

Fakultät Elektrotechnik und Informationstechnik

Directory of Modules for Visiting Students *Diplom* Programme in Mechatronics

Faculty of Electrical and Computer Engineering

Information Package for International Visiting and Exchange Students

October 2017

The Faculty of Electrical and Computer Engineering (*Fakultät Elektrotechnik und Informationstechnik*), the Faculty of Mechanical Science and Engineering and the "Friedrich List" Faculty of Transportation and Traffic Sciences at the Technische Universität Dresden offer the *Diplom* degree programme in Mechatronics. This programme is an integrated five-year (single-tier) programme and thus includes Bachelor as well as Master's level.

Structure of the *Diplom* degree programme in Mechatronics

The degree programme in Mechatronics is divided into basic studies and main studies. The basic studies include semester 1 until semester 4 (= the first two years of the programme); the main studies start in the 5th semester and are concluded in the 10th semester (= 3rd until 5th year of the programme).

The following catalogue is organized according to these two stages. In the first part, you will find the modules listed that are part of our basic studies (please see here for the list). From page 3 on, you will find information on the modules that are part of our main studies (please see here for a list).

SWS – Semesterwochenstunden

In the module descriptions (line "modes of teaching and learning") you will find the abbreviation *SWS*. This abbreviation stands for the German term *Semesterwochenstunde* and gives the amount of lessons per week.

1 SWS = 1 lesson of 45 minutes per week during the semester

At the TU Dresden, lessons usually last for 90 minutes (= 1 Doppelstunde (DS)).

What does this mean for your timetable?

For example, for the module MT-12 02 22 Power Electronics, the amount of SWS is given as follows: 2/1/0. This means that the module includes the following modes of teaching: 2 SWS lecture (1st number), 1 SWS tutorial (2nd number), 0 SWS lab course (3rd number); which means:

- 90 minutes lecture every week during the semester
- 90 minutes tutorial every 2nd week during the semester
 (Also possible, but less common: 45 minutes tutorial every week during the semester)
- No lab course

Academic calendar of the TU Dresden

The academic year at the TU Dresden is divided into the winter semester (October–March) and summer semester (April–September). The semester dates for the following academic years can be found here.

Our module descriptions inform you in which semester, i.e. winter or summer semester, the respective module is offered. When setting up your learning agreement, it is important to consider at first which semester you are coming to the TU Dresden (either the winter or summer semester) and then choose appropriate modules.

Note: The English version of our module descriptions is not legally binding.

Basic studies modules (Bachelor level)

Module number	Module name	Winter semester	Summer semester	Level	Language of instruction	ECTS-credits
MT-12 08 01	Fundamentals of Electrical Engineering (Grundlagen der Elektrotechnik)	2/2/0 PL		1 st year	German	6
MT-12 08 23	Electric and Magnetic Fields (<i>Elektrische und magnetische Felder</i>)		2/2/0 PL	1 st year	German	4
MT-12 05 01	Electronic Systems Design (<i>Geräteentwicklung</i>)		2/2/0 PL	1 st year	German	4
MT-13 00 01	Materials and Engineering Mechanics (Werkstoffe und Technische Mechanik)	2/1/0 PL	2/2/0 PL	1 st year	German	7 (3+4)
MT-12 08 03	Dynamic Networks (<i>Dynamische Netzwerke</i>)	2/2/1 PL	0/0/1 PL	2 nd year	German	7 (6+1)
MT-12 09 01	Systems Theory (<i>Systemtheorie</i>)	2/1/0	2/2/0 PL	2 nd year	German	7
MT-12 01 02	Automation Engineering and Measurement (Automatisierungs- und Messtechnik)		3/2/0 PL	2 nd year	German	5
MT-12 04 01	Electrical Power Engineering (<i>Elektroenergietechnik</i>)	3/1/0 PL	0/0/1 PL	2 nd year	German	5 (4+1)
MT-12 02 21	Circuit Design (<i>Schaltungstechnik</i>)		2/1/0 PL	2 nd year	German	4
MT-13 01 02	Fundamentals of Kinematics and Kinetics (Grundlagen der Kinematik und Kinetik)	2/2/0 PL		2 nd year	German	5
MT-13 12 01	Construction and Manufacturing Engineering (Konstruktion und Fertigungstechnik)	5/2/0 2 PL	0/1/0 PL	2 nd year	German	10 (8+2)
MT-13 01 04	Kinematics and Materials of Mechanics, Advanced (Vertiefung Kinematik und Festigkeitslehre)		3/3/0 PL	2 nd year	German	7

The numbers in the columns "winter semester" and "summer semester" indicate in which semester the respective module is delivered. Further, these numbers refer to the SWS for the respective module. The 1st number refers to the SWS for the lecture, the 2nd to the SWS for the tutorial and the 3rd to the SWS for the lab course (Please see here for more details).

PL = *Prüfungsleistung*/assessment

Main studies modules (5th until 10th semester)

Module number	Module name	Winter semester	Summer semester	Level	Language of instruction	ECTS- credits
MT-13 01 01	Field Theory (<i>Feldtheorie</i>)		2/2/0 PL	3 rd year	German	5
MT-13 01 02	Numerical Methods/System Dynamics (Numerische Methoden/Systemdynamik)	4/2/0 2 PL	0/0/1 PL	3 rd year	German	9 (8+1)
MT-12 02 22	Power Electronics (<i>Leistungselektronik</i>)	2/1/0 2 PL		3 rd year	German	4
MT-12 13 01	Control of Continuous-Time Processes and Discrete Event Systems (<i>Regelungstechnik und Ereignisdiskrete Systeme</i>)	5/2/0 2 PL	0/0/1 PL	3 rd year		9 (8+1)
MT-12 01 23	Micro Computer Engineering/Embedded Controller (<i>Mikrorechentechnik/Embedded Controller</i>)	2/0/1	3/0/3 3 PL	3 rd year		10 (3+7)
MT-12 08 25	Measurement and Sensor Techniques/Actuators (Mess- und Sensortechnik/Aktorik)	2/1/0 PL	2/0/2 3 PL	3 rd year	German	9 (4+5)

The numbers in the columns "winter semester" and "summer semester" indicate in which semester the respective module is delivered. Further, these numbers refer to the SWS for the respective module. The 1st number refers to the SWS for the lecture, the 2nd to the SWS for the tutorial and the 3rd to the SWS for the lab course (Please see here for more details).

PL = *Prüfungsleistung*/assessment

Module number	Module name	Winter semester	Summer semester	Level	Language of instruction	ECTS-credits
MT-M01-G	Multi Body Systems, Basics		3/2/0	4 th year	German	7
	(Mehrkörpersysteme Grundlagen)		PL			/
MT-M01-V	Multi Body Systems, Advanced	3/3/0		5 th year	German	7
	(Mehrkörpersysteme Vertiefung)	3 PL				
MT-M02-G	Fluid Power Systems, Basics		2/2/1	4	German	7
	(Fluidtechnische Systeme Grundlagen)		3 PL			
	Fluid Power Systems, Advanced	3/1/1		5	German	7
1011-10102-0	(Fluidtechnische Systeme Vertiefung)	3 PL				
MT-M03-G	Mechanical Construction, Basics	2/0/1	2/0/1	4 th and 5 th year	German	
	(Maschinenkonstruktion Grundlagen)	2 PL	2 PL			7
		2 nd part	1 st part			
MT-M03-V	Mechanical Construction, Advanced		3/2/0	4 th year	German	7
	(Maschinenkonstruktion Vertiefung)		2 PL			
MT-M04-G	Control, Basics		4/2/0	4 th year	German	7
	(Regelung und Steuerung Grundlagen)		2 PL			
MT-M04-V	Control, Advanced	2/1/0	2/0/0	4 th and 5 th year	German	7
	(Regelung und Steuerung Vertiefung)	PL	PL			
		2 nd part	1 st part			
	Electric Drive Technology, Basics		4/2/0	4 th year	German	7
D-60101-1101	(Elektrische Antriebstechnik Grundlagen)		2 PL			
	Electric Drive Technology, Advanced	2/1/2		5 th year	German	7
1011-10105-0	(Elektrische Antriebstechnik Vertiefung)	2 PL				
	Process Control Engineering, Basics		4/0/2	4 th year	German	7
D-00101-1101	(Prozessinformationsverarbeitung Grundlagen)		2 PL			
	Process Control Engineering, Advanced	2/4/0		5 th year	German	7
1011-10100-0	(Prozessinformationsverarbeitung Vertiefung)	2 PL				
	Design Techniques, Basics	2/1/0	2/1/0	4 th and 5 th year	German	7
IVI I -IVIU / -G	Entwurfstechniken Grundlagen	PL	PL			
	Design Techniques, Advensed	2/1/0	2/1/0	4 th and 5 th year	German	
MT-M07-V	Entwurfeteebniken Vertiefung)	PL	PL			7
		2 nd part	1 st part			

Elective modules, group "methods"

The numbers in the columns "winter semester" and "summer semester" indicate in which semester the respective module is delivered. Further, these numbers refer to the SWS for the respective module. The 1^{st} number refers to the SWS for the lecture, the 2^{nd} to the SWS for the tutorial and the 3^{rd} to the SWS for the lab course (Please see here for more details). | PL = Prüfungsleistung/assessment

Elective modules, group "applications"

Module number	Module name	Winter semester	Summer semester	Level	Language of instruction	ECTS-credits
MT-A01-G	Automotive Vehicle Engineering, Basics (Kraftfahrzeugtechnik Grundlagen)	2/1/0 PL 2 nd part	2/0/0 PL 1 st part	4 th and 5 th year	German	7
MT-A01-V	Automotive Vehicle Engineering, Advanced (Kraftfahrzeugtechnik Vertiefung)	2/0/0 PL 2 nd part	4/1/0 2 PL 1 st part	4 th and 5 th year	German	7
MT-A02-G	Railway Vehicle Engineering, Basics (Schienenfahrzeugtechnik Grundlagen)		4/0/0 PL	4 th year	German	7
MT-A02-V	Railway Vehicle Engineering, Advanced (Schienenfahrzeugtechnik Vertiefung)	3/1/0 PL		5 th year	German	7
MT-A03-G	Combustion Engines, Basics (Verbrennungsmotoren Grundlagen)		3/2/1 3 PL	4 th year	German	7
MT-A03-V	Combustion Engines, Advanced (Verbrennungsmotoren Vertiefung)	4/0/1 2 PL		5 th year	German	7
MT-A04-G	Motion Control, Basics (<i>Bewegungssteuerung Grundlagen</i>)		4/2/0 PL	4 th year	German	7
MT-A04-V	Motion Control, Advanced (Bewegungssteuerung Vertiefung)	2/1/2 2 PL		5 th year	German	7
MT-A05-G	Aerospace Engineering, Basics (Luft- und Raumfahrttechnik Grundlagen)		3/3/0 2 PL	4 th year	German	7
MT-A05-V	Aerospace Engineering, Advanced (<i>Luft- und Raumfahrttechnik Vertiefung</i>)	4/1/0 2 PL		5 th year	German	7
MT-A06-G	Mobile Work Machines, Basics (<i>Mobile Arbeitsmaschinen Grundlagen</i>)		4/2/0 2 PL	4 th year	German	7
MT-A06-V	Mobile Work Machines, Advanced (Mobile Arbeitsmaschinen Vertiefung)	2/2/2 2 PL		5 th year	German	7
MT-A07-G	Motion Controlled Machine Systems, Basics (Bewegungsgeführte Maschinensysteme Grundlagen)		3/2/0 PL	4 th year	German	7
MT-A07-V	Motion Controlled Machine Systems, Advanced (Bewegungsgeführte Maschinensysteme Vertiefung)	2/1/2 2 PL		5 th year	German	7
MT-A08-G	Robotics, Basics (Robotik Grundlagen)		5/1/0 2 PL	4 th year	German	7
MT-A08-V	Robotics, Advanced	3/2/2		5 th year	German	7

	(Robotik Vertiefung)	2 PL				
MT-A09-G	Specific Production Methods, Basics (Spezielle Fertigungsmethoden Grundlagen)		3/1/1 2 PL	4 th year	German	7
MT-A09-V	Specific Production Methods, Advanced (Spezielle Fertigungsmethoden Vertiefung)	3/1/2 3 PL		5 th year	German	7
MT-A10-G	Electronic Systems and Technolgy, Basics (<i>Gerätetechnik Grundlagen</i>)		2/4/0 PL	4 th year	German	7
MT-A10-V	Electronic Systems and Technolgy, Advanced (<i>Gerätetechnik Vertiefung</i>)	4/2/0 2 PL		5 th year	German	7
MT-A11-G	Micro-Electro-Mechanical-Systems, Basics (<i>Mikro-Elektro-Mechanische Systeme Grundlagen</i>)		4/3/0 PL	4 th year	German	7
MT-A11-V	Micro-Electro-Mechanical-Systems, Advanced (<i>Mikro-Elektro-Mechanische Systeme Vertiefung</i>)	2/0/2 2 PL 2 nd part	2/0/0 PL 1 st part	4 th and 5 th year	German	7
MT-A12-G	Biomedical Engineering, Basics (<i>Biomedizintechnik Grundlagen</i>)		5/1/0 PL	4 th year	German	7
MT-A12-V	Biomedical Engineering, Advanced (<i>Biomedizintechnik Vertiefung</i>)	3/2/1 2 PL		5 th year	German	7
MT-A13-G	Sensors and Measuring Systems, Basics (Sensoren und Messsysteme Grundlagen)		4/2/0 3 PL	4 th year	German	7
MT-A13-V	Sensors and Measuring Systems, Advanced (Sensoren und Messsysteme Vertiefung)	2/1/2 3 PL		5 th year	German	7
MT-A14-G	Electrified Mobility (<i>Elektrifizierte Mobilität</i>)	3/0/2 2 PL		5 th year	German	7

The numbers in the columns "winter semester" and "summer semester" indicate in which semester the respective module is delivered. Further, these numbers refer to the SWS for the respective module. The 1st number refers to the SWS for the lecture, the 2nd to the SWS for the tutorial and the 3rd to the SWS for the lab course (Please see here for more details).

