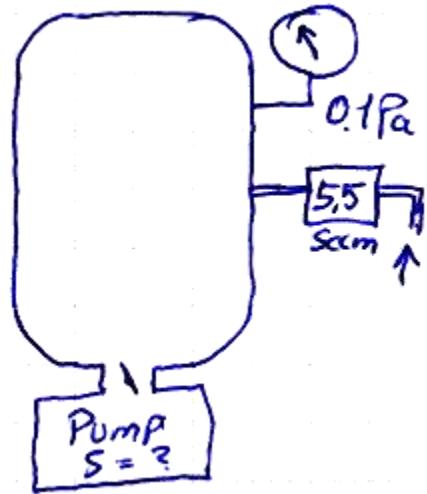
Assessment of the gas flow:



How many sccm gas flow into the chamber, when a pressure raise of 0,5 Pa/s is measured?

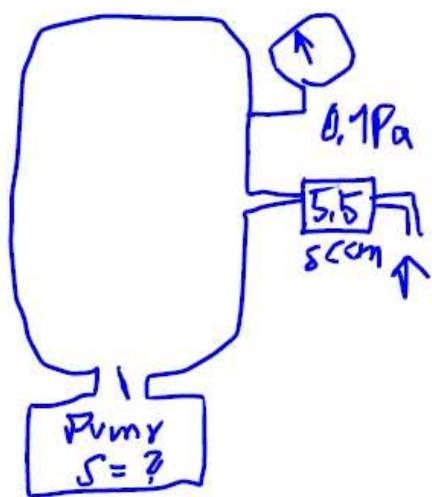

$$Q = \frac{\Delta (P \cdot V)}{\Delta t} \quad (\alpha = \text{const}) \Rightarrow Q = \frac{V \cdot \Delta P}{\Delta t}$$

$$Q = \frac{0,5 \text{ Pa} \cdot 20 \text{ l}}{1 \text{ s}} = 10 \frac{\text{Pa l}}{\text{s}} = \underline{\underline{5,5 \text{ sccm}}}$$


Assessment of the pumping speed:

Assessment of the pumping speed:

Assessment of the pumping speed:

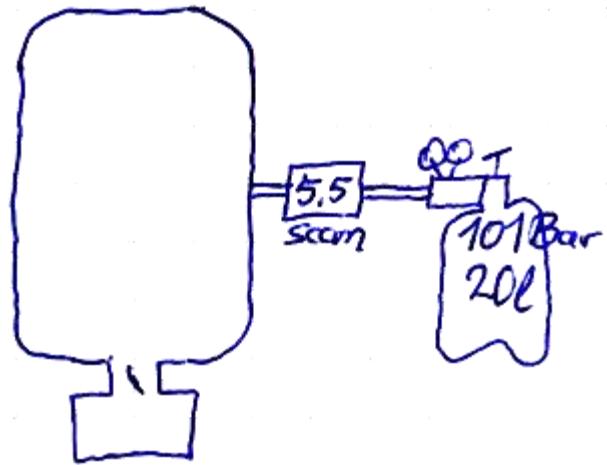

Which pumping speed is required to obtain a chamber pressure of 0,1 Pa with the previously determined gas flow (5,5 sccm)?

$$S = \frac{Q}{P} \quad (Q = P \cdot S)$$

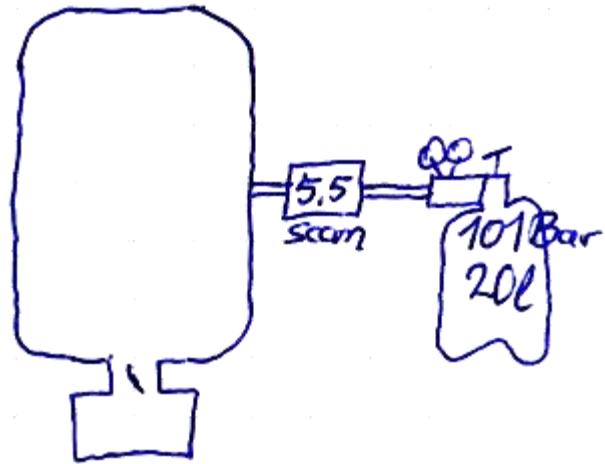
$$S = 10 \text{ Pa} \cdot \text{e.s}^{-1} / 0,1 \cdot \text{Pa}$$

$$\underline{\underline{S = 100 \frac{\text{e}}{\text{s}}}}$$

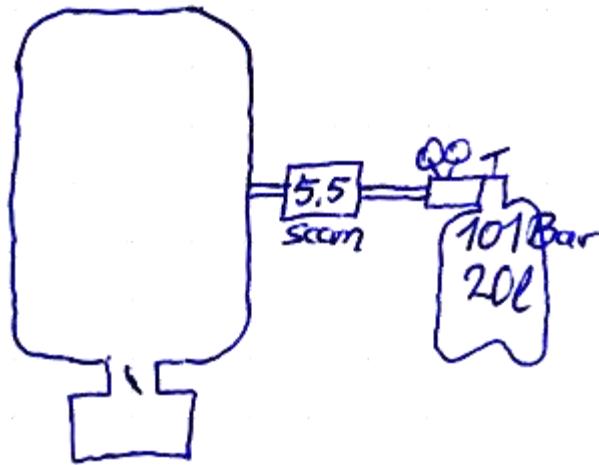
Assessment of the pumping speed:


Which pumping speed is required to obtain a chamber pressure of 0,1 Pa with the previously determined gas flow (5,5 sccm) ?

$$S = \frac{Q}{P} \quad (Q = P \cdot S)$$


$$S = 10 \cdot Pa \cdot l \cdot s^{-1} / 0,1 Pa$$

$$\underline{\underline{S = 100 \frac{l}{s}}}$$


Assessment of the process time:

Assessment of the process time:

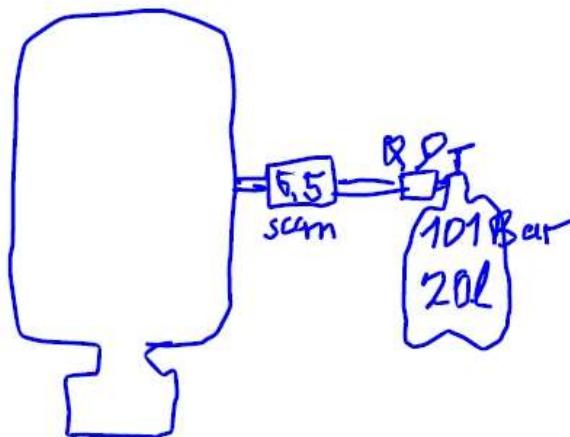
Assessment of the process time:

The gas bottle has a size of 20 l and an initial pressure of 101 Bar. Which is the maximum process time before the replacement of the bottle becomes necessary?

Usable gas volume in the bottle :

$$20 \text{ l} \cdot 101 \text{ Bar} = 2000 \text{ Bar} \cdot \text{l}$$

$$\approx 2 \cdot 10^6 \text{ cm}^3 \text{ gas}$$


At 5,5 sccm this lasts

$$t_{\max} = \frac{2 \cdot 10^6 \text{ cm}^3}{5,5 \text{ cm}^3/\text{min}} = 363 \cdot 10^3 \text{ min}$$

$$= \underline{\underline{252 \text{ days}}}$$

Assessment of the process time:

The gas bottle has a size of 20 l and an initial pressure of 101 Bar. Which is the maximum process time before the replacement of the bottle becomes necessary?