PL = *Prüfungsleistung*/assessment

Module descriptions

Module number	Module name	Lecturer in charge		
ET-12 01 02 (MT-12 01 02 RES-G11)	Automation Engineering and Measurement (Automatisierungs- und Messtechnik)	Prof. Dr. techn. K. Janschek		
Contents and objectives	Content: 1. Fundamentals of automation engineering wit the focus on behavioural description, control design in the frequency domain, digital control loops, industrial standard controllers, discrete-event control systems, elementary control concepts and automation technologies 2. Fundamentals of measuring with the focus on measurement principles, SI units, analogue measurement technology (fundamentals measurement bridges, lock-in measurement technology)			
	demodulation technique, measurement of transit times and distances and statistical measurement data evaluation (calculation of standard deviation and confidence intervals, propagation of the measuremen uncertainty, setup of uncertainty budget for measurement)			
	Objectives: Having successfully completed the modules, the students			
	 understand fundamental behaviour description forms for technical systems. Further, they master the basic theoretical and computer- aided handling of linear, time-invariant and discrete-event behav- iour models for the control of technical systems. They are able to design control algorithms for simple tasks. are familiar with the principles of analogue measuring procedures and are able to evaluate measurement results by using statistical methods. They are able to calculate and interpret random and systematic measuring uncertainties. 			
Modes of teaching and learning	3 SWS lecture, 2 SWS tutorial, and	self-study		
Prerequisites	Competences acquired in basic mo	odules on Physics		
Usability	This module is a compulsory module within the <i>Diplom</i> degree programmes in Electrical Engineering, Mechatronics and Renewable Energy Systems.			
Requirements for the award of ECTS credit points	The credit points are earned if the module assessment is passed. The module assessment consists of a written exam of 210 minutes.			
ECTS credit points and grades	5 ECTS credit points The module grade is the grade of the written exam.			
Frequency	annually, in the summer semester			

Module descriptions – basic studies (1st–4th semester)

Workload	150 hours
Duration	1 semester

Module number	Module name	Lecturer in charge			
MT-12 01 23	Micro Computer Engineering /Embedded Controller	Prof. DrIng. habil. L. Urbas			
	(Mikrorechentechnik / Embedded Controller)				
Contents and objectives	 Content: Computer architecture, instruction set architecture Coupling with industrial processes Instruction set oriented programming (Assembler) Efficient and portable programming of data structures and algorithms in a typed procedural language (e.g. C) Object-oriented analysis, design and generic implementation of data structures and algorithms on the basis of examples of Electrical Engineering and Information Technology (e.g. C++) advanced knowledge of principles and possible fields of applications and employment of embedded controller architectures 				
	 Objectives: The students: 1. are able to formulate and implement basic data structures and algorithms in a procedural language in an instruction set archi- tecture specific language (assembler) as well as portable in a higher level programming language (e.g. C) 2. are able to analyse complex issues by using object-oriented structuring and modelling methods, to transfer them in algo- rithms and data structures and to implement them in a suita- ble language (e.g. C++) 3. know the interactions of different architectural concepts of controller cores with peripheral units in the overall system design. They are able to recognize and to evaluate the poten- tial of different concepts, to design systems with embedded controllers and to program embedded controllers with their 				
Modes of teaching and learning	5 SWS lecture, 4 SWS lab course, and se	elf-study			
Prerequisites	Competences acquired in basic modules	on computer science			
Usability	This module is a compulsory module with programme in Mechatronics.	hin the <i>Diplom</i> degree			
Requirements for the award of ECTS credit points	The credit points are earned if the module assessment is passed. The module assessment consists of graded lab course (PL1) on objective 1 and 2 as well as a written exam (PL2, 120 min.) and a lab course (PL3, not graded) on objective 3.				
ECTS credit points and grades	10 ECTS credit points The module grade M is calculated as follows: M = (3PL1 + 2PL2)/5				
Frequency	Annually, module starts in the winter sen	nester			
Workload	300 hours				
Duration	2 semesters				

Module number	Module name	Lecturer in charge		
MT-12 02 21 RES-G10	Circuit Design (<i>Schaltungstechnik</i>)	PD DrIng. habil. V. Müller		
Contents and objectivesContent: The module deals with the mode of operation, dimensi- characteristics of electronic circuits of analogue and dig technology. Based on the circuit properties of diodes and transistors, much attention is paid to the analysis of basi in the low frequency range.Analysis of basic circuits in the low frequency range on 				
	Objectives: The students are able to dimension simple transistor circuits. They are able to analyse complex circuits on the basis of fam properties of elementary circuits, they are familiar with the methodology of the design of amplifier circuits in the time an frequency domain. Further, they master the analysis and desi of digital control and signal processing based on combinatoria and sequential circuit assemblies.			
Modes of teaching and learning	2 SWS lecture, 1 SWS tutorial, and self-study			
Prerequisites	Competences acquired in basic modules on Physics as well as in modules such as MT-12 08 01 Fundamentals of Electrical Engineering, MT-12 09 01 Systems Theorie and MT-12 01 02 Automation Engineering and Measurement			
Usability	This module is a compulsory mod programmes in Mechatronics and	lule within the <i>Diplom</i> degree I Renewable Energy Systems.		
Requirements for the award of ECTS credit points	The credit points are earned if the module assessment is passed. The module assessment is a written exam (120 min).			
ECTS credit points and grades	4 ECTS credit points The module grade is the grade of the written exam.			
Frequency	Annually, in the winter semester			
Workload	120 hours			
Duration	1 semester			

Module number	Module name	Lecturer in charge				
MT-12 02 22	Power Electronics	Prof. DrIng. St. Bernet				
(RES-H05)	(Leistungselektronik)					
Contents and	Content:					
objectives	1. Structure and mode of operation of active power semiconduc- tor components and power diodes,					
	2. analysis of the functioning of line and self-guided circuits,					
	3. simplification of the systems under consideration for the purpose of simulation,					
	4. interpretation of the core components of the power electronics subsystem,					
	5. modulation methods for contro control elements	lling power electronic regulator				
	Objectives:					
	The students					
	 are familiar with the mode of operation and methods for the analysis of basic power electronic topologies and semiconductor components 					
	2. are able to select and dimension appropriate circuits. Fur- ther, they are able to select and interpret power semicon- ductor devices for power electronic systems in typical ap- plications.					
	3. are able to verify the basic function of the observed pow- er electronic subsystem with means of simulation tools.					
Modes of teaching and learning	2 SWS lecture, 1 SWS tutorial, 1 project, and self-study					
Prerequisites	Competences acquired in module mentals of Electrical Engineering	s such as MT-12 08 01 Funda-				
Usability	This module is a compulsory mod programmes in Mechatronics and	ule within the <i>Diplom</i> degree Renewable Energy Systems.				
Requirements for the award of ECTS credit points	The credit points are earned if the module assessment is passed. The module assessment consists of a project (P, 10 weeks) and a written exam (K, 120 min).					
ECTS credit points and grades	4 ECTS credit points The module grade M is calculated M= (4K + P)/5	as follows:				
Frequency	Annually, in the winter semester					
Workload	120 hours					
Duration	1 semester					

Module number	Module name	Lecturer in charge		
ET-12 04 01 (MT-12 04 01 RES-G09)	Electrical Power Engineering (<i>Elektroenergietechnik</i>)	Prof. DrIng. P. Schegner		
Contents and objectives	 Contents: Generation, transformation, transport, distribution and usage of electrical energy Structure of electrical energy supply Fundamentals of three-phase power and their mathematical description Electrical safety and coordination of stress and strength Fundamentals of power electronics Electromechanic energy converters Objectives: Having successfully completed this module, the students are able to undertake basic calculations and measurements for simple three-phase systems. They are familiar with principles of safety measures in electrical networks. They are able to calculate simple insulation configurations. The students are familiar with the fundamental mode of operation of power electronic circuits. 			
	electrical machines and three-phase transformers.			
Modes of teaching and learning	3 SWS lecture, 1 SWS tutorial, 1 SWS lab course, and self-study			
Prerequisites	None			
Usability	The module is a compulsory module for the basic studies in the <i>Diplom</i> programmes in Electrical Engineering, Mechatronics, and Renewable Energy Systems. It provides various tools for the passing of the modules within the the main studies.			
Requirements for the award of ECTS credit points	The credit points are earned if the module assessment is passed. The module assessment consists of a written exam of 150 min. (PL1) and a lab course (PL2). Both elements of assessment have to be passed.			
ECTS credit points and grades	5 ECTS credit points The module M grade is calculated as follows: M = (2PL1 + PL2)/3			
Frequency	annually, in the winter semester			
Workload	150 hours			
Duration	2 semesters			

Module number	Module name	Lecturer in charge		
ET-12 05 01 (MT-12 05 01 RES-G19)	Electronic Systems Design (Geräteentwicklung)	Prof. DrIng. habil. J. Lienig		
Contents and	Content:			
objectives	The module focuses on constructional fundamentals with tech- nical illustration and CAD, device design and device requirements, reliability of electronic systems, thermal dimensioning and electromagnetic compatibility.			
	Objectives:			
	Students completing this module obtain basic knowledge for the construction and development of electronic assembly groups and devices. They will have an understanding of engineering tasks as well as related requirements. Thus, the students will be enabled to follow engineering principles while developing and constructing such products under consideration of all relevant aspects.			
Modes of teaching and learning	2 SWS lectures, 2 SWS tutorial, and self-study			
Prerequisites	none			
Usability	This module is a compulsory module for the basic studies within the <i>Diplom</i> programmes in Electrical Engineering, Mechatronics, and Renewable Energy Systems.			
Requirements for the award of ECTS credit points	The credit points are obtained by passing the module assessment. This assessment is conducted as a written exam (120 minutes).			
ECTS credit points 4 ECTS credit points				
and grades	The module grade is the grade of	the written exam.		
Frequency	annually, during the summer semester			
Workload	120 hours			
Duration	1 semester			

Module number	Module name	Lecturer in charge
ET-12 08 01 (MT-12 08 01 RES-G06)	Fundamentals of Electrical Engineering (<i>Grundlagen der Elektrotechnik</i>)	Prof. DrIng. habil. R. Merker
Contents and objectives	The calculation of direct current (DC) electrical networks Objectives: Having successfully completed this module, the students have basic knowledge of electrical engineering and electronics and master methods for solving electrical engineering problems as a basis for further modules. The focus is on resistive circuits. Students are able to describe linear and nonlinear two poles and to consider the temperature dependence of their parameters, to analyze systematically electrical DC circuits and to apply simplified analysis methods (two pole theory, superposition theorem). They are able to calculate the power dissipation in circuits as well as to analyze and determine their thermal behaviour.	
Modes of teaching and learning	2 SWS lecture, 2 SWS tutorial, and self-study	
Prerequisites	Basic knowledge in mathematics and physics f	rom higher education
Usability	The module is a compulsory module of the bas degree programmes in Mechatronics, and Ren designed to enable the students to pass the m Dynamic Networks.	sic studies in the <i>Diplom</i> ewable Energy Systems. It is odule exam of the module
Requirements for the award of ECTS credit points	The credit points are earned if the module asse module assessment consists of a written exan	essment is passed. The n of 150 minutes.
ECTS credit points	6 ECTS credit points	
and grades	The module grade is the grade of the written e	xam.
Frequency	annually, in the winter semester	
Workload	180 hours	
Duration	1 semester	

Module number	Module name	Lecturer in charge
MT-12 08 23	Electric and Magnetic Fields	Prof. DrIng. habil.
(RES-G07)	(Elektrische und magnetische Felder)	R. Merker
Contents and	Content:	
objectives	The modules deals with the fundamer magnetic fields	nals for calculating basic electric and
	Objectives: After successfully completing this module, the students are able to master fundamental terms, concepts and methods for the calculation of basic electric and magnetic fields. They are able to calculate the stored field energy, force effects, and induction phenomena of magnetic fields. They are familiar with the basic principles of the electronic components resistor, capacitor, inductor, and transformer.	
Modes of teaching and learning	2 SWS lecture, 2 SWS tutorial, and self-study	
Prerequisites	Competences acquired in modules on Principles of Algebra and Analysis and basic modules on Physics as well as competences acquired in modules such as ET-12 08 01 Fundamentals of Electrical Engineering	
Usability	The module is a compulsory module of the basic studies in the <i>Diplom</i> degree programmes in Mechatronics and Renewable Energy Systems. It is designed to enable the students to pass the module exam of the module <i>Dynamic Networks</i> .	
Requirements for the award of ECTS credit points	The credit points are earned if the mo module assessment consists of a writ	dule assessment is passed. The tten exam of 150 minutes.
ECTS credit points	4 ECTS credit points	
and grades	The module grade is the grade of the	written exam.
Frequency	annually, in the summer semester	
Workload	120 hours	
Duration	1 semester	

Module number	Module name	Lecturer in charge
MT-12 08 03	Dynamic Networks	Prof. Dr. phil. nat. habil.
(RES-G08)		
Contents and objectives	Content: The calculation of linear dynamic networks and measurements on electron- ic circuits, also with computer-controlled measurement technology	
	Objectives: After completing this module, students master methods for the analysis of linear dynamic circuits excited by periodic signals or in the transient behaviour of stationary states. They are able to describe, to model and to calculate linear two-ports. They are able to determine the transfer function, to analyze and graph the behaviour in the frequency domain, to calculate simple filters. They master phasor representations and frequency response loci. The students also master the handling of electronic measuring devices and computer-controlled measuring technology. They have extensive skills and experience in the design and execution of experiments, in the evalua- tion and presentation of test and measurement results, in the assessment of measurement methods and measurement uncertainties as well as in writing a report/taking of minutes.	
Modes of teaching and learning		
Prerequisites	Competences acquired in modules on Principles of Algebra and Analysis, Multivariable Calculus and basic modules on Physics as well as compe- tences acquired in modules such as ET-12 08 01 Fundamentals of Electrical Engineering	
Usability	The module is a compulsory module within the basic studies in the <i>Diplom</i> programme in Mechatronics and Renewable Energy Systems. It is designed to enable the students to pass the basic studies.	
Requirements for the award of ECTS credit points	The credit points are awarded if the module assessment is passed. The module assessment consists of a written exam of 150 minutes (PL1) and a lab course (PL2). Both assessments must be passed.	
ECTS credit points	7 ECTS credit points	
and grades	The module grade M is calculated	as follows:
	M = (2PL1 + PL2)/3	
Frequency	annually, starting in the winter ser	nester
Workload	210 hours	
Duration	2 semester	