Usable gas volume in the bottle:

$$20 \text{ l} \cdot 100 \text{ Bar} = 2000 \text{ Bar l} \\ \cong 2 \cdot 10^6 \text{ cm}^3 \text{ gas}$$

At 5,5 scfm this lasts

$$t_{\max} = \frac{2 \cdot 10^6 \text{ cm}^3}{55 \text{ cm}^3/\text{min}} = 363 \cdot 10^3 \text{ min} \\ \underline{\underline{= 252 \text{ days}}}$$

Another Example :

The "flushing" of the bearing
of a Claw Pump requires
12 sNm N_2 gas.

How long can this be maintained
with a 50 l bottle at 200 Bar
initial pressure?

Another Example:

The "flushing" of the bearing
of a Claw Pump requires
12 sNm N_2 gas.

How long can this be maintained
with a 50 l bottle at 200 Bar
initial pressure?

Volume in the bottle:

$$50 \text{ l} \cdot 199 \text{ Bar} \hat{=} 9950 \text{ l}$$

This lasts 829 min or 13h

Another Example:

The "flushing" of the bearing of a Claw pump requires 12 slm N_2 gas.

How long can this be maintained with a 50 l bottle at 200 Bar initial pressure?

Volume in the bottle:

$$50\text{ l} \cdot 199\text{ Bar} \hat{=} 9950\text{ l}$$

This lasts 829 min or 13h

Residence Time

tells how long a gas particle „resides“ in a vacuum chamber:

$$T_R = V/S = P \cdot V / P \cdot S = P \cdot V / Q$$

Residence Time

tells how long a gas particle „resides“ in a vacuum chamber:

$$T_R = V/S = P \cdot V / P \cdot S = P \cdot V / Q$$

Example.: Plasma deposition systems $P = 133 \text{ Pa (1 Torr)}$; $V = 100 \text{ l}$; $Q = 160 \text{ sccm (288 Pa} \cdot \text{l/s)}$

Residence Time

tells how long a gas particle „resides“ in a vacuum chamber:

$$T_R = V/S = P \cdot V / P \cdot S = P \cdot V / Q$$

Example.: Plasma deposition systems $P = 133 \text{ Pa (1 Torr)}$; $V = 100 \text{ l}$; $Q = 160 \text{ sccm (288 Pa \cdot l/s)}$

$$T_R = 133 \cdot 100 / 288 = \underline{46 \text{ s}}$$

Residence Time

tells how long a gas particle „resides“ in a vacuum chamber:

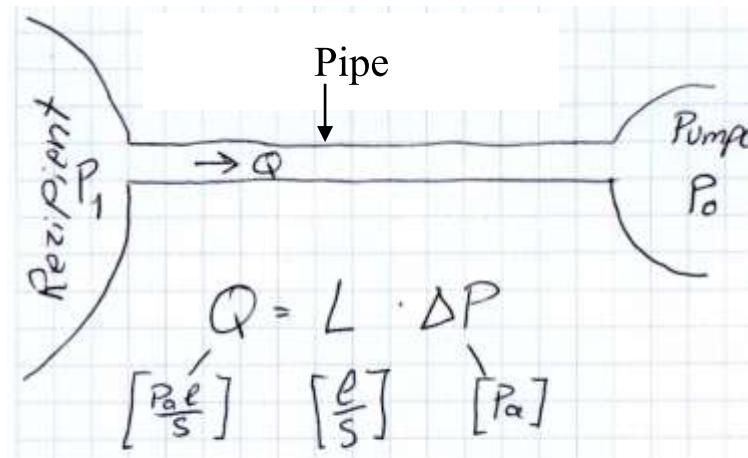
$$T_R = V/S = P \cdot V / P \cdot S = P \cdot V / Q$$

Example.: Plasma deposition systems $P = 133 \text{ Pa (1 Torr)}$; $V = 100 \text{ l}$; $Q = 160 \text{ sccm (288 Pa \cdot l/s)}$

$$T_R = 133 \cdot 100 / 288 = \underline{46 \text{ s}}$$

<http://www.vactechnico.com/entgasungssysteme/>

"VT L09 d 41:51



<http://www.vactechnico.com/entgasungssysteme/>

Gas flow conductance L

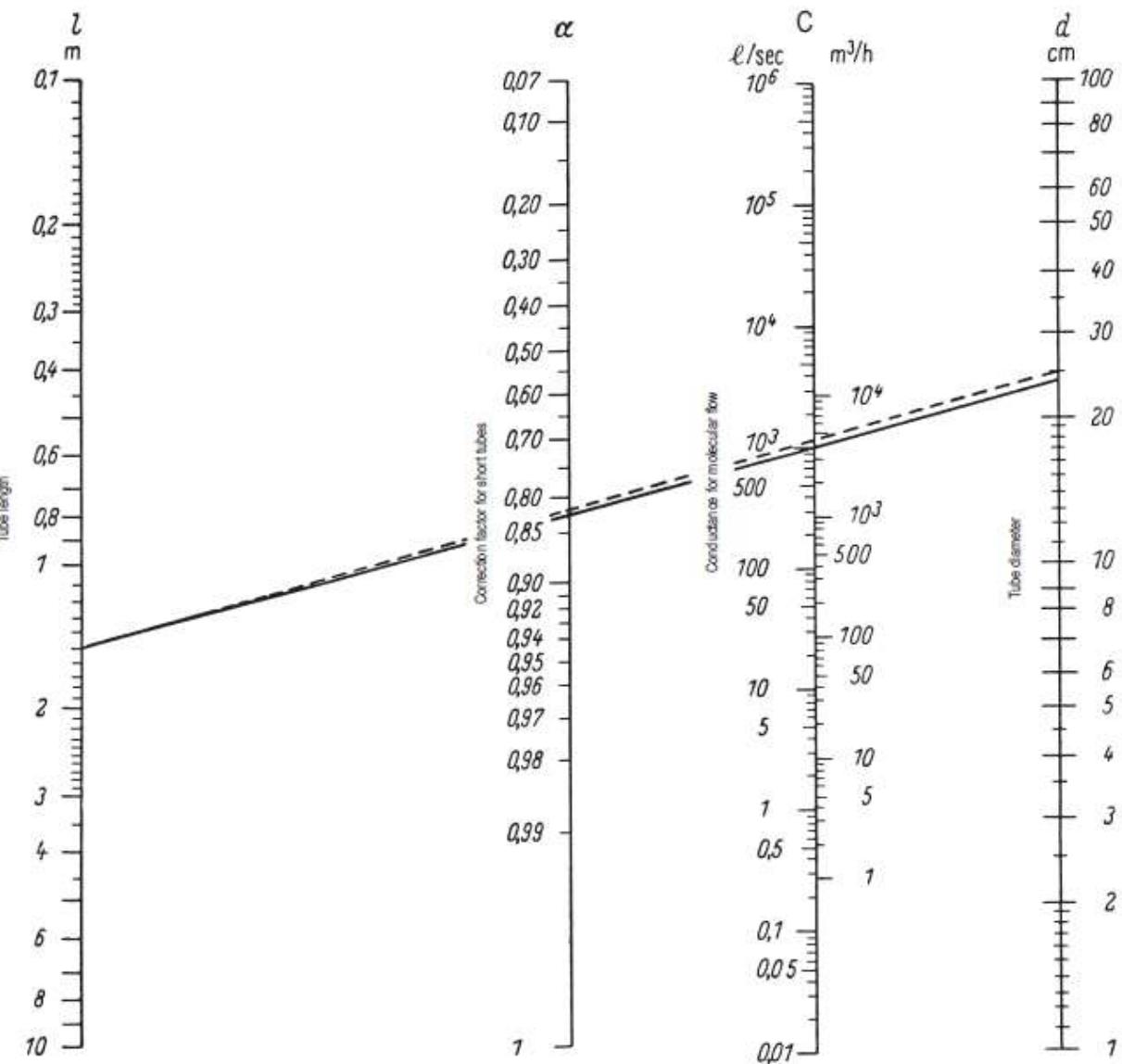
Proportionality constant between gas flow and pressure difference.

Analogy to Ohm's law:

$$I = \frac{1}{R} \cdot U$$

Correspondingly this applies to a series circuit:

and for a parallel circuit:

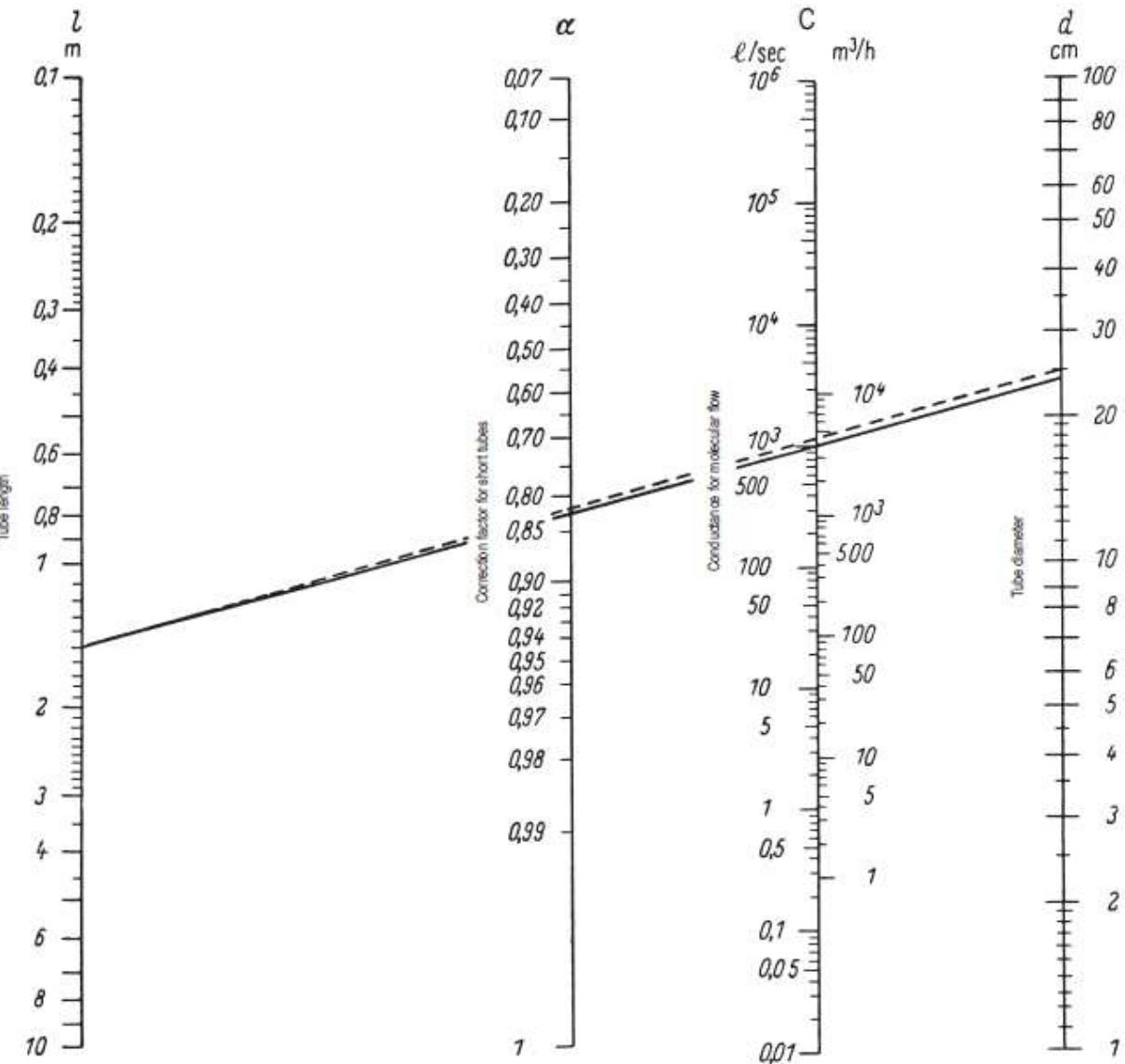

$$R_{\text{gas}} = \sum_i R_i \quad \hat{=} \quad \frac{1}{L_{\text{gas}}} = \sum_i \frac{1}{L_i}$$

$$\frac{1}{R_{\text{gas}}} = \sum_i \frac{1}{R_i} \quad \hat{=} \quad L_{\text{gas}} = \sum_i L_i$$

However the conductance of pipes and openings outside of the molecular flow regime depends on the pressure!

Determination of gas flow conduction using a nomogram

->
Valid in the molecular flow regime only:

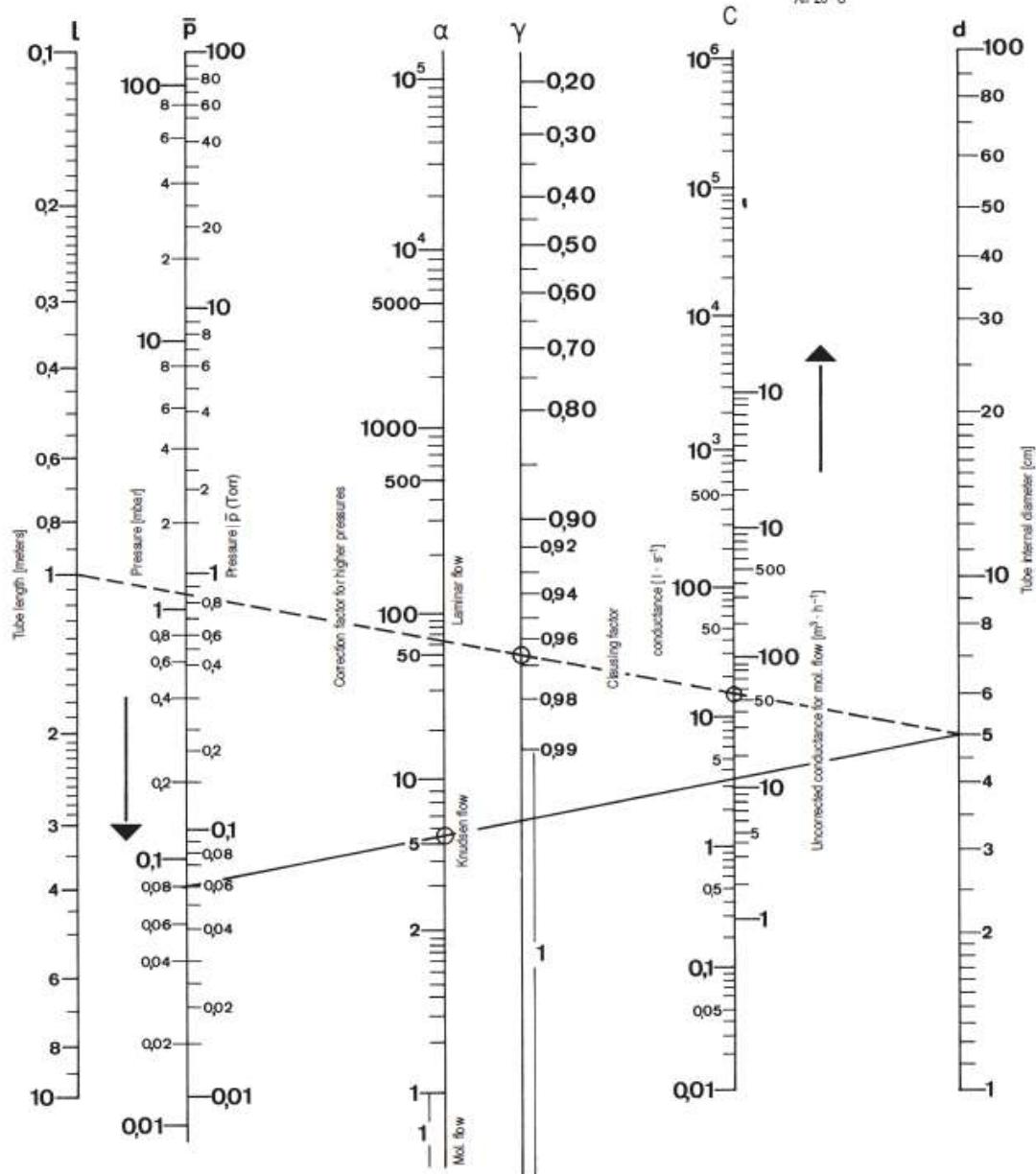


Example: What diameter d must a 1.5-m-long pipe have so that it has a conductance of about $C = 1000 \text{ l/sec}$ in the region of molecular flow? The points $l = 1.5 \text{ m}$ and $C = 1000 \text{ l/sec}$ are joined by a straight line which is extended to intersect the scale for the diameter d . The value $d = 24 \text{ cm}$ is obtained. The input conductance of the tube, which depends on the ratio d/l and must not be neglected in the case of short tubes, is taken into account by means of a correction factor α . For $d/l < 0.1$, α can be set equal to 1. In our exam-

ple $d/l = 0.16$ and $\alpha = 0.83$ (intersection point of the straight line with the α scale). Hence, the effective conductance of the pipeline is reduced to $C \cdot \alpha = 1000 \cdot 0.83 = 830 \text{ l/sec}$. If d is increased to 25 cm, one obtains a conductance of $1200 \cdot 0.82 = 985 \text{ l/sec}$ (dashed straight line).

Determination of gas flow conduction using a nomogram

->
Valid in the molecular flow regime only:



Example: What diameter d must a 1.5-m-long pipe have so that it has a conductance of about $C = 1000 \text{ l/sec}$ in the region of molecular flow? The points $l = 1.5 \text{ m}$ and $C = 1000 \text{ l/sec}$ are joined by a straight line which is extended to intersect the scale for the diameter d . The value $d = 24 \text{ cm}$ is obtained. The input conductance of the tube, which depends on the ratio d/l and must not be neglected in the case of short tubes, is taken into account by means of a correction factor α . For $d/l < 0.1$, α can be set equal to 1. In our exam-

ple $d/l = 0.16$ and $\alpha = 0.83$ (intersection point of the straight line with the α scale). Hence, the effective conductance of the pipeline is reduced to $C \cdot \alpha = 1000 \cdot 0.83 = 830 \text{ l/sec}$. If d is increased to 25 cm, one obtains a conductance of $1200 \cdot 0.82 = 985 \text{ l/sec}$ (dashed straight line).

Determination of gas flow conduction using a nomogram

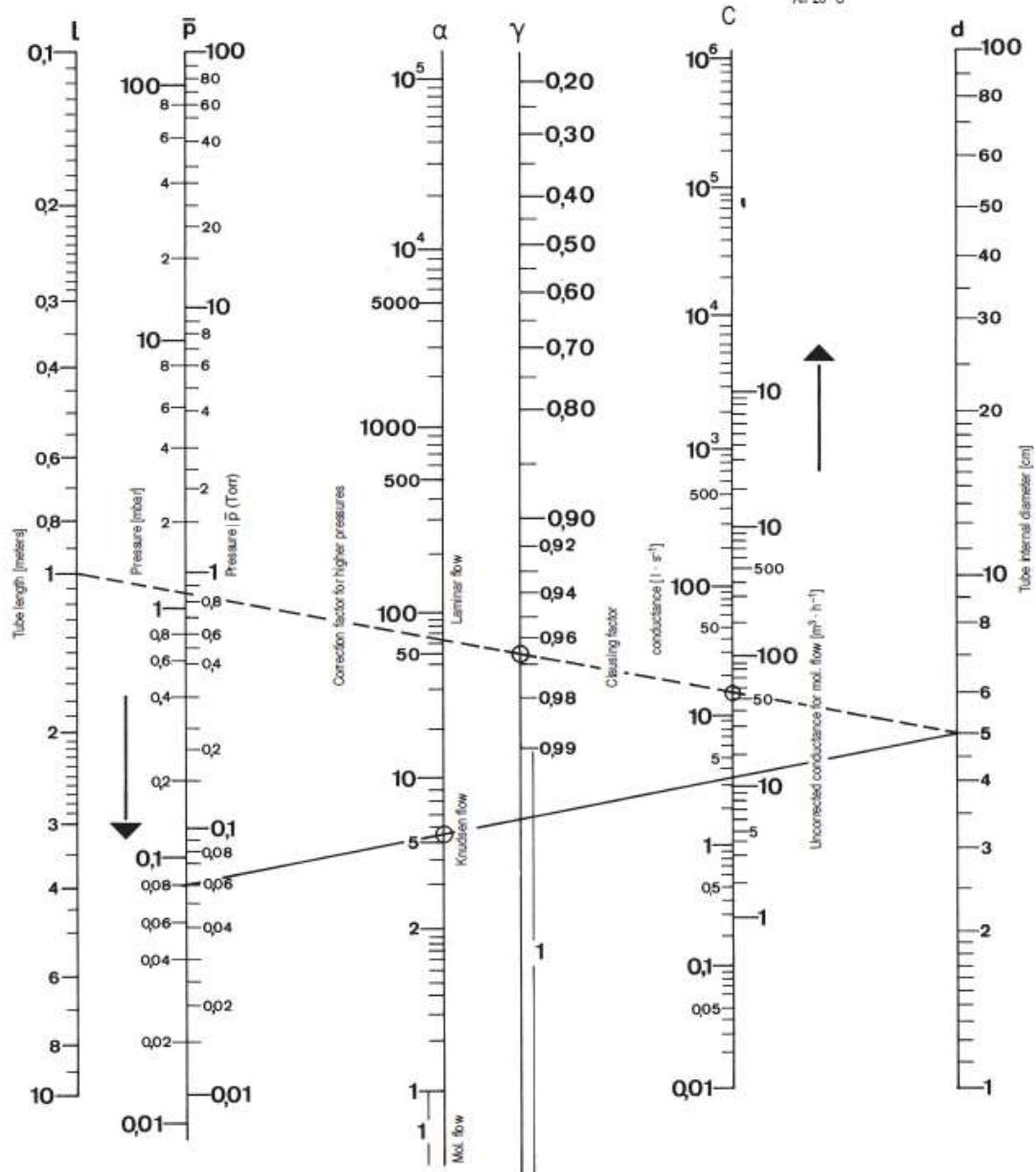
->
For different pressure regimes:

Procedure: For a given length (l) and internal diameter (d), the conductance C_m , which is independent of pressure, must be determined in the molecular flow region. To find the conductance C^* in the laminar flow or Knudsen flow region with a given mean pressure of p in the tube, the conductance value previously calculated for C_m has to be multiplied by the correction factor α determined in the nomogram. $C^* = C_m \cdot \alpha$.

Example: A tube with a length of 1 m and an internal diameter of 5 cm has an (uncorrected) conductance C of about 17 l/s in the molecular flow region, as determined using the appropriate connecting lines between the "l" scale and the "d" scale. The conductance C found in this manner must be multiplied by the dausing factor $\gamma = 0.963$ (intersection of connecting line with the γ scale) to obtain the true conductance C_{tr} in the molecular flow region:

In a tube with a length of 1 m and an internal diameter of 5 cm a molecular flow prevails if the mean pressure p in the tube is $< 2.7 \cdot 10^{-3}$ mbar.

To determine the conductance C^* at higher pressures than $2.7 \cdot 10^{-3}$ mbar, at $8 \cdot 10^{-3}$ mbar ($= 6 \cdot 10^3$ tor), for example, the corresponding point on the p scale is connected with the point $d = 5$ cm on the 'd' scale. This connecting line intersects the 'x' scale at the point $\alpha = 5.5$. The conductance C^* at $p = 8 \cdot 10^{-3}$ mbar is: $C^* = \alpha \cdot 16.37 \cdot 5.5 = 90$ l/s.


Determination of gas flow conduction using a nomogram

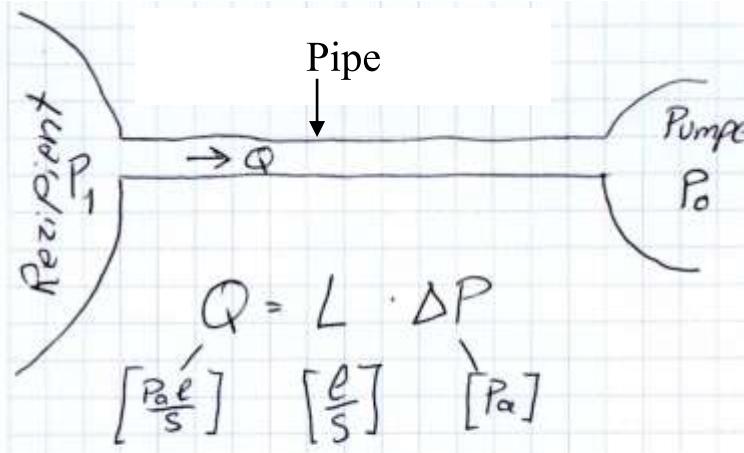
->
For different pressure regimes:

Procedure: For a given length (l) and internal diameter (d), the conductance C_m , which is independent of pressure, must be determined in the molecular flow region. To find the conductance C^* in the laminar flow or Knudsen flow region with a given mean pressure p in the tube, the conductance value previously calculated for C_m has to be multiplied by the correction factor α determined in the nomogram: $C^* = C_m \cdot \alpha$.

Example: A tube with a length of 1 m and an internal diameter of 5 cm has an (uncorrected) conductance C of around 17 l/s in the molecular flow region, as determined using the appropriate connecting lines between the "1" scale and the "d" scale. The conductance C found in this manner must be multiplied by the damping factor $\gamma = 0.963$ (intersection of connecting line with the γ scale) to obtain the true conductance C_m in the molecular flow region:
 $C_m \cdot \gamma = 17 \cdot 0.963 = 16.37 \text{ l/s}$

The pumping speed S_p of the pump (l/s) is a quality parameter of the pump and is given for the entrance flange of the device.

The corresponding $\Delta V/\Delta t$ value at the outlet flange of the chamber S_{eff} is lower, due to the limited conduction of the pipe.



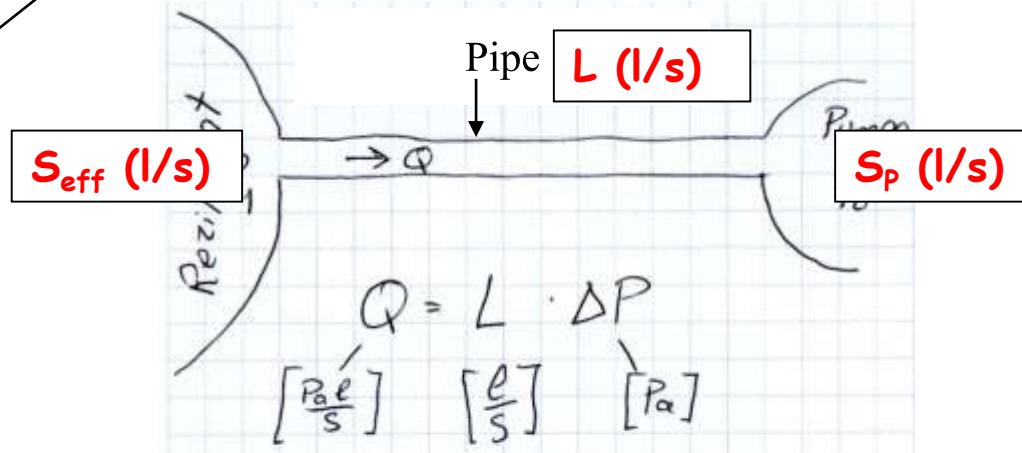
The pumping speed S_p of the pump (l/s) is a quality parameter of the pump and is given for the entrance flange of the device.

The corresponding $\Delta V/\Delta t$ value at the outlet flange of the chamber S_{eff} is lower, due to the limited conduction of the pipe.

The pumping speed S_p of the pump (l/s) is a quality parameter of the pump and is given for the entrance flange of the device.