Module number	Module name	Lecturer in charge
MT-12 08 25	Measurement and Sensor Tech- niques/Actuators (for module part <i>Mess- und Sensortech- nik</i> , for module part <i>Aktorik</i>)	Prof. DrIng. habil. J. Czarske
Contents and	Content:	
objectives	Time or frequency measurement with digital counters; analogue to digital conversion; noise as a stochastic process; regression analysis; sensors for electrical and non-electrical quantities; motion control; electrical actuator; operating principle, project planning, modelling of fluidic main components and systems	
	Objectives:	
	Having successfully finished this module, th the methodological fundamentals of	e students master
	 principles of digital measurement tec cal sensors for detecting positions, v temperatures as well as calculation r urement uncertainty using statistical siderung noise processes. 	chniques and electri- velocities, forces and methods for meas- methods and con-
	 principles and calculation methods for design of electrical and hydraulic drive for motion control. 	or characterizing the ves as basic elements
Modes of teaching and learning	4 SWS lecture, 1 SWS tutorial, 2 SWS lab c	ourse, and self-study
Prerequisites	Competences acquired in basic modules on modules such as MT-12 04 01 Electrical Pov 12 09 01 Systems Theory, and MT-12 01 02 neering and Measurement	Physics as well as in wer Engineering, MT- ? Automation Engi-
Usability	The module is a compulsory module within the <i>Diplom</i> programme in Mechatronics.	the basic studies in
Requirements for the award of ECTS credit points	The credit points are awarded if the module passed. The module assessment consists o 120 min.) and a lab course (P1) on objective exam (K2, 120 min.) and a lab course (P2) or	assessment is f a written exam (K1, 1 as well as a written n objective 2.
ECTS credit points and grades	The module grade M is calculated as follows M = (4K1 + P1 + 2K2 + P2)/8	S:
Frequency	Annually, starting in the winter semester	
Workload	270 Stunden	
Duration	2 semesters	

Module number	Module name	Lecturer in charge
ET-12 09 01	Systems Theory	Prof. DrIng.
(MT-12 09 01)	(Systemtheorie)	E. Jorswieck
Contents and	Content:	
objectives	The module deals with the fundar focus on digital systems, analogu analogue time-discrete systems a	mentals of systems theory with e time-continuous systems, ind selected applications.
	Objectives:	
	Having successfully completed the module, the students are familiar with the regulative significance of the system concept in engineering. They master the application of signal transformations for the effective description of the system behaviour in the area of image. In particular, they are able to apply the approach of system theory to important areas of their own discipline, e.g. to the calculation of electrical networks in the case of non-sinusoidal or stochastic excitation and to the realization of systems with desired transfer behaviour in time-discrete form (digital filter).	
Modes of teaching and learning	4 SWS lecture and 3 SWS tutorial and self-study	
Prerequisites	Competences acquired in modules on Principles of Algebra and Analysis and on Multivariable Calculus	
	Competences acquired in module tals of Electrical Engineering, and Magnetic Fields	es such MT-12 08 01 Fundamen- MT-12 08 23 Electric and
Usability	The module is a compulsory mod the <i>Diplom</i> programme in Electric	ule within the basic studies for al Engineering and Mechatronics.
Requirements for the award of ECTS credit points	The credit points are awarded when the module assessment is passed. The module assessment is a written exam of 120 minutes.	
ECTS credit points	7 ECTS credit points	
and grades	The module grade is the grade of	the written exam.
Frequency	Annually, beginning in the winter	semester
Workload	210 hours	
Duration	2 semesters	

Module number	Module name	Lecturer in charge
MT-13 01 02	Fundamentals of Kinematics and Kinetics	Prof. DrIng. habil.
(RES-G15)	(Grundlagen der Kinematik und Kinetik)	V. Ulbricht
Contents and	Content:	
objectives	The module focuses on:	
	- Kinematics of the point and the rigid bo	dy
	- Kinetics of rigid bodies in translation	
	 Kinetics of a rigid body with arbitrary m and angular momentum balance (includ static interpretation of the momentum motion 	otion, momentum ling cutting principle, balances, free planar
	- Vibrations of systems with different de	gree of freedom
	- Lagrange equations of the second kind	
	- Spatial rotor movements	
	Objectives:	
	The students are familiar with analytical methorized body motions, including the causative load	ds for the analysis of ds.
Modes of teaching and learning	2 SWS lecture, 2 SWS tutorial, and self-study	
Prerequisites	Knowledge in the fields of of Algebra and Anal ble Calculus as well as competences that can l modules such as MT-13 00 01 Materials and E ics	ysis and Multivaria- be acquired in ngineering Mechan-
Usability	The module is a compulsory module within the the <i>Diplom</i> programme in Mechatronics and R Systems.	e basic studies for enewable Energy
Requirements for the award of ECTS credit points	The credit points are awarded when the modu passed. The module assessment is a written e	le assessment is exam of 120 minutes.
ECTS credit points and grades	5 ECTS credit points The module grade is the grade of the written e	xam.
Frequency	Annually, in the winter semester	
Workload	150 hours	
Duration	1 semester	

Module number	Module name	Lecturer in charge	
MT-13 01 04	Kinematics and Materials of Mechanics, Advanced (Vertiefung Kinematik und Festigkeitslehre)	Prof. DrIng. M. Beitelschmidt	
Contents and	Content:		
objectives The module deals with in-depth topics of materials of in particular energy methods, multiaxial stress states elastic problems, deepening of the spatial kinematics of the rigid body as well as an introduction to the metechnique.		opics of materials of mechanics, Itiaxial stress states and linear e spatial kinematics and kinetics roduction to the mechanics	
	Objectives:		
	Having successfully completed th the spatial statics and the general They are familiar with general stat master energy methods such as (insight into the method of finite e calculate rotationally symmetric s these by means of strength theor with the general basic equations of students master the description of coordinate systems and rigid bodi mation matrices and vectors. The equations of motion of rigid body fundamentals of design, structure planar mechanisms.	aving successfully completed this module, the students master e spatial statics and the general theory of bending of the beam. hey are familiar with general states of stress and strain. They aster energy methods such as Castigliano's theorem and have an sight into the method of finite elements. They are able to lculate rotationally symmetric states of stress and to evaluate ese by means of strength theories. Furthermore, they are familiar ith the general basic equations of linear elasticity theory. The udents master the description of the spatial kinematics of bordinate systems and rigid bodies with the help of transfor- ation matrices and vectors. They are able to set up and apply quations of motion of rigid body motion. The students master the ndamentals of design, structure and kinematic analysis of simple anar mechanisms.	
Modes of teaching and learning	3 SWS lecture, 3 SWS tutorial, and self-study		
Prerequisites	Knowledge in the fields of Physics, Algebra and Analysis and Multivariable Calculus as well as competences that can be acquired in modules such as MT-13 00 01 Materials and Engineering Mechanics and MT-13 01 03 Fundamentals of Kinematics and Kinetics		
Usability	The module is a compulsory mod in Mechatronics.	ule within the <i>Diplom</i> programme	
Requirements for the award of ECTS credit points	The credit points are awarded when the module assessment is passed. The module assessment is a written exam of 180 minutes.		
ECTS credit points	7 ECTS credit points		
and grades	I ne module grade is the grade of	the written exam.	
Frequency	Annually, in the summer semeste		
Workload	210 hours		
Duration	1 semester		

Module number	Module name	Lecturer in charge	
MT-13 12 01 (RES-G20)	Construction and Manufacturing Engineering (<i>Konstruktion und Fertigungs-</i> <i>technik</i>)	Prof. DrIng. B. Schlecht	
Contents and objectives	Content:		
•	bearing capacity of simple components and also includes the variety of manufacturing processes in mechanical engineering, vehicle and plant construction by means of product and process examples. It integrates engineering thinking and working metho in the manufacturing process as well as the interaction with oth disciplines.		
	Objectives:		
	Having successfully completed th	is module, the students	
	 are familiar with and mast tals for the development, of of mechanical engineering handling CAD systems. Th calculate the application ar such as axes and shafts, e mode shaft-hub connectio and spur gearing. 	er the methodological fundamen- design, manufacturing and testing products as well as have skills in ney are able to assess, select and reas of typical machine elements elemental compounds, positive- ns, rolling bearings, plain bearings	
	 know which divisions of a manufacturing of products product determine the ma as how decisions regardin know the manufacturing p principles, the technical ec parameters that are to be 	a company are involved in the ts, which requirements of the nanufacturing possibilities as well ing production are derived. They processes, in particular its active equipment and the technological e determined.	
Modes of teaching and learning	5 SWS lecture, 3 SWS tutorial, an	d self-study	
Prerequisites	Knowledge in the fields of Physic Multivariable Calculus as well as o in modules such as MT-13 00 01 Mechanics and MT-12 05 01 Elec	s, Algebra and Analysis and competences that can be acquired Materials and Engineering ctronic Systems Design	
Usability	The module is a compulsory mod in Mechatronics and Renewable E	ule within the <i>Diplom</i> programme Energy Systems.	
Requirements for the award of ECTS credit points	The credit points are awarded if the module assessment consists and an assignment on objective 1 min.) on objective 2. All elements passed.	ne module assessment is passed. of a written exam (K1, 180 min.) as well as a written exam (K2, 90 of assessment have to be	
ECTS credit points and grades	10 ECTS credit points The module grade M is calculated M = (4K1 + 3K2 + 3B)/10	as follows:	
Frequency	Annually, starting in the winter se	mester	
Workload	300 hours		

Duration	2 semesters
----------	-------------

Module number	Module name	Lecturer in charge	
MT-13 01 01	Field Theory (<i>Feldtheorie</i>)	Prof. DrIng. T. Wallmersperger	
Contents and	Content:		
objectives	1. Kinematics of material continua,		
	2. selection of useful field variables,		
	3. global and local balance of mechanics, thermodynamics and electrodynamics,		
	4. theory of material equations,		
	5. examples for solving initial / bo	undary value problems	
	Objectives:		
	Having successfully completed th the fundamental correlations for t mechanical, thermal, electrical and deformable materials as the basis calculations of space and time, wh of components.	successfully completed the module, the students master idamental correlations for the mathematical description of nical, thermal, electrical and magnetic phenomena in able materials as the basis for analytical and numerical tions of space and time, which are essential for the function ponents.	
Modes of teaching and learning	2 SWS lecture, 2 SWS tutorial, and self-study		
Prerequisites	Competences in Physics, Algebra and Analysis, Multivariable Calculus, Function Theory / Partial Differential Equations and Probability Theory as well as competences that can be acquired in modules such as MT-13 00 01 Materials and Engineering Mechan- ics, MT-13 01 02 Fundamentals of Kinematics and Kinetics, MT-13 01 04 Kinematics and Materials of Mechanics, Advanced, MT-12 08 01 Fundamentals of Electrical Engineering and MT-12-08 23 Electrical and Magnetic Fields		
Usability	The module is a compulsory module within the <i>Diplom</i> programme in Mechatronics.		
Requirements for the award of ECTS credit points	The credit points are awarded when the module assessment is passed. The module assessment is a written exam (150 min.).		
ECTS credit points	5 ECTS credit points		
	A neurolly in the surrous state of	the written exam.	
Frequency	Annually, in the summer semeste		
Workload	150 hours		
Duration	1 semester		

Module number	Module name	Lecturer in charge
MT-13 01 02	Numerical Methods/System Dynamics (<i>Numerische Methoden/Systemdynamik</i>)	Prof. DrIng. M. Beitelschmidt
Contents and	Content:	
objectives	Numerical methods - FEM/REM, system dy exercises for the application of FEM and ex	namics and practical perimental mechanics
	Objectives:	
	 have knowledge and skills for the approximate solution of boundary value problems and coupled initial-boundary value problems based on the mathematical methods of weighted residuals, the weak and inverse formulation. They are famil- iar with the necessary algorithms for algebraing and dis- cretisation, including the associated numerical methods. master the system theoretic fundamentals of mechanic systems and their modelling with structure models. They know special problems on simple multi-body-mechanism with their specifics. have an overview of the theory of linear oscillations with finite degrees of freedom, of the treatment of free and fet- tered torsional frequency response system of the drive dy- namics, of bending vibrations with consideration of the gy- roscopic effect. They are familiar with the fundamentals of modal analysis as well as special procedures for estimating natural frequencies and mode shapes. have practical skills to apply modern methods of measure- ment and FEM software to determine and simulate the be- haviour of mechanical structures under static and dynamic loading. 	
Modes of teaching and learning	4 SWS lecture, 2 SWS tutorial, 1 SWS lab c	ourse, and self-study
Prerequisites	Competences in the fields of Physics, Algel Multivariable Calculus, Function Theory / Pa Equations and Probability Theory as well as be acquired in modules such as MT-13 00 0 Engineering Mechanics and MT-12 08 01 F Electrical Engineering	ora and Analysis, rtial Differential competences that can 1 Materials and undamentals of
Usability	The module is a compulsory module within in Mechatronics.	the <i>Diplom</i> programme
Requirements for the award of ECTS credit points	The credit points are awarded when the mo passed. The module assessment consists of 120 min.) on objective 1, a written exam (K2 tive 2 and 3 and two lab course reports (P) of	dule assessment is of a written exam (K1, 2, 120 min.) on objec- on objective 4.
ECTS credit points and grades	9 ECTS credit points The module grade M is calculated as follow M = (2K1 + 2K2 + P)/5	S:
Frequency	Annually, beginning in the winter semester	

Workload	270 hours
Duration	2 semesters

Module number	Module name	Lecturer in charge
MT-12 13 01	Control of Continuous-Time Processes and Discrete Event Systems	Prof. DrIng. habil. K. Röbenack
	(Regelungstechnik und Ereig- nisdiskrete Systeme)	
Contents and	Content:	
objectives	Fundamentals of control of linear systems (basic structures of control, signal and system descriptions, stability analysis, controller design in the frequency range), fundamentals of behavioural description of discrete event systems (signal-based, finite automata, Petri nets) and for the design of discrete event control systems (bottom-up, top-down automata and Petri nets), examples of laboratory-based control systems	
	Objectives:	
	Having successfully completed th	e module, the students
	 understand the basic struct to describe linear systems these with regard to their to design single-loop linear 	ture of controls. They are able mathematically and to analyse stability. Further, they are able controllers.
	 understand fundamental b discrete event systems, th computer-assisted handlin models and are able to des event control algorithms for 	ehavioural description forms for ney master the theoretical and g of discrete event behaviour sign independently discrete or manageable tasks.
	are able to solve control pr physical systems.	oblems on real technical-
Modes of teaching and learning	5 SWS lecture, 2 SWS tutorial, 1 S	SWS lab course, and self-study
Prerequisites	Competences acquired in module tems Theory, and MT-12 01 02 Au Measurement	s such as MT-12 09 01 Sys- utomation Engineering and
Usability	The module is a compulsory mode gramme in Mechatronics.	ule within the <i>Diplom</i> pro-
Requirements for the award of ECTS credit points	The credit points are awarded when the module assessment is passed. The module assessment consists of a written exam (K1, 120 min.) on objective 1, a written exam (K2, 90 min.) on objective 2 and a lab course (P) on objective 3.	
ECTS credit points and grades	9 ECTS credit points The module grade M is calculated M = (4K1 + 4K2 + P)/ 9	as follows:
Frequency	Annually, starting in the winter semester	
Workload	270	
Duration	2 semesters	