Analogy to Ohm's law:

$$I = \frac{1}{R} \cdot U$$


$$R_{\text{gas}} = \sum_i R_i \quad \cong \quad \frac{1}{L_{\text{gas}}} = \sum_i \frac{1}{L_i}$$

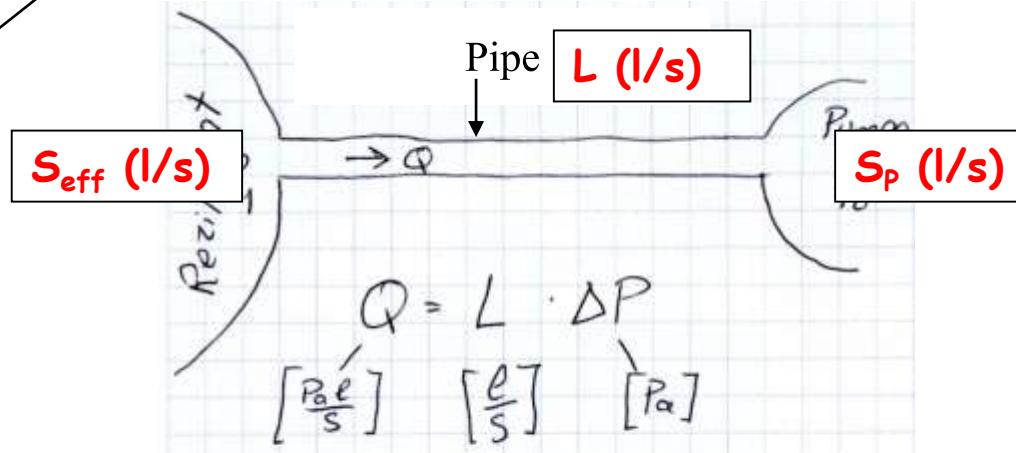
Here we have pump and pipe as a series circuit:

The corresponding $\Delta V/\Delta t$ value at the outlet flange of the chamber S_{eff} is lower, due to the limited conduction of the pipe.

The pumping speed S_p of the pump (l/s) is a quality parameter of the pump and is given for the entrance flange of the device.

Analogy to Ohm's law:

$$I = \frac{1}{R} \cdot U$$

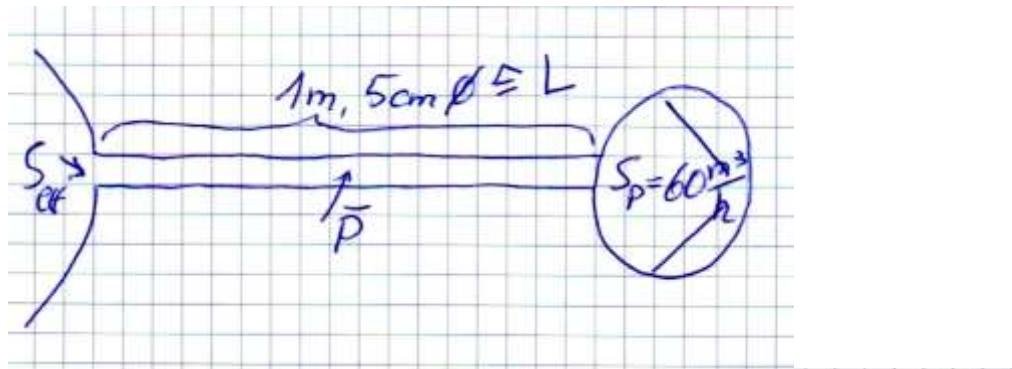

$$R_{\text{gas}} = \sum_i R_i \quad \cong \quad \frac{1}{L_{\text{gas}}} = \sum_i \frac{1}{L_i}$$

Here we have pump and pipe as a series circuit:

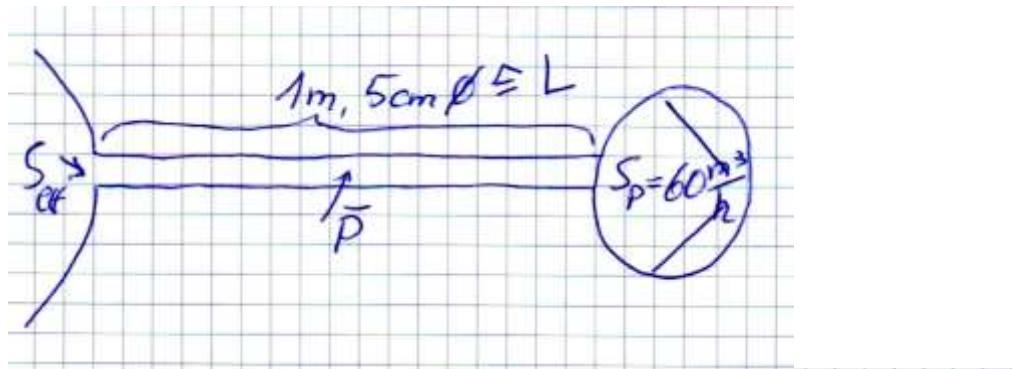
The corresponding $\Delta V/\Delta t$ value at the outlet flange of the chamber S_{eff} is lower, due to the limited conduction of the pipe.

The pumping speed S_p of the pump (l/s) is a quality parameter of the pump and is given for the entrance flange of the device.

Analogy to Ohm's law:

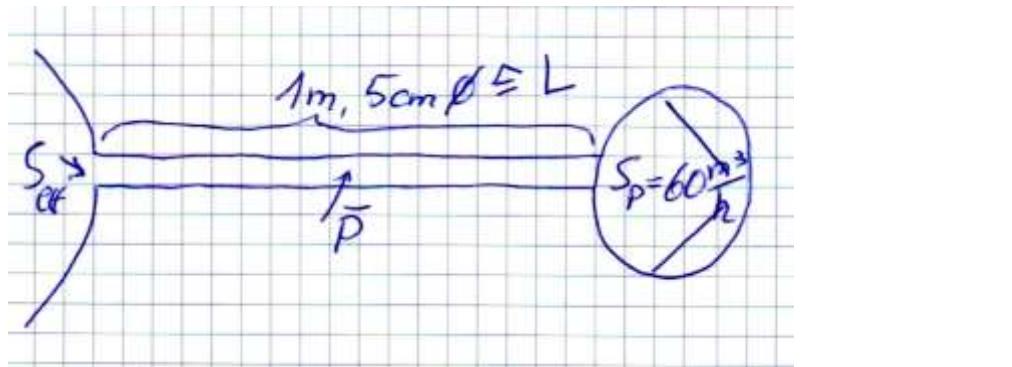

$$I = \frac{1}{R} \cdot U$$

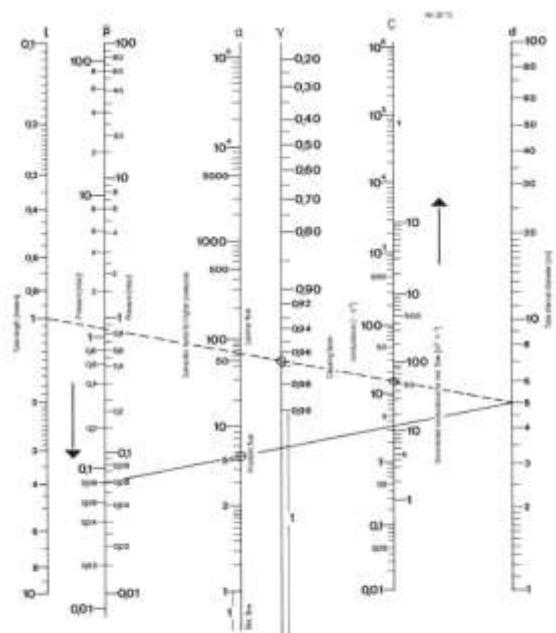
$$R_{\text{gas}} = \sum_i R_i \quad \cong \quad \frac{1}{L_{\text{gas}}} = \sum_i \frac{1}{L_i}$$