Module number	Module name	Lecturer in charge
ET-13 00 01 (MT-13 00 01 RES-G14)	Materials and Engineering Mechanics (<i>Werkstoffe und Technische Mechanik</i>)	Prof. DrIng. habil. J. Bauch
Contents and objectives	 Content: Materials with focus on: Overview of materials in Electrical atronics, practical examples Fundamentals of materials science Status diagrams and alloys Conductor, semiconductor, dielect rials Materials testing and diagnostics Statics and science of strength of material Rigid bodies Independent loads, power and torce Balance of planar structures (balaniments) Tensile, compressive and shear strimentary dimensioning concepts Torsion of bars with circular crossing of prismatic beams, strength the Objectives: Having successfully completed this moduli familiar with the interrelation between the the macroscopic properties and the practic atomic structure, the bond type, the crysta structure as well as the microstructure and material testing. Further, they are familiar laws of statics as well as the simplified int loads, material properties and loads of cont to these topics, they master calculation midesign and strength evaluation. 	Engineering and Mech- ric and magnetic mate- ls with focus on: que, method of sections ces of forces and mo- resses including ele- section, straight bend- heories and bar buckling le, the students are microscopic structure, cal aspects of applica- al principles of the al structure, the real d are familiar with with the fundamental cerrelation between nponents. With regard ethods of the structural
Modes of teaching and learning	4 SWS lecture, 3 SWS tutorial, and self-st	udy
Prerequisites	Knowledge in mathematics and physics from higher education	
Usability	The module is a compulsory module within the basic studies of the <i>Diplom</i> programme in Mechatronics, Electrical Engineering and Renewable Energy Systems.	
Requirements for the award of ECTS credit points	The credit points are awarded when the module assessment is passed. The module assessment consists of a written exam of 90 min. (K1) and a written exam of 120 min. (K2, 120 min.). Both elements of assessment must be passed.	

ECTS credit points and grades	7 ECTS credit points The module grade M is calculated as follows: M = (3PL1 + 4PL2)/7
Frequency	Annually, starting in the winter semester
Workload	210 hours
Duration	2 semesters

Module number	Module name	Lecturer in charge
MT-M01-G	Multi Body Systems, Basics	Prof. DrIng.
	(Mehrkörpersysteme, Grundlagen)	M. Beitelschmidt
Contents and objectives	The method of multi-body system simulation is an established technique to calculate large movements of mechanical systems consisting of rigid and elastic bodies in the time domain. It is applied in general mechanical engineering, the automotive and aerospace engineering. The coupling with control technology is required in mechatronic systems in particular.	
	The students	
	 master the methodology of movement equations of multi body systems as well as their computer-assisted imple- mentation for simple special cases 	
	are familiar with the various a ulation that are applied in con	lgorithms of multi body sim- nmercial programmes and
	 understand the theoretical function body systems and are able to FE models for simulation in n 	ndamentals of elastic multi prepare elastic bodies from nulti body programmes.
Modes of teaching and learning	3 SWS lecture, 2 SWS tutorial, and self-study	
Prerequisites	Competences in the field of Engineering Mechanics that can be acquired in modules such as MT-13 00 01 Materials and Engi- neering Mechanics, MT-13 01 03 Fundamentals of Kinematics and Kinetics, and MT-13 01 02 Numerical Methods/System Dynamics	
	Competences in Principles of Algebr Calculus, Function Theory / Partial Di ity Theory	a and Analysis, Multivariable fferential Equation, Probabil-
Usability	This module is an elective module of the <i>Diplom</i> programme in Mechatror the module Multi Body Systems, Ad	the group "methods" within hics. It lays the foundation for vanced.
Requirements for the award of ECTS credit points	The credit points are awarded if the module assessment is passed. If more than 15 students register for the module as- sessment, the module assessment is a written exams (180 min.). If 15 students register for the module assessment, the module assessment is an individual oral exam (45 min.).	
ECTS credit points	7 ECTS credit points	
and grades	The module grade is the grade of the assessment.	
Frequency	Annually, in the summer semester	
Workload	210 hours	
Duration	1 semester	

Module number	Module name	Lecturer in charge
MT-M01-V	Multi Body Systems, Advanced (<i>Mehrkörpersysteme, Vertiefung</i>)	Prof. DrIng. M. Beitelschmidt
Contents and objectives	Content: Method of multi-body simulation in order to be able to calculate large movements of mechanical systems of rigid and elastic bodies in the time domain. This established procedure is general- ly used in mechanical engineering as well as vehicle and aero- space engineering. For mechatronic applications, the coupling with control technology as well as with simulation models of other physical domains and the real-time simulation is necessary.	
	Objectives: Having successfully completed the re the methodological fundamentals for engineering of multi body systems, the fundamentals of coupled simulation simulation and are able to implement body systems. They are able to use systems simulation programme, esp create models, to execute simulation results and interpret them.	nodule, the students master r the solution of control they are familiar with the as well as the real-time t controller for simple multi- a commercial multi-body becially to independently in calculations and to prepare
Modes of teaching and learning	3 SWS lecture, 3 SWS tutorial, and self-study	
Prerequisites	Competences in computer science, control and event discrete systems as well as competences that can be acquired on modules such as MT-M01-G Multi Body Systems, Basics	
Usability	This module is an elective module of the group "methods" within the Diplom programme in Mechatronics.	
Requirements for the award of ECTS credit points	The credit points are awarded if the module assessment is passed. If more than 10 students register for the module as- sessment, the assessment is a written exam (K1, 150 min.) and an assignment (PL3). If 10 students or less register for the module assessment, the assessment consists of 2 indivdual oral exams (PL1 and PL2, 30 min. each) and an assignment (PL3).	
ECTS credit points and grades	7 ECTS credit points. The module grade M is calculated as M = (9K1 + PL3)/10 (in the case of m students) or M = (9PL1 + 9PL2 + 2PL3)/20 (in the students or less)	s follows: hore than 10 registered e case of 10 registered
Frequency	Annually, in the winter semester	
Workload	210 hours	
Duration	1 semester	

Module number	Module name	Lecturer in charge
MT-M02-G	Fluid Power Systems, Basics (Fluidtechnische Systeme Grundlagen)	Prof. DrIng. J. Weber
Contents and	Content:	
objectives	System structures and components of modern regulated electro- hydraulic drives, which are used in e.g. presses, plastics ma- chines or machine tools. The necessary control and regulation concepts, the possibilities of control description and the methods for the design of the corresponding control circuits are treated.	
	Furthermore, the structures and components of pneumatic drive systems, which are mainly used for automated handling tasks of industrial goods, are presented. Another focus is the design of process control and their implementation in pneumatic circuits. Particular attention is paid to electropneumatic solutions involving programmable logic controllers (PLCs).	
	Practical experiments on the control of hydraulic and pneumati drives serve to deepen and apply the acquired knowledge. Objectives:	
	After completing the module, the students master the methodi- cal fundamentals for the control and regulation analysis of electrohydraulic and pneumatic drive systems. They are able to design the corresponding control loops. They are able to design sequence control systems and convert them into pneumatic circuits.	
Modes of teaching and learning	2 SWS lecture, 2 SWS tutorial, 1 SWS lab course, and self-study	
Prerequisites	Competences in mathematics (Principles of Algebra and Analysis, Multivariable Calculus), physics, and control	
Usability	This module is an elective module of the group "methods" within the <i>Diplom</i> programme in Mechatronics. It lays the foundation for the module Fluid Power Systems, Advanced.	
Requirements for the award of ECTS credit points	The credit points are awarded if the module assessment is passed. The module assessment consists of two written exams (K1, K2, 120 min. each) and a lab course (P).	
ECTS credit points and grades	7 ECTS credit points The module grade M is calculated as M = (2K1 + 2K2 + P)/5	s follows:
Frequency	Annually, in the summer semester	
Workload	210 hours	
Duration	1 semester	

Module number	Module name	Lecturer in charge
MT-M02-V	Fluid Power Systems, Advanced (<i>Fluidtechnische Systeme</i> <i>Vertiefung</i>)	Prof. DrIng. J. Weber
Contents and	Content:	
objectives	System architectures and components of hydraulic drives and controls in mobile work machines. Methods for the selection of drives that meet the requirements and dimensioning are taught. The focus is on systems of working hydraulics, traction drive systems and steering systems.	
	Due to the increasing use of electro-hydraulic systems in mobile work machines, the module also deals with control, software development and safety aspects.	
	Practical experiments on the functional and energetic behaviour of typical systems of mobile hydraulics as well as on the imple- mentation of control algorithms are carried out to apply and deepen the acquired knowledge	
	Objectives:	
	Having successfully completed this r able	modules, the students will be
	1. to select components and system according to their requirements and as	ns for mobile work machinery to dimension these, as well
2. to assess not only the functional design of the hydrogeneous systems but also necessary aspects of machine safe implement the control of the systems by means of r sors.	design of the hydraulic of machine safety and to ns by means of microproces-	
Modes of teaching and learning	3 SWS lecture, 1 SWS tutorial, 1 SWS lab course, and self-study	
Prerequisites	Competences acquired in modules s Power Systems, Basics	such as MT-M02-G Fluid
	Basic knowledge on the methods of be acquired in modules such as MT- ous-Time Processes and Discrete Ev	control engineering that can 12 13 01 Control of Continu- vent Systems
Usability	This module is an elective module of the <i>Diplom</i> programme in Mechatron	f the group "methods" within nics.
Requirements for the award of ECTS credit points	The credit points are awarded if the module assessment is passed. The module assessment consists of a written exam (K1, 120 min.) on objective 1, a written exam (K2, 90 min.) on objective 2 and a lab course (P) on objective 1 and 2.	
ECTS credit points and grades	7 ECTS credit points The module grade M is calculated as M = (3K1 + K2 + P)/5	s follows:
Frequency	Annually, in the winter semester	
Workload	210 hours	

Duration	1 semester
----------	------------

Module number	Module name	Lecturer in charge
MT-M03-G	Mechanical Construction, Basics (<i>Maschinenkonstruktion</i> <i>Grundlagen</i>)	Prof. DrIng. habil. R. Stelzer
Contents and	Content:	
objectives	The mechanical material behaviour under quasi-static and cyclic loading as well as the application of construction materials at high temperatures and under aggressive media. The focus is on metallic construction materials, their material choices (e.g., high strength, weldability, machinability, formability, castability), and selected material developments for the mechanical, plant and vehicle construction.	
	Furthermore, the module contains the ods for the development of mechanic covers relevant business processes, directive), technology development, industrial property rights, quality associate change management.	ne fundamentals and meth- cal engineering products. It legal foundations (machinery strategic product planning, urance and release and
	The important part is the product de to VDI 2221 (requirements specificat variant generation and evaluation) as development project.	velopment process according tion, functional modelling, well as the realization of a
	Objectives:	
	The students	
	 are familiar with the most im als and the possibilities of inf erties and 	portant construction materi- luencing their material prop-
	 are able to select and apply n development. The students o uct development processes. 	nethods and tools of product an structure and plan prod-
Modes of teaching and learning	4 SWS lecture, 2 SWS lab course, ar	nd self-study
Prerequisites	Knowledge and competences in phy	sics and computer science
	Knowledge and competences that ca such as MT-13 00 01 Materials and B MT-13 12 01 Construction and Manu	an be acquired in modules Engineering Mechanics and Ifacturing Engineering
Usability	This module is an elective module of the <i>Diplom</i> programme in Mechatron the module Mechanical Construction	the group "methods" within nics. It lays the foundation for n, Advanced.
Requirements for the award of ECTS credit points	The credit points are awarded if the module assessment is passed. The module assessment consists of two written exams (K1 on objective 1, K2 on objective 2, 120 min. each), a lab course (P) and an assignment (B).	
ECTS credit points and grades	7 ECTS credit points The module grade M is calculated as M = ((4K1 + P)/5 + (2K2 + P)/3)/2	s follows:
Frequency	Annually starting in the summer ser	nester

Workload	210 hours		
Duration	2 semesters		
Module number	Module name	Lecturer in charge	
-----------------------------------	--	--	--
MT-M03-V	Mechanical Construction, Advanced (<i>Maschinenkonstruktion</i> <i>Vertiefung</i>)	Prof. DrIng. habil. R. Stelzer	
Contents and	Objectives		
odjectives	The focus of the module is on		
	1. "Synthesis and analysis of pro-	duct models" (SAP) and	
	2. Product Data Management (PI	DM)	
	Through SAP, the students are enabled to program functions within a CAD system and to work with the internal data of the CAD model. In particular, models that cannot be generated interactively are to be generated. Furthermore, the students are able to analyze parts and assemblies in an automated manner and to determine information (e.g. manufacturing-relevant dimensions, assembly structures, data from motion simulations). Students can also develop programs to transfer data between the CAD system and other applications. Through PDM, students are enabled to understand and analyze tasks and processes of data management in the development process. Using a PDM system, they are able to check in models generated in CAD, to analyze and contruct document and article structures. Content:		
	 Selected methods and tools for and analysis of CAD models. T tures and functions for manipu of a CAD system. With the hel for the automated generation of existing assemblies are develor velopment of CAD internal fun tween CAD and other software and MathCAD are discussed. 	r the automated synthesis he focus is on data struc- lating the internal 3D model p of an API, programmes of geometry and analysis of pped. In addition to the de- ctions, the interfaces be- e products such as Excel	
	2. Principles and concepts of pro- the control of product and pro- ical engineering. Models and n and administration of product of product structures) as well as a neering-processes (e.g. release are introduced. Emphasis is als PDM in the company, creation models, security aspects, CAD tive engineering. Much importa cluding of recent research. The is practiced.	duct data management for cess complexity in mechan- nethods for the organization data (articles, documents, the management of engi- e and change processes) so on the introduction of of product and process integration and collabora- ance is attached to the in- e handling of a PDM system	
Modes of teaching and learning	3 SWS lecture, 2 SWS tutorial, and se	lf-study	