Here we have pump and pipe as a series circuit:

$$\frac{1}{S_{\text{eff}}} = \frac{1}{S_p} + \frac{1}{L}$$

Determine the pressure dependent flow conductance (in l/s) for the tube sketched below ranging from 100 mBar - 10^{-3} mBar (mean pressure!):

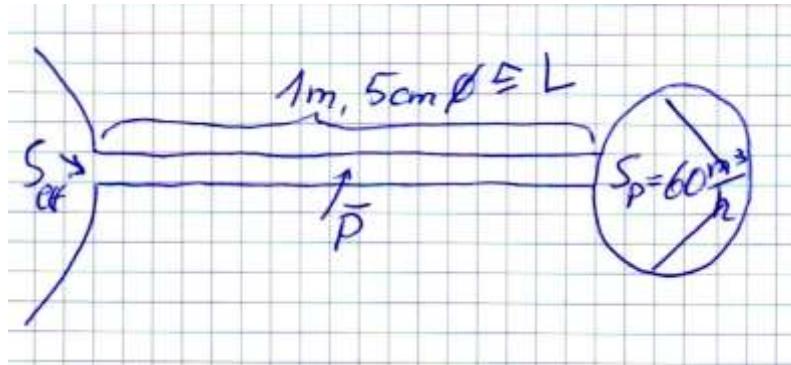

Determine the pressure dependent flow conductance (in l/s) for the tube sketched below ranging from 100 mBar - 10^{-3} mBar (mean pressure!):


$$\frac{1}{S_{\text{eff}}} = \frac{1}{S_p} + \frac{1}{L}$$

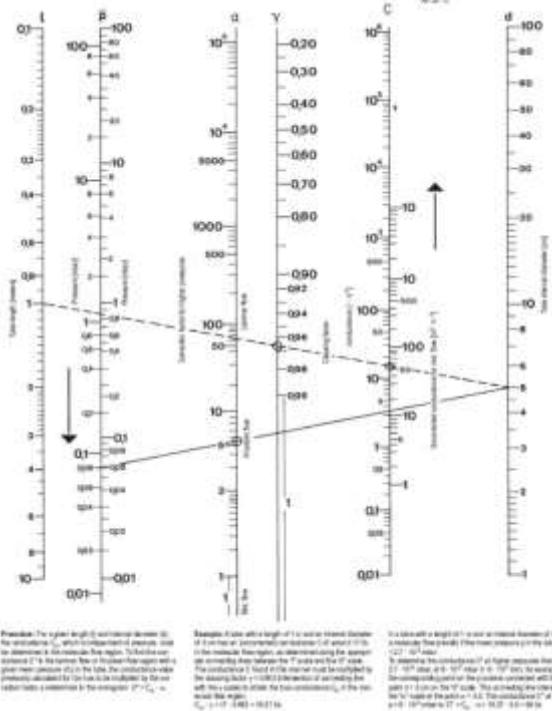
Example: Tubing between chamber and pump

Determine the pressure dependent flow conductance (in l/s) for the tube sketched below ranging from 100 mBar - 10^{-3} mBar (mean pressure!):

$$\frac{1}{S_{\text{eff}}} = \frac{1}{S_p} + \frac{1}{L}$$

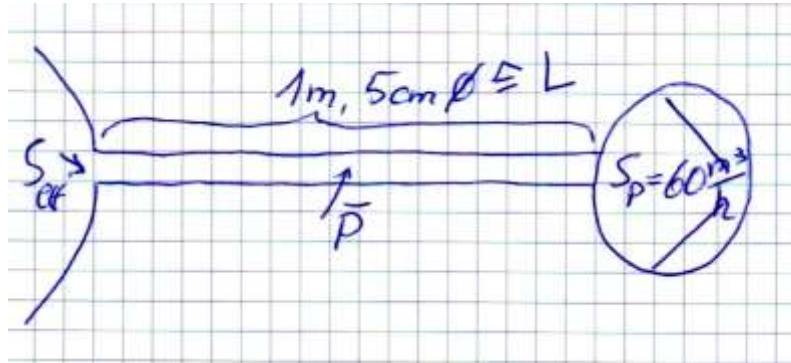


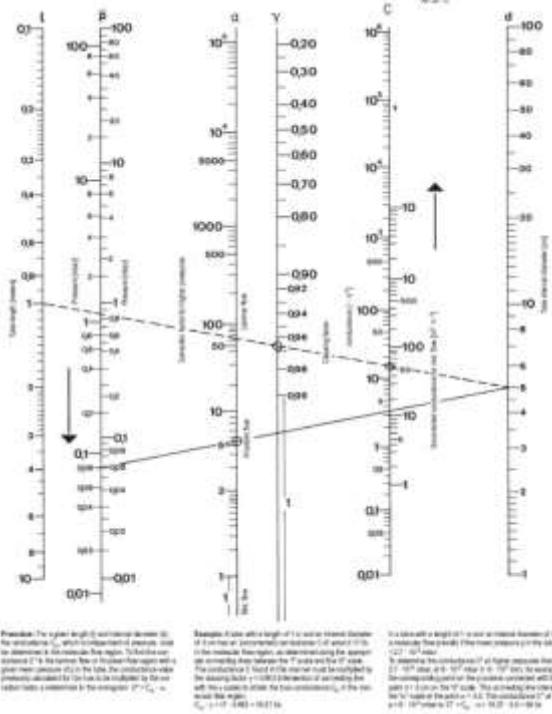
Pressure: The graph shows the pressure (P) on the x-axis. The y-axis is the flow conductance (S_{eff}). The curves are labeled with the tube length (L). The flow conductance decreases as the pressure decreases. The curves for longer tubes are shifted to the right (higher pressures) compared to shorter tubes.


Example: A tube with a length of 1 m and an internal diameter of 5 cm is connected to a pump with a flow conductance of $S_p = 60 \text{ mBar}$. The flow conductance is determined by the formula $S_{\text{eff}} = \frac{1}{S_p} + \frac{1}{L}$. The flow conductance is $S_{\text{eff}} = \frac{1}{60} + \frac{1}{1} = 1.017 \text{ l/s}$. The flow conductance is $S_{\text{eff}} = \frac{1}{S_p} + \frac{1}{L}$. The flow conductance is $S_{\text{eff}} = \frac{1}{60} + \frac{1}{10} = 0.167 \text{ l/s}$. The flow conductance is $S_{\text{eff}} = \frac{1}{S_p} + \frac{1}{100} = 0.0167 \text{ l/s}$. The flow conductance is $S_{\text{eff}} = \frac{1}{S_p} + \frac{1}{1000} = 0.00167 \text{ l/s}$.