Prerequisites	Knowledge and competences that can be acquired in modules such as MT-13 12 01 Construction and Manufacturing Engineer- ing and MT-M03-G Mechanical Construction, Basics as well as competences in computer science
Usability	This module is an elective module of the group "methods" within the Diplom programme in Mechatronics.
Requirements for the award of ECTS credit points	The credit points are awarded if the module assessment is passed. The module assessment consists of 2 written exams (K1 on objective 1, K2 on objective 2, 90 min. each exam)
ECTS credit points and grades	7 ECTS credit points The module grade M is calculated as follows: M = (3K1 + 2K2)/5
Frequency	Annually, in the summer semester
Workload	210 hours
Duration	1 semester

Module number	Module name	Lecturer in charge
MT-M04-G	Control, Basics (<i>Regelung und Steuerung Grund-</i> <i>lagen</i>)	Prof. DrIng. habil. K. Röbenack
Contents and objectives	Content: State space methods and sampling control	
	Design and analysis of nonlinear co	ontrol systems
	Objectives:	
	Having successfully completed this module, the students understand the solutions of state space models in time and frequency domain, are familiar with the concepts of controllability and observability and are able to check these properties for given systems. They are able to design state controllers and state observers and understand the fundamentals of sampling control. They can deal with nonlinear control systems, the mathematical analysis of nonlinear systems and the dimensioning of simple controllers for nonlinear systems.	
Modes of teaching and learning	4 SWS lecture, 2 SWS tutorial, and self-study	
Prerequisites	Knowledge and competences in dynamic systems that can be acquired in modules such as MT-12 09 01 Systems Theory and MT-12 13 01 Control of Continuous-Time Processes and Discrete Event Systems	
Usability	This module is an elective module of the group "methods" within the Diplom programme in Mechatronics. It lays the foundation for the module Control, Advanced.	
Requirements for the award of ECTS credit points	The credit points are awarded if the module assessment is passed. The module assessment consists of 2 written exams (K1, K2, 120 min. each).	
ECTS credit points 7 ECTS credit points		
and grades	The module grade M is calculated as f M = (K1 + K2)/2	ollows:
Frequency	Annually, in the summer semester	
Workload	210 hours	
Duration	1 semester	

Module number	Module name	Lecturer in charge	
MT-M04-V	Control, Advanced (<i>Regelung und Steuerung Vertiefung</i>)	Prof. DrIng. habil. K. Röbenack	
Contents and objectives	Content:		
	Analysis and design of optimal and/or robust and/or nonlinear control systems		
	System theoretical elements of complex control syste (e.g. spatially distributed systems)		
	Objectives:		
	The students master the methodical fundamentals for the analysis of complex control systems and the dimensioning of corresponding control facilities. They are able to model, analyse, actuate and control, by means of mathematical and system theoretical correlations, complex control systems (e.g. multivaria- ble systems, systems with uncertainties, nonlinear systems, spatially distributed systems).		
Modes of teaching and learning	4 SWS lecture, 1 SWS tutorial, and self-study		
Prerequisites	Knowledge and competences that can be acquired in modules such as MT-12 09 01 Systems Theory and MT-M04-G Control, Basics		
Usability	This module is an elective module of the group "methods" within the Diplom programme in Mechatronics.		
Requirements for the award of ECTS credit points	The credit points are awarded if the module assessment is passed. The module assessment consists of 2 written exams (90 min. each).		
ECTS credit points	7 ECTS credit points		
and grades	The module grade M is calculated as follows: M = (K1+K2)/2		
Frequency	Annually, starting in the summer semester		
Workload	210 hours		
Duration	2 semesters		

Module number	Module name	Lecturer in charge	
MT-M05-G	Electric Drive Technology, Basics	PD DrIng. habil. GH. Geitner	
Contents and	Content:		
objectives	The method of electric drive technology		
	Objectives:		
	Having successfully completed this module, the students are able to apply methods for the design and calculation of electric drive systems as well as to use various modelling tools for description, modeling and simulation. They master the internal processes in power electronic actautors, are able to model and to calculate these und understand their interaction with the electric drive and drive-related control systems.		
Modes of teaching and learning	4 SWS lecture, 2 SWS tutorial, and self-study		
Prerequisites	Competences in higher mathematics (Principles of Algebra and Analysis, Multivariable Calculus)		
	Competences that can be acquired in modu 25 Measurement and Sensor Techniques/A Electrical Power Engineering, MT-12 02 22 MT-12 01 02 Automation Engineering and N Control Engineering	les such as MT-12 08 ctuators, MT-12 04 01 Power Electronics, Aeasurement and	
Usability	This module is an elective module of the gro the <i>Diplom</i> programme in Mechatronics. It I the module Electric Drive Technology, Adva	oup "methods" within ays the foundation for nced.	
Requirements for the award of ECTS credit points	The credit points are awarded if the module assessment is passed. The module assessment consists of two written exams (K1, K2, 120 min. each).		
ECTS credit points and grades	7 ECTS credit points The module grade M is calculated as follows: M = (4K1 + 3K2)/7		
Frequency	Annually, in the summer semester		
Workload	210 hours		
Duration	1 semester		

Module number	Module name	Lecturer in charge	
MT-M05-V	Electric Drive Technology, Advanced	PD DrIng. habil. GH. Geitner	
Contents and objectives	Content: The fundamentals of electrical machines in structure, operating behaviour, performance, agitator speed, power controlling and energy efficiency: - Fundamentals of electromagnetic energy conversion - Transformers - DC machines - DC machines - Induction machines - Small machines - Linear Motors - Testing of electrical machines Objectives: Having successfully completed the module, the students master the methodia principles of the structure and medo of aperation of		
	electrical machines. They are able to understand operation of behaviour, agitator speed and power controlling as well as energy efficiency in detail.		
Modes of teaching and learning	2 SWS lecture, 1 SWS tutorial, 2 SWS lab course, and self-study		
Prerequisites	Competences in higher mathematics (Principles of Algebra and Analysis, Multivariable Calculus) Competences that can be acquired in modules such as MT-12 08 25 Measurement and Sensor Techniques/Actuators, MT-12 04 01 Electrical Power Engineering, MT-12 02 22 Power Electronics, MT-12 01 02 Automation Engineering and Measurement and MT- M05-G Electric Drive Technology, Basics		
Usability	This module is an elective module of the group "methods" within the <i>Diplom</i> programme in Mechatronics.		
Requirements for the award of ECTS credit points	The credit points are awarded if the module assessment is passed. The module assessment consists of a written exam (PL1, 90 min.) and lab course (PL2).		
ECTS credit points and grades	7 ECTS credit points The module grade M is calculated as follows: M = (4PL1 + 3PL2)/7		
Frequency	Annually, in the winter semester		
Workload	210 hours		
Duration	1 semester		

Module number	Module name	Lecturer in charge
MT-M06-G	Process Control Engineering, Basics (<i>Prozessinformationsverarbeitung</i> <i>Grundlagen</i>)	Prof. DrIng. habil. L. Urbas
Contents and	Content:	
objectives	Fundamentals, methods, algorithms and architectures for computer-assisted information generation, distribution, pro- cessing, display and use of near-process data.	
	Objectives:	
	Having successfully completed this mo	duel, the students master
	 the methodological fundamentals for the design and ap- plication of simple process-oriented information pro- cessing systems. They are able to plan, design, put into operation and test these systems in distributed automa- tion structures. 	
	And they are able to	
	 choose and evaluate appropriate communication struc- tures and components for distributed systems and func- tions. 	
Modes of teaching and learning	4 SWS lecture, 2 SWS lab course, and self-study	
Prerequisites	Competences in principles of algebra and analysis, multivariable calculus, computer science, micro computer engineering /embedded controller	
Usability	This module is an elective module of the group "methods" within the <i>Diplom</i> programme in Mechatronics. It lays the foundation for the module Process Control Engineering, Advanced.	
Requirements for the award of ECTS credit points	The credit points are awarded if the module assessment is passed. The assessment consists of 2 written exams (PL1, PL2, 90 min. each) if more than 20 students register. If 20 students or less register, the assessment consists of 2 individual oral exams (PL1, PL2, 30 min. each). Further assessments: a graded lab course (PL4) on objective 1, a lab course (without a grade, PL3) on objective 2.	
ECTS credit points and grades	7 ECTS credit points The module grade M is calculated as fo M = (2PL1 + PL4 + 2PL2)/5	llows:
Frequency	Annually, in the summer semester	
Workload	210 hours	
Duration	1 semester	

Module number	Module name	Lecturer in charge	
MT-M06-V	Process Control Engineering, Advanced (<i>Prozessinformationsverarbeitung Vertie-</i> <i>fung</i>)	Prof. DrIng. habil. L. Urbas	
Contents and	Content:		
objectives	Principles and methods for taking into account the human factor in the analysis, evaluation and design of complex, interactive technical systems		
	Objectives:		
	The students master the fundamental methods of the human- machine-system technology for the description, analysis, evalua- tion and design of dynamic interactive systems and are able to deal systematically with the domain-specific issues of human- machine interaction.		
Modes of teaching and learning	2 SWS lecture, 2 SWS tutorial, 2 SWS project, and self-study		
Prerequisites	Competences that can be acquired in modules such as MT-M06-G Process Control Engineering, Basics		
Usability	This module is an elective module of the group "methods" within the Diplom programme in Mechatronics.		
Requirements for the award of ECTS credit points	The credit points are awarded if the module assessment is passed. The module assessment consists of a written exam (PL1, 120 min.) and a project (PL2, 15 weeks).		
ECTS credit points 7 ECTS credit points			
and grades	The module grade M is calculated as follows:		
5	V = (2PLI + PL2)/3		
Frequency	Annually, in the winter semester		
Workload	210 hours		
Duration	1 semester		

Module number	Module name	Lecturer in charge	
MT-M07-G	Design Techniques, Basics	Prof. Dr. techn.	
	(Entwurfstechniken Grundlagen)	K. Janschek	
Contents and	Content:		
objectives	1.Elements of the physical modeling		
	Energy-based modelling paradigms (Euler-Lagrange), tor- modelling paradigms (generalized Kirchhoff's networks), s based modelling paradigms, differential algebraic equation systems		
	2. Elements of simulation technology		
	Numerical integration of ordinary differential equation systems differential algebraic equation systems (DAE) and hybrid (discr event-continuous) systems of equations, modular simulation (signal-/object-oriented)		
	3. System design of mechatronic systems		
	Multibody dynamics Mechatronic transducer principles Stochastic behaviour analysis System budget Objectives: The students 1. master the physical modelling paradigms and are able to create independently mathematical models, e.g. DAE-Systems.		
	2. are familiar with the basic structure of numerical integration algorithms and special features in their application for technical-physical systems.		
	3. are able to apply methods and tools of the behaviour modelling and analysis (mechatro able to conduct an informed quantitative de optimization.	e to apply methods and tools of the physically based modelling and analysis (mechatronic systems) and are induct an informed quantitative design evaluation and on.	
Modes of teaching and learning	4 SWS lecture, 2 SWS tutorial, and self-stud	dy	
Prerequisites	Competences that can be acquired in modu 02 Automation Engineering and Measureme Control of Continuous-Time Processes and Systems	les such as MT-12 01 ent and MT-12 13 01 Discrete Event	
Usability	This module is an elective module of the group "methods" within the <i>Diplom</i> programme in Mechatronics. It lays the foundation for the module Design Techniques, Advanced.		
Requirements for the award of ECTS	The credit points are awarded if the module passed. The module assessment consists of	assessment is	
credit points	- a written exam (K1, 120 min) on objective 1 and 2		
	- a written exam (K2, 120 min.) on obi	ective 3	
		000100	

ECTS credit points and grades	7 ECTS credit points The module grade M is calculated as follows: M = (K1 + K2)/2
Frequency	Annually, starting in the winter or the summer semester
Workload	210 hours
Duration	2 semesters

Module number	Module name	Lecturer in charge	
MT-M07-V	Design Techniques, Advanced	Prof. Dr. techn.	
	(Entwurfstechniken Vertiefung)	K. Janschek	
Contents and	IndContent:System design of complex automation systems, among others with the focus on requirements definition, function-oriented behaviour modelling, object-oriented behaviour modelling, safety oriented design,		
objectives			
	quality assurance with the associated tasks and terms, the description of quality parameters (discrete/continuous and their parameters), the recording of quality data and their statistical verification, the use of quality control charts and process capabil- ity analysis, the analysis of reliability data, the execution of regression analysis and the use of quality standards.		
	Objectives:		
	 Having successfully completed this module, the students are able to 1. work with the concepts, methods and tools of abstract behaviour modelling and analysis (complex automation systems). They are able to conduct an informed quantitative design evaluation and optimization. 2. apply fundamental methods of quality assurance. 		
Modes of teaching and learning	4 SWS lecture, 2 SWS tutorial, and self-study		
Prerequisites	Competences in higher mathematics (Princi Analysis, Multivariable Calculus, Probability al Theory, Partial Differential Equation)	ples of Algebra and Calculation, Function-	
Usability	This module is an elective module of the gro the <i>Diplom</i> programme in Mechatronics.	oup "methods" within	
Requirements for the award of ECTS credit points	The credit points are awarded if the module assessment is passed. The module assessment consists of one written exam (K1, 90 min.) on objective 2 and a written exam (K2, 120 min.) on objective 1.		
ECTS credit points and grades	7 ECTS credit points The module grade M is calculated as follows: M = (K1 + K2)/2		
Frequency	Annually, starting in the summer semester		
Workload	210 hours		
Duration	2 semesters		

Module number	Module name	Lecturer in charge		
MT-A01-G	Automotive Vehicle Engineering, Basics	Prof. DrIng.		
	(Kraftfahrzeugtechnik Grundlagen)	G. Prokop		
Contents and	Content:			
objectives	The design, construction and operation of the components of a motor vehicle and their interaction for the realization of the overall properties of the vehicle. The module includes:			
	 Functionality of components and subsystems of the vehicle 			
	- Design and dimensioning of the components			
	- Interaction of the individual compone	ents and systems		
	 Realization of the overall vehicle performance by mea of specific design of components and systems 			
	Objective:			
	Having completed the module, the student knows the individual functions of the components of the motor vehicle as well as their interaction in the overall vehicle. She/he is thus in a position to evaluate and optimize the overall vehicle performance			
Modes of teaching and learning	4 SWS lecture, 1 SWS tutorial, 1 SWS lab c	ourse, and self-study		
Prerequisites	Knowledge and competences that can be a such as MT-13 00 01 Materials and Enginee 13 01 02 Numerical Methods/System Dyna Measurement and Sensor Techniques/Actu Fundamentals of Electrical Engineering	cquired in modules ering Mechanics, MT- mics, MT-12 08 25 ators, MT-12 08 01		
Usability	This module is an elective module of the growithin the <i>Diplom</i> programme in Mechatron foundation for the module Automotive Vehic Advanced.	oup "applications" nics. It lays the cle Engineering,		
Requirements for the award of ECTS credit points	The credit points are awarded if the module passed. The module assessment consists c (K1 and K2, 90 min each.) and a lab course (assessment is of two written exams not graded).		
ECTS credit points	7 ECTS credit points			
and grades	The module grade M is calculated as follows: M = (K1 + K2)/2			
Frequency	Annually, beginning in the summer semeste	er		
Workload	210 hours			
Duration	1 semester			

Module number	Module name	Lecturer in charge	
MT-A01-V	Automotive Vehicle Engineering, Advanced	Prof. DrIng.	
	(Kraftfahrzeugtechnik Vertiefung)	G. Prokop	
Contents and	Content:		
objectives	Functional design of motor vehicles and mecha The focus is on: modelling and simulation, deve release processes, mobility and vehicle concep ics and driving comfort, control systems in the lightweight construction as well as ergonomics	nctional design of motor vehicles and mechatronic systems. e focus is on: modelling and simulation, development and ease processes, mobility and vehicle concepts, driving dynam- and driving comfort, control systems in the motor vehicle and ntweight construction as well as ergonomics.	
	Objectives:		
	Having successfully completed this module, th able to design and realize component requirem derived from the overall vehicle characteristics technical solutions.	e students are ents, which are to be realized, on	
Modes of teaching and learning	6 SWS lecture, 1 SWS tutorial, and self-study		
Prerequisites	Knowledge and competences that can be acqu such as MT-13 00 01 Materials and Engineering 13 01 02 Numerical Methods/System Dynamic Measurement and Sensor Techniques/Actuato Fundamentals of Electrical Engineering and MT tive Vehicle Engineering, Basics	ired in modules g Mechanics, MT- s, MT-12 08 25 rs, MT-12 08 01 r-A01-G Automo-	
Usability	This module is an elective module of the group within the Diplom programme in Mechatronics	"applications"	
Requirements for the award of ECTS credit points	The credit points are awarded if the module as passed. The module assessment consists of th (K1 and K2 90 min. each, K3 120 min.)	sessment is nree written exams	
ECTS credit points and grades	7 ECTS credit points The module grade M is calculated as follows: M = (K1 + K2 + K3)/3		
Frequency	Annually, beginning in the summer semester		
Workload	210 hours		
Duration	2 semesters		

Module number	Module name	Lecturer in charge
MT-A02-G	Railway Vehicle Engineering, Basics	Prof. DrIng.
	(Schienenfahrzeugtechnik Grundlagen)	G. Löffler
Contents and	Content:	
objectives	bjectives The design, construction and production as well as main of the subsystems brake and railway safety technology guided vehicles.	
	Objectives:	
	Having successfully completed the module, the students understand the system structure of a railway vehicle, are familiar with the control engineering of the subsystems brake and railway safety system as well as of the overall system. They are also able to design and calculate subsystems.	
Modes of teaching and learning	4 SWS lectures and self-study	
Prerequisites	Competences that can be acquired in modules such as MT-13 00 01 Materials and Engineering Mechanics, MT-13 01 03 Funda- mentals of Kinematics and Kinetics, MT-12 01 23 Micro Comput- er Engineering/Embedded Controller MT-12 01 02 Automation Engineering and Measurement and Control Engineering	
	Competences in higher mathematics (Principle Analysis, Multivariable Calculus, Functional The Differential Equation)	s of Algebra and eory, Partial
Usability	This module is an elective module of the group within the <i>Diplom</i> programme in Mechatronics	"applications"
Requirements for the award of ECTS credit points	The credit points are awarded if the module as passed. The module assessment is a written e	sessment is xam (90 min.).
ECTS credit points and grades	7 ECTS credit points The module grade is the grade for the exam.	
Frequency	Annually, in the summer semester	
Workload	210 hours	
Duration	1 semester	

Module number	Module name	Lecturer in charge
MT-A02-V	Railway Vehicle Engineering, Advanced	Prof. DrIng.
	(Schienenfahrzeugtechnik Vertiefung)	G. Lottiel
Contents and	Content:	
objectives	The design, construction and production as we of the subsystems electric drive and multi-body track-guided vehicles	II as maintenance y dynamics of
	Objectives:	
	Having successfully completed the module, the understand the system structure of a railway v familiar with the structure and function of the e drive and its main components, understand the electric vehicles with the power supply system the control engineering of the subsystems and system, are able to design and calculate subsy model railway vehicles as a complete system u technology.	e students ehicle. They are electric vehicle e interactions of hs, are familiar with the overall stems, are able to using simulation
Modes of teaching and learning	3 SWS lecture, 1 SWS tutorial and self-study	
Prerequisites	Competences that can be acquired in modules 01 Materials and Engineering Mechanics, MT-1 mentals of Kinematics and Kinetics, MT-12 01 er Engineering/Embedded Controller MT-12 01 Engineering and Measurement and Control Engineering	such as MT-13 00 3 01 03 Funda- 23 Micro Comput- 02 Automation gineering
	Competences in higher mathematics (Principle Analysis, Multivariable Calculus, Functional The Differential Equation)	s of Algebra and eory, Partial
Usability	This module is an elective module of the group within the <i>Diplom</i> programme in Mechatronics	"applications"
Requirements for the award of ECTS credit points	The credit points are awarded if the module as passed. The module assessment is a written e	sessment is xam (90 min.).
ECTS credit points	7 ECTS credit points	
Frequency	Annually in the winter semester	
Warkland		
Duration	1 semester	

Module number	Module name	Lecturer in charge	
MT-A03-G	Combustion Engines, Basics	Prof. DrIng.	
	(Verbrennungsmotoren Grundlagen)	H. Zellbeck	
Contents and	Content:		
objectives	The thermodynamic calculation methods for sin bustion engine and the associated components systems, exhaust gas turbochargers). In addition deals with the theoretical description of the dy reciprocating engine with the focus on: comper movement equations to characterization of tors chains and calculation methods for their natural eigenmode.	iermodynamic calculation methods for simulating a com- n engine and the associated components (e.g., piping ms, exhaust gas turbochargers). In addition, the module with the theoretical description of the dynamics of the ocating engine with the focus on: compensatory measures, ment equations to characterization of torsional oscillator is and calculation methods for their natural frequencies and mode.	
	Further module contents are: design and operation of test and measurement technology, the thermodynamic and en related analysis of the combustion engine, selected subsy and the entire vehicle		
	Objectives:		
	Having successfully completed this module, the students are able to calculate a complete circuit of a combustion engine ste by step, have a deeper understanding of the complex system behaviour of combustion engines and can create their own calculation models based on the acquired competency.		
Modes of teaching and learning	3 SWS lecture, 2 SWS tutorial, 1 SWS lab cour	se, and self-study	
Prerequisites	Competences in science and in fundamentals of engineering	of electrical	
Usability	This module is an elective module of the group within the <i>Diplom</i> programme in Mechatronics foundation for the module MT-A03-V Combust Advanced.	• "applications" . It lays the ion Engines,	
Requirements for the award of ECTS credit points	The credit points are awarded if the module as passed. The module assessment consists of two (K1 and K2, 90 min. each) and a written exam of	sessment is wo written exams of 120 min. (K3).	
ECTS credit points and grades	7 ECTS credit points The module grade M is calculated as follows: M = (5K1 + 2K2 + 3K3)/10		
Frequency	Annually, in the summer semester		
Workload	210 hours		
Duration	1 semester		

Module number	Module name	Lecturer in charge	
MT-A03-V	Combustion Engines, Advanced	Prof. DrIng.	
	(Verbrennungsmotoren Vertiefung)	H. Zellbeck	
Contents and	Content:		
objectives	Design and mode of operation of a combustion engine as well as physical and thermodynamic processes, pollutant generation and avoidance, control.		
	 In addition, the module deals with the technical scientific descrition of all essential electrical and electronic automotive system components and the methodological presentation of related development procedures. The main focus is on electrical wiring, generator, battery systems, electronic systems in power train, safety and convenience electronics as well as communication systems. 		
	Objectives:		
	Having successfully completed this module, the students are able to evaluate and optimize the system behaviour of a comb tion engine with the associated electronic control systems in motor vehicle.		
Modes of teaching and learning	4 SWS lecture, 1 SWS lab course, and self-stur	dy	
Prerequisites	Competences in science and in fundamentals of engineering	of electrical	
Usability	This module is an elective module of the group within the <i>Diplom</i> programme in Mechatronics	o "applications"	
Requirements for the award of ECTS credit points	The credit points are awarded if the module as passed. The module assessment consists of a 90 min. (K1) and a written exam of 120 min. (K students have to take part in 3 lab sessions.	sessment is written exam of 2). Further, the	
ECTS credit points	7 ECTS credit points		
and grades	The module grade M is calculated as follows: M = (K1 + K2)/2		
Frequency	Annually, in the winter semester		
Workload	210 hours		
Duration	1 semester		

Module number	Module name	Lecturer in charge
MT-A04-G	Motion Control, Basics (<i>Bewegungssteuerung Grundlagen</i>)	PD DrIng. habil. V. Müller
Contents and	Content:	
objectives	 Motion controls determine the current possibilities and future developments in production, processing and transportation technology. The module therefore deals with the motion sequence and and interactions in the mechatronic system, which can be achieved with motion control of an axis and by linking several axes with communication structures in drive systems. Objectives: Having completed the module, the students are familiar with the methodic fundamentals for the design of motion control, espe- 	
	cially with 1. the elements of the drive system: energy and information technology components as well as system integration of drives with complex mechanics	
	 the converter supply of three-phase-drives and their control methods, interaction of actuator and motor the design of quasi-continuous and discontinuous controllers for the application in motion control of electric drives 	
Modes of teaching and learning	4 SWS lecture, 2 SWS tutorial, and self-study	
Prerequisites	Competences that can be acquired in modules 25 Measurement and Sensor Techniques/Actu Electrical Power Engineering, MT-12 02 22 Pov MT-12 01 02 Automation Engineering and Mea	such as MT-12 08 ators, MT-12 04 01 wer Electronics and asurement
Usability	This module is an elective module of the group within the <i>Diplom</i> programme in Mechatronics foundation for the module MT-A04-G Motion C) "applications" . It lays the Control, Advanced.
Requirements for the award of ECTS credit points	The credit points are awarded if the module as passed. The module assessment consists of a min.).	sessment is written exam (150
ECTS credit points and grades	7 ECTS credit points The module grade is the grade for the exam.	
Frequency	Annually, in the summer semester	
Workload	210 hours	
Duration	1 semester	

Module number	Module name	Lecturer in charge
MT-A04-V	Motion Control, Advanced	PD DrIng. habil.
	(Bewegungssteuerung Vertiefung)	V. Müller
Contents and	Content:	
objectives	Design principles and calculation methods for the design an of mechatronic solutions for motion control as well as meth of computer-aided design. The lab course deepens the knowledge regarding important tasks of motion control.	
	Objectives:	
	Having successfully completed the module, the the current state of drive technology for the so of motion control. They also have skills and kno analysis and design of electric drive systems. T solve design and analysis tasks on test stands simulation tools.	e students know lution of problems owledge for the They are able to and by means of
Modes of teaching and learning	2 SWS lecture, 1 SWS tutorial, 1 SWS lab cour	se, and self-study
Prerequisites	Competences in electric drive technology that can be acquired in modules such as MT-A04-G Motion Control, Basics	
	Competences in control engineering that can b modules such as MT-12 01 02 Automation Eng Measurement and Control Engineering	e acquired in jineering and
Usability	This module is an elective module of the group within the <i>Diplom</i> programme in Mechatronics	o "applications"
Requirements for the award of ECTS credit points	The credit points are awarded if the module as passed. The module assessment consists of a 90 min.) and a lab course (PL2).	sessment is written exam (K1,
ECTS credit points	7 ECTS credit points	
and grades	The module grade is calculated as follows: M = (4K1 + 3PL2)/7	
Frequency	Annually, in the winter semester	
Workload	210 hours	
Duration	1 semester	

Module number	Module name	Lecturer in charge	
MT-A05-G	Aerospace Engineering, Basics	Prof. DrIng.	
	(Luft- und Raumfahrttechnik Grundlagen)	K. Wolf	
Contents and objectives	Content:		
	The module deals with the fundamentals of the application of fiber composite materials in aircraft and spacecraft with focus on mechanics of fiber composites, construction principles and construction methods. On the other hand, the module includes the fundamentals of position control of spacecraft with focus on pathway dynamics, position determination, position sensors and control concepts for position control and position stabilization.		
	Having successfully completed this module, th able to	e students are	
	1. understand the difference of mechanical behavio tween anisotropic and classical structural materia		
	apply methods and design criteria for the aerospace structures using fibre component	ne construction of osite materials and	
	 master the basic technical principles an for position control of spacecraft and to and interpret corresponding systems. 	d system concepts model, analyse,	
Modes of teaching and learning	3 SWS lecture, 3 SWS tutorial, and self-study		
Prerequisites	Competences that can be acquired in modules 01 Materials and Engineering Mechanics and N Fundamentals of Kinematics and Kinetics	such as MT-13 00 /IT-13 01 03	
	Competences in higher mathematics (Principle Analysis, Multivariable Calculus)	s of Algebra and	
Usability	This module is an elective module of the group within the <i>Diplom</i> programme in Mechatronics foundation for the module MT-A05-G Aerospac Advanced.	and "applications" . It lays the se Engineering,	
Requirements for the award of ECTS	The credit points are awarded if the module as passed. The module assessment consists of	sessment is	
credit points	1. a written exam (K1, 120 min.) on objective 1 and 2		
	2. a written exam (K2, 120 min.) on object	ive 3.	
ECTS credit points and grades	7 ECTS credit points The module grade M is calculated as follows: M = (2K1 + K2)/3		
Frequency	Annually, in the summer semester		
. , Workload	210 hours		
Duration	1 semester		