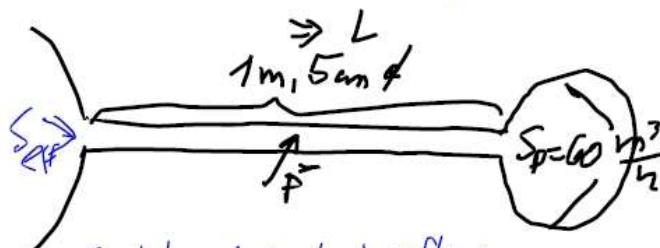
Example: Tubing between chamber and pump

Determine the pressure dependent flow conductance (in l/s) for the tube sketched below ranging from 100 mBar - 10^{-3} mBar (mean pressure!):


$$\frac{1}{S_{\text{eff}}} = \frac{1}{S_p} + \frac{1}{L}$$


\bar{P} mBar	Korrektur $\frac{1}{S_p}$	$L \left[\frac{l}{s} \right]$	$S_p \left[\frac{l}{s} \right]$	$\frac{1}{L} \left[\frac{l}{s} \right]$	$\frac{1}{S_p} \left[\frac{l}{s} \right]$	S_{eff}
100						
10						
1						
0,1						
0,01						
0,001						

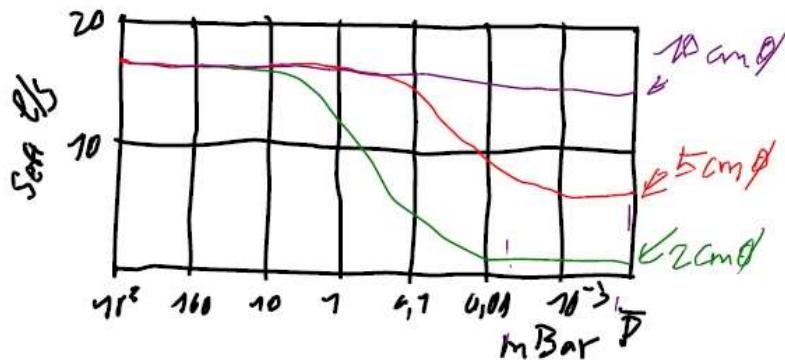
Determine the pressure dependent flow conductance (in l/s) for the tube sketched below ranging from 100 mBar - 10⁻³ mBar (mean pressure!):



$$\frac{1}{S_{\text{eff}}} = \frac{1}{S_p} + \frac{1}{L}$$

\bar{P} mBar	Korrektur d/d_0	$L \left[\frac{l}{S} \right]$	$S_p \left[\frac{l}{S} \right]$	$\frac{1}{L} \left[\frac{s}{l} \right]$	$\frac{1}{S_p} \left[\frac{s}{l} \right]$	S_{eff}
100						
10						
1						
0,1						
0,01						
0,001						

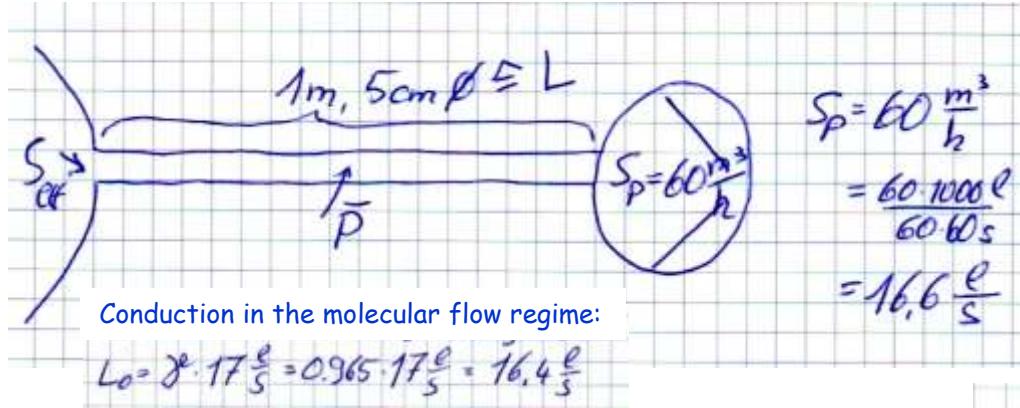
Determining the effective pumping speed in $1/s$ for the setup sketched below in dependence to the mean pressures:

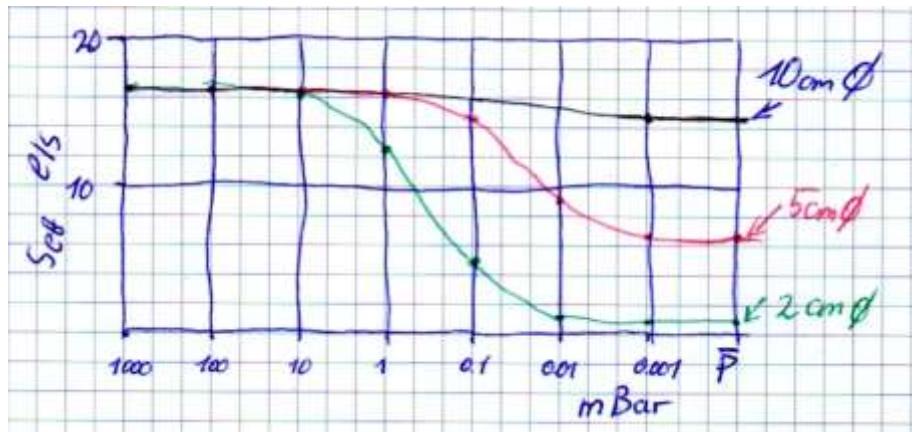


$$\text{constant } L \text{ molecular flow} \\ L_0 = 2 \cdot 17 \frac{l}{s} = 0.965 \cdot 17 \frac{l}{s} = \underline{\underline{16.6 \frac{l}{s}}}$$

$$S_p = 60 \frac{m^3}{h} \\ = \frac{60 \cdot 1000 l}{60 \cdot 60 s} \\ = \underline{\underline{16.6 \frac{l}{s}}}$$

$$\frac{1}{S_{\text{eff}}} = \frac{1}{S_p} + \frac{1}{L \cdot C_v}$$


$$\frac{1}{L_0 \cdot C_v}$$


P mBar	corrected	$L \left[\frac{m}{s} \right]$	$S_p \left[\frac{l}{s} \right]$	$\frac{1}{L \left[\frac{m}{s} \right]}$	$\frac{1}{S_p \left[\frac{l}{s} \right]}$	S_{eff} $\frac{l}{s}$
100	5010	82000	16.6	$1.2 \cdot 10^{-5}$	0.06	11.6
10	550	9000	16.6	$1 \cdot 10^{-4}$	0.66	16.6
1	50	820	16.6	0.0012	0.66	16.3
0,1	7	115	16.6	0.0007	0.06	14.5
0,01	1,3	21	16.6	0.05	0.06	9.1
0,001	1	16,4	16.6	0.06	0.06	8.3
		1	16,4	16.6	0.06	8.3

Example: Tubing between chamber and pump

Determine the effective pumping speed in l/s for the setup sketched below in dependence to the mean pressure:

$$\frac{1}{S_{eff}} = \frac{1}{S_p} + \frac{1}{L}$$

\bar{P} mBar	Korrektur α	$L \left[\frac{\ell}{s} \right]$	$S_p \left[\frac{1}{s} \right]$	$\frac{1}{L} \left[\frac{s}{\ell} \right]$	$\frac{1}{S_p} \left[\frac{s}{\ell} \right]$	S_{eff}
100	5000	82000	16.6	$1.2 \cdot 10^{-5}$	0.06	16.6
10	550	9000	16.6	$1 \cdot 10^{-4}$	0.06	16.6
1	50	820	16.6	0.0012	0.06	16.3
0.1	7	115	16.6	0.0087	0.06	14.5
0.01	1.3	21	16.6	0.05	0.06	9.1
0.001	1	16.4	16.6	0.06	0.06	8.3
-	1	16.4	16.6	0.06	0.06	8.3

»Wissen schafft Brücken.«