Module number	Module name	Lecturer in charge
MT-A05-V	Aerospace Engineering, Advanced	Prof. DrIng. K. Wolf
Contents and objectives	 Content: The module deals with the technical fundamentals for the design and construction of aircraft with special consideration of interdis- ciplinary aspects. Further, the module contains the fundamentals of the energy supply of space vehicles with focus on energy generation, regulation, conditioning, distribution and storage. Objectives: Having successfully completed this module, the students are able 1. to understand the design of aircrafts, the technology ap- plied and the process of development, to apply the meth- ods necessary for the design as well as to analyse system configurations in terms of performance and profitability, 2. to evaluate the autonomous and mobile energy conver- sion methods applied in spacecraft, to discuss require- ments and to define development stages to a complete system. 	
Modes of teaching and learning	4 SWS lecture, 1 SWS tutorial, and self-study	
Prerequisites	Competences that can be acquired in modules 01 Materials and Engineering Mechanics and N Fundamentals of Kinematics and Kinetics, MT- Engineering, Basics Competences in higher mathematics (Principle Analysis, Multivariable Calculus)	such as MT-13 00 /T-13 01 03 A05-G Aerospace s of Algebra and
Usability	This module is an elective module of the group within the <i>Diplom</i> programme in Mechatronics	o "applications"
Requirements for the award of ECTS credit points	The credit points are awarded if the module as passed. The module assessment consists of to (K1, K2, 90 min. each).	sessment is o written exams
ECTS credit points and grades	7 ECTS credit points The module grade M is calculated as follows: M = (2K1 + 3K2)/5	
Frequency	Annually, in the winter semester	
Workload	210 hours	
Duration	1 semester	

Module number	Module name	Lecturer in charge
MT-A06-G	Mobile Work Machines, Basics	Prof. DrIng. habil.
	(Mobile Arbeitsmaschinen, Grundlagen)	1. Heriitzius
Contents and objectives	Content: The module deals with the requirements an mechanical engineering and mechatronics for construction and application of off-road vehi focus is on methodological knowledge of th and dimensioning of mobile working machin fundamentals for the analysis for the design automation concepts.	d fundamentals of or the design, cle technology. The e function, design nes, as well as the n of various drive and
	Objectives:	
	The students	
	 have acquired methodological knowledge of function, design and dimensioning of actuators and steering of mobile work and utility vehicles and are able to analyse and design different drive concepts of off-road vehicles. understand the requirements on processes and machines of agriculture and gain skills and abilities for process understanding, automation strategies and operating mode of mobile machines. are able to apply the knowledge described in 1. and 2. to complex machinery (tractors, harvester-threshers, loaders). 	
Modes of teaching and learning	4 SWS lecture, 2 SWS tutorial, and self-stud	ły
Prerequisites	Competences that can be acquired in modu 01 Materials and Engineering Mechanics an Measurement and Sensor Techniques/Actua	les such as MT-13 00 d MT-12 08 25 ators
Usability	This module is an elective module of the growithin the <i>Diplom</i> programme in Mechatron foundation for the module MT-A06-G Mobile chines, Advanced.	oup "applications" ics. It lays the e Production Ma-
Requirements for the award of ECTS credit points	The credit points are awarded if the module assessment is passed. The module assessment consists of a written exam (K1, 90 min.) and an oral exam in groups (30 min., up to 3 students).	
ECTS credit points and grades	7 ECTS credit points The module grade M is calculated as follows M = (K1 + 2PL2)/3	S:
Frequency	Annually, in the summer semester	
Workload	210 hours	
Duration	1 semester	

Module number	Module name	Lecturer in charge
MT-A06-V	Mobile Work Machines, Advanced	Prof. DrIng.
	(Mobile Arbeitsmaschinen, Vertiefung)	J. Weber
Contents and	Content:	
objectives	The module deals with examples for the modelling and tion of elements, assemblies and work processes of mo- machines as well as the application of the modelling me practical examples, selected simulation environments a calculation tools.	
	Objectives:	
	Having successfully completed the module, the students the fundamentals of modelling and simulation of elements assemblies and work processes of mobile work machines	
	They are able to set up model approaches to describe various technical problems. They are familiar with various simulation methods and the associated tools. They have the ability to program simple simulations, to perform simulation calculations as well as to prepare and interpret results. They have practical knowledge, experience and skills in the use of measuring instruments for subject-specific tasks.	
Modes of teaching and learning	2 SWS lecture, 2 SWS tutorial, 2 SWS lab course, and self-study	
Prerequisites	Competences that can be acquired in modu 01 Materials and Engineering Mechanics, N urement and Sensor Techniques/Actuators Production Machines, Basics	les such as MT-13 00 1T-12 08 25 Meas- and MT-A06-G Mobile
Usability	This module is an elective module of the growithin the <i>Diplom</i> programme in Mechatron	oup "applications" nics.
Requirements for the award of ECTS credit points	The credit points are awarded if the module passed. The module assessment consists of 90 min.) and a lab course (PL2).	assessment is of a written exam (K1,
ECTS credit points and grades	7 ECTS credit points The module grade M is calculated as follow M = (2K1 + PL2)/3	S:
Frequency	Annually, in the winter semester	
Workload	210 hours	
Duration	1 semester	

Module number	Module name	Lecturer in charge	
MT-A07-G	Motion Controlled Machine Systems, Basics (Bewegungsgeführte Maschinensysteme	Prof. DrIng. S. Ihlenfeldt	
	Grundlagen)		
Contents and	Content:		
objectives	 The mechatronic system character and the development potential of machine tools, 		
	2. design and function of the main assemblies main drive and traverse drive system, control and rack as well as the interaction of mechanical, electrical and information processing components,		
	3. the specification, selection and dimensioning of the main assemblies, and		
	4. the determination and evaluation of the functionally relevant system behavior of motion-guided machine systems.		
	Objectives:		
	The students are familiar with the characteristic functions, requirements and technical solutions regarding motion controlled machine systems of production engineering for the realization of deforming and chipping processes of machining as well as tool and workpiece handling processes.		
Modes of teaching and learning	3 SWS lecture, 2 SWS tutorial, and self-stud	dy	
Prerequisites	Competences in physics and higher mathem Algebra and Analysis, Multivariable Calculus Partial Differential Equation, Probability Theo	natics (Principles of , Functional Theory, ory)	
Usability	This module is an elective module of the growithin the <i>Diplom</i> programme in Mechatron foundation for the module MT-A07-G Motio Systems, Advanced.	oup "applications" ics. It lays the n Controlled Machine	
Requirements for the award of ECTS credit points	The credit points are awarded if the module passed. The module assessment is a writte	assessment is n exam (120 min.).	
ECTS credit points and grades	7 ECTS credit points The module grade is the grade for the writte	en exam.	
Frequency	Annually, in the summer semester		
Workload	210 hours		
Duration	1 semester		

Module number	Module name	Lecturer in charge		
MT-A07-V	Motion Controlled Machine Systems, Advanced (<i>Bewegungsgeführte Maschinensysteme</i> <i>Vertiefung</i>)	Prof. DrIng. S. Ihlenfeldt		
Contents and	Content:			
objectives	1. Description of functionally relevant influences of the geomet- ric-kinematic, static, thermal and dynamic behaviour of motion controlled machine systems,			
	2. modelling and calculation (FEM, simulation relevant behavioural influences (statics, there	n) of functionally mal, dynamics), and		
	3. experimental function and behavioural analysis on the asserbly groups and systems of the following mechatronic application examples:			
	a) position-controlled electro-mechanical traverse o system,			
	b) piezoelectric fine adjustment syste	ems,		
	c) actively magnetically supported machine tool main spindles;			
	d) parallel kinematic systems of motion (hexapod).			
	Objectives:			
	Having successfully completed this module, fundamental knowledge, methodological an causes and effects, model description and c on targeted influencing and correcting the p accuracy of the behaviour influencing produc	, the students have d practical skills on calculation, as well as roductivity and ction systems.		
Modes of teaching and learning	2 SWS lecture, 1 SWS tutorial, 2 SWS lab course, and self-study			
Prerequisites	Competences acquired in modules such as Controlled Machine Systems, Basics	MT-A07-G Motion		
Usability	This module is an elective module of the group "applications" within the <i>Diplom</i> programme in Mechatronics.			
Requirements for the award of ECTS credit points	The credit points are awarded if the module assessment is passed. The module assessment consists of a written exam (K, 150 min.) and a lab course (PL).			
ECTS credit points and grades	7 ECTS credit points The module grade is calculated as follows: M = (7K + 3PL)/10			
Frequency	Annually, in the winter semester			
Workload	210 hours			
Duration	1 semester			

Module number	Module name	Lecturer in charge	
MT-A08-G	Robotics, Basics (<i>Robotik Grundlagen</i>)	Prof. DrIng. M. Beitelschmidt	
Contents and	Content: Robot kinematics, control of serial manipulators and guidance gear for robotics		
objectives			
	Objectives:		
	Having successfully completed this module, the students master the methodology of calculating forward kinematics and inverse kinematics of typical robot configurations. They are familiar with the fundamentals of dynamics of robots as well as with the methodology and application for the control of robots.		
Modes of teaching and learning	5 SWS lecture, 1 SWS tutorial, and self-study		
Prerequisites	Competences that can be acquired in modules such as MT-13 00 01 Materials and Engineering Mechanics, MT-13 01 03 Funda- mentals of Kinematics and Kinetics and MT-13 01 02 Numerical Methods/System Dynamics, MT-12 01 23 Micro Computer Engineering/Embedded Controller		
	Competences in physics and higher mathematics (Principles of Algebra and Analysis, Multivariable Calculus, Functional Theory, Partial Differential Equation, Probability Theory)		
Usability	This module is an elective module of the group "applications" within the <i>Diplom</i> programme in Mechatronics. It lays the foundation for the module MT-A08-G Robotics, Advanced.		
Requirements for the award of ECTS credit points	The credit points are awarded if the module assessment is passed. If more than 20 students are registered, the assessment comprises a written exam of 90 min. (PL1) and a written exam of 150 min. (PL2).		
	If 20 students or less are registered, the module assessment comprises a written exam of 90 min. (PL1) and an individual oral exam of 30 min. (PL2).		
ECTS credit points	7 ECTS credit points		
and grades	The module grade M is calculated as follows: M = (2PL1 + 5PL2)/7		
Frequency	Annually, in the summer semester		
Workload	210 hours		
Duration	1 semester		

Module number	Module name	Lecturer in charge	
MT-A08-V	Robotics, Advanced (<i>Robotik Vertiefung</i>)	Prof. DrIng. habil. E. Beyer	
Contents and	Content:		
Overview of laser technology and industrial robots as challenges of laser processes with robots. Types of ro programming are presented and tested in a practical e Focus is on sensor applications: important fundament taught as well as practical tasks assigned.		rial robots as well as the s. Types of robot n a practical example. nt fundamentals are l.	
	Objectives:		
	Having successfully completed this module, the students are familiar with the application of robots in the area of laser manu- facturing engineering. They know how to program robots for production tasks, especially for laser applications and they are familiar with the fundamentals of autonomous robotics.		
Modes of teaching and learning	3 SWS lecture, 2 SWS tutorial, 2 SWS lab course, and self-study		
Prerequisites	Competences in engineering mechanics that can be acquired in modules such as MT-13 00 01 Materials and Engineering Mechanics, MT-13 01 03 Fundamentals of Kinematics and Kinetics and MT-13 01 02 Numerical Methods/System Dynamics and MT-A08-G, Robotics, Basics		
Usability	This module is an elective module of the group "applications" within the <i>Diplom</i> programme in Mechatronics.		
Requirements for the award of ECTS credit points	The credit points are awarded if the module assessment is passed. The module assessment consists of a written exam of 120 min. (K1) and a written exam of 90 min. (K2).		
ECTS credit points	7 ECTS credit points		
and grades	and gradesThe module grade is calculated as follows: $M = (4K1 + 3K2)/7$		
Frequency	Annually, in the winter semester		
Workload	210 hours		
Duration	1 semester		

Module number	Module name	Lecturer in charge	
MT-A09-G	Specific Production Methods, Basics (<i>Spezielle Fertigungsmethoden</i> <i>Grundlagen</i>)	Prof. DrIng. habil. E. Beyer	
Contents and	Content:		
objectives Physical fundamentals of plasma, plasma sources and processes for various applications. Furthermore, the p technical fundamentals of lasers are taught as well as into various laser processes is given.		a sources and plasma ermore, the physical and ht as well as an insight	
	Ojectives:		
	Having completed this module, the stude	ents:	
	1. are familiar with the structure and function of the main laser and plasma sources as well as the scientific and technological fundamentals of laser and plasma processes		
	2. are able to choose and implement suitable technology using mechatronic design principles in accordance with an identified profile of requirements.		
Modes of teaching and learning	3 SWS lecture, 1 SWS tutorial, 1 SWS lab course, and self-study		
Prerequisites	Competences in physics and manufacturing engineering that can be acquired in basic modules on physics and in modules such as MT-13 12 01 Construction and Manufacturing Engineering		
Usability	This module is an elective module of the group "applications" within the <i>Diplom</i> programme in Mechatronics. It lays the foundation for the module MT-A09-V Specific Production Methods, Advanced.		
Requirements for the award of ECTS credit points	The credit points are awarded if the module assessment is passed. The module assessment consists of two written exams (K1 and K2, 90 min. each).		
ECTS credit points and grades	7 ECTS credit points The module grade M is calculated as follows: M = (4K1 + 3K2)/7		
Frequency	Annually, in the summer semester		
Workload	210 hours		
Duration	1 semester		

Module number	Module name	Lecturer in charge	
MT-A09-V	Specific Production Methods, Advanced (<i>Spezielle Fertigungsmethoden Vertie-</i> <i>fung</i>)	Prof. DrIng. habil. E. Beyer	
Contents and	Contents and Content:		
objectives	The material science and technological fou characterization possibilities of nanotechno of application.	Indations as well as plogy and various fields	
	The methods for the rapid construction of three-dimensional structures from a wide variety of materials as well as with different methods are theoretically presented and practically demonstrated and tested.		
	Lab courses are conducted on fundamentals, specializations, and special production methods.		
	Objectives:		
	Having successfully completed this modul	e, the students	
	1. understand the materials science and technological fundamer tals, requirements and characterization of nanotechnology and know its potential for a variety of fields of application.		
	2. know the possibilities of rapid product development and survey the width of processes of rapid prototyping processes / generative manufacturing technology.		
	3. are able to prepare components with commercial programs for the production by means of generative manufacturing technology as well as to set up and characterize these by means of appropri- ate processes.		
	4. have hands-on experience with various special production methods.		
Modes of teaching and learning	3 SWS lecture, 1 SWS tutorial, 2 SWS lab course, and self-study		
Prerequisites	Competences in science and competences that can be acquired in modules such as MT-A09-G Specific Production Methods, Basics		
Usability	This module is an elective module of the group "applications" within the <i>Diplom</i> programme in Mechatronics.		
Requirements for the award of ECTS credit points	The credit points are awarded if the module assessment is passed. The module assessment consists of two written exams (K1 and K2, 90 min. each) and graded lab course reports (PL3). The students have to take part in 7 lab sessions.		
ECTS credit points and grades	7 ECTS credit points The module grade M is calculated as follows: M = (3K1 + 3K2 + PL3)/7		
Frequency	Annually, in the winter semester		
Workload	210 hours		
Duration	1 semester		

Module number	Module name	Lecturer in charge	
ET-12 05 07	Electronic Systems and Technolgy,	Prof. DrIng. habil.	
(MT-A10-G)	Basics (<i>Gerätetechnik Grundlagen</i>)	J. Lienig	
Contents and	This module covers		
objectives	 Finite Element Method (FEM): 1. Fundamentals of modelling for the different physical domains of device technology using the example of structural mechanics, heat and electromagnetic fields, 2. generalized process steps for the creation of theoretically sound FEM models 		
	Thermal design: 1. Fundamentals of heat transport, 2. Thermal calculations and models		
	Optimization: - Method of model creation and simulation, considering the holistic system-simulation approach for system design - Model experiments for the construction process (analysis, nominal value optimization, probabilistic optimization, multi- criteria optimization)		
	Objectives: Students completing this module will obtain qualified fundamen- tals for systematic application of FEM tools. They understand the key concept of holistic system simulation for the design process. They are capable of finding robust and cost-effective solutions in system-design processes by applying system simulations while accounting for ubiquitous parameter variations and functional behaviour.		
Modes of teaching and learning	2 SWS lectures, 4 SWS tutorial, and self-study		
Prerequisites	Comptences that can be acquired by completing the module MT- 12 05 01 Electronic Systems Design.		
Usability	This module is an elective module within the group "applica- tions" for the <i>Diplom</i> programme in Mechatronics.		
Requirements for the award of ECTS credit points	The credit points are obtained by passing the module assessment. This assessment consists of individual tutorial assignments.		
ECTS credit points and grades	7 ECTS credit point The module grade is determined by the grade obtained for the tutorial assignments.		
Frequency	Annually, during summer semester		
Workload	210 hours		
Duration	1 semester		

Module number	Module name	Lecturer in charge	
ET-12 05 08	Electronic Systems and Technolgy,	PD DrIng.	
(MT-A10-V)	Advanced (Gerätetechnik Vertiefung)	I. Nagel	
Contents and	Content:		
objectives	This module covers		
	1. Methodologies for Electromechanical Design (Präzisionsgerätetechnik) with focus on:		
	 Method of development Construction guidelines and principles derived from technology and nature Constructive guidelines for system design Fundamentals for precision gears Accuracy parameters for drive systems Examples on development of precise-mechanics devices 		
	2. Actuators (Aktorik) with focus on:		
	 Composition of drive systems Properties of different small-drive systems and actuators Servomotors for system design Innovative actuators 		
	Objectives:		
	Students completing this module will obtain qualified knowledge to develop and design modern precise-mechanics devices under consideration of general construction guidelines, design guide- lines and failure-detection principles. They are furthermore familiar with relevant principles of actuators and their construc- tive mechanic. In combination with the knowledge of specific actuator properties, the students can chose actuators appropri- ately for different applications and requirements.		
Modes of teaching and learning	4 SWS lectures, 2 SWS tutorial, and self-s	tudy	
Prerequisites	Some specific expertise is required, which can be acquired by completing the module MT-12 05 01 Electronic Systems Design.		
Usability	This module is an elective module within the group "applica- tions" for the <i>Diplom</i> programme in Mechatronics as well as an elective module for the <i>Diplom</i> programme in Electrical Engineer- ing.		
Requirements for the award of ECTS credit points	The credit points are obtained by passing the module assessment. This assessment comprises a written exam of 180 minutes (PL1) and tutorial assignments (PL2). Both elements of assessment must be passed.		
ECTS credit points and grades	7 ECTS credit points The module grade M is calculated as follows: M = (2PL1 + PL2)/3		
Frequency	Annually, during winter semester		
Workload	210 hours		
Duration	1 semester		

Module number	Module name	Lecturer in charge
MT-A11-G	Micro-Electro-Mechanical Systems, Basics (<i>Mikro-Elektro-Mechanische Systeme</i> <i>Grundlagen</i>)	Prof. DrIng. habil. U. Marschner
Contents and	Content:	
objectives	The description of coupled multiphysical subsystems in the form of a common circuitry representation and their behavioural simulation. Simple mechanical, magnetic, fluidic (acoustic), electrical and coupled systems including their interactions are analysed. Complex problems of the design-accompanying optimization of the dynamic behaviour of electromechanical systems can be solved by combining the network simulation of electromechanical systems with the method of finite element modelling.	
	Objectives:	
	Having successfully completed this module, the students have fundamental methodological and practical knowledge of the effective design and the illustrative analysis of the dynamic behaviour of electro-mechanical and electro-magnetic systems as well as of the function and modelling of electromechanical transducersin sensors and actuators. They are familiar with the parameter determination using FEM methods and master the methodology of combining processes by means of virtual interface components. Students are thus able (1) to apply the clear and illustrative analysis methods of electrical networks, (2) to develop a better understanding of physics, (3) to design closed physically different subsystems and to use existing design software e.g. SPICE for the simulation	
Modes of teaching and learning	4 SWS lecture, 2 SWS tutorial, 1 SWS assign	ment, and self-study
Prerequisites	Competences in physics that can be acquired on physics	l in basic modules
	Competences in mechanics that can be acqui as MT-13 00 01 Materials and Engineering M	ired in modules such echanics
Usability	This module is an elective module within the tions" for the <i>Diplom</i> programme in Mechatro	group "applica- onics.
Requirements for the award of ECTS credit points	The credit points are obtained by passing the module assessment. This assessment comprises a written exam of 120 min. (K) and an assignment (B).	
ECTS credit points and grades	7 ECTS credit points The module grade M is calculated as follows: M = (3K + B)/4	
Frequency	Annually, in the summer semester	
Workload	210 hours	
Duration	1 semester	

Module number	Module name	Lecturer in charge	
MT-A11-V	Micro-Electro-Mechanical Systems, Advanced (<i>Mikro-Elektro-Mechanische Systeme</i> <i>Vertiefung</i>)	Prof. DrIng. A. Richter	
Contents and	Content:		
objectives	Fundamentals of the most important function microsystems technology including new func- technological individual processes and microt microsensors, microactuators, power supply well as selected applications of microsystems	nentals of the most important functional materials of ystems technology including new functional materials, logical individual processes and microtechnologies, ensors, microactuators, power supply of microsystems as selected applications of microsystems.	
	Objectives:		
	Having successfully completed this modules,	the students:	
	1. master the physical fundamentals for the u material properties and the interaction betwe	inderstanding of en them	
	2. know the material groups that are most important for mi- crosystems technology and understand how they work		
	3. know the most important individual technological processes and micro technologies for the production of microsystems		
	4. know the operating principle of important micro-mechanical micro-sensors and micro actuators,		
	5. master various processes for the developm supply solutions for self-sufficient microsyste	nent of energy ms.	
Modes of teaching and learning	4 SWS lecture, 2 SWS lab course, and self-st	udy	
Prerequisites	Competences in physics that can be acquired in basic modules on physics		
	Competences in the area of materials that can modules such as MT-13 00 01 Materials and Mechanics	n be acquired in Engineering	
Usability	This module is an elective module within the group "applica- tions" for the <i>Diplom</i> programme in Mechatronics.		
Requirements for the award of ECTS credit points	The credit points are awarded if the module assessment is passed. The module assessment consists of two written exams (K1, K2, 90 min. each) and a lab course (PL3).		
ECTS credit points and grades	7 ECTS credit points The module grade M is calculated as follows: M = (7K1 + 7K2 + 6PL3)/20		
Frequency	Annually, starting in the summer semester		
Workload	210 hours		
Duration	2 semesters		

Module number	Module name	Lecturer in charge	
MT-A12-G	Biomedical Engineering, Basics (<i>Biomedizintechnik Grundlagen</i>)	Prof. DrIng. H. Malberg	
Contents and	Content:		
objectives	1. Fundamentals of physiology and medicine		
	a) structure and function of cells and organs		
	b) organ systems		
	c) electro and neurophysiological fundamenta	lls	
	d) cardiovascular system		
	e) autoregulation of the organism		
	f) pathophysiological phenomena		
	g) clinical functional processes		
	2. Measurement of physiological parameters		
	a) measurement of electrical and non-electrical physiological parameters		
	b) medical sensor technology		
	c) artifacts and disturbances		
	3. Radiation application in medicine		
	a) radiological diagnostics – X-ray, computed tomography, MRT		
	b) nuclear medicine – principles, diagnostics and therapy with radionuclides		
	c) - Radiotherapy - dose, radiation planning, radiation application		
	Objectives:		
	Having successfully completed this module, to basic knowledge of the construction and func- body with selected pathomechanisms that can treated by medical technology, and essential interface between the organism and technolo- use of diagnostic and therapeutic techniques qualify for the interdisciplinary cooperation as medical environment.	successfully completed this module, the students have nowledge of the construction and function of the human ith selected pathomechanisms that can be diagnosed and by medical technology, and essential features of the e between the organism and technology as a basis for the diagnostic and therapeutic techniques. The students thus for the interdisciplinary cooperation as engineers in the environment.	
Modes of teaching and learning	5 SWS lecture, 1 SWS tutorial, and self-study		
Proroquisitos	Competences that can be acquired in basic m	nodules on physics	
rierequisites	Competences that can be acquired in module 01 Fundamentals of Electrical Engineering an Electronic Systems Design	es such as MT-12 08 d MT-12 05 01	
Usability	This module is an elective module of the group "applications" within the <i>Diplom</i> programme in Mechatronics. It lays the foundation for the module MT-A12-V Biomedical Engineering, Advanced.		

Requirements for the award of ECTS credit points	The credit points are awarded if the module assessment is passed. The module assessment is a written exam (90 min.).
ECTS credit points	7 ECTS credit points
and grades	The module grade is the grade for the exam.
Frequency	Annually, in the summer semester
Workload	210 hours
Duration	1 semester

Module number	Module name	Lecturer in charge	
MT-A12-V	Biomedical Engineering, Advanced (<i>Biomedizintechnik Vertiefung</i>)	Prof. DrIng. H. Malberg	
Contents and	Content:	it:	
objectives	Biomedical Engineering		
	a) fundamentals of medical engineering for diagnosis and therapy		
	b) relevant physical, physiological and biocher	mical principles	
	c) basic principles and design of medical devi	ces	
	d) diagnostic data acquisition		
	e) automated processing of diagnostic signals	s and information	
	f) therapeutic procedures		
	g) organ support systems		
	h) structure and function of life support syste	ms	
	i) technical aspects of medical devices in the	laboratory test	
	j) biomaterials, biocompatibility		
	k) bionics		
	2. Diagnostic and therapeutic systems		
	Structure and function of medical technical systems for diagnos- tics and therapy of		
	a) the cardiovascular system,		
	b) the sense organs,		
	c) the musculoskeletal system,		
	d) the urine conductive system and digestion,		
	e) the peripheral and central nervous system.		
	Objectives:		
	Having successfully completed this modules, able to design and interpret systems for mea- parameters taking into account the complex i organism and technology. In addition, they ca systems for diagnosis and organ support and most important therapeutic medical technolo are able to transfer biological-physiological ba technical areas.	the students will be suring physiological nteractions between in design automated are familiar with the gy procedures. They sic principles to	
Modes of teaching and learning	3 SWS lecture, 2 SWS tutorial, 1 SWS lab co	urse, and self-study	
Prerequisites	Competences that can be acquired in module Biomedical Engineering	es such as MT-A12-G	
Usability	This module is an elective module of the grou within the <i>Diplom</i> programme in Mechatronic	up "applications" s.	
Requirements for the award of ECTS credit points	The credit points are awarded if the module assessment is passed. The module assessment consists of a written exam (K1, 120 min.) and a collection of 3 entrance tests and lab course reports (PL2).		
--	--		
ECTS credit points and grades	7 ECTS credit points The module grade M is calculated as follows: M = (7K1 + 3PL2)/10		
Frequency	Annually, in the winter semester		
Workload	210 hours		
Duration	1 semester		

Module number	Module name	Lecturer in charge	
MT-A13-G	Sensors and Measuring Systems, Basics (Sensoren und Messsysteme Grundlagen)	Prof. DrIng. habil. J. Czarske	
Contents and			
objectives	Objectives:		
	The students are familiar with the fundamental principles as well as master the practical implementation of sensors and measuring systems. They		
	 master the fundamental principles of measurement sys- tems technology. They are familiar with process meas- urement technology as well as signal and image pro- cessing. They are able to apply the learned methods for industrial measurement systems, especially in automation engineering. 		
	2. are able to assess the properties of real sensors (3S: sen- sitivity, selectivity, stability). They can detect and apply measurement methods in sensor technology and are fa- miliar with sensors for the measuring of mechanical quan- tities and temperature.		
	 are able to describe mechatronic laser measurement sys- tems and to apply these in manufacturing, surface engi- neering, process control, biology and medical engineering. 		
Modes of teaching and learning	4 SWS lecture, 2 SWS tutorial, and self-study	,	
Prerequisites	Competences in physics		
	Competences that can be acquired in modules such as MT-12 09 01 Systems Theory, MT-12 01 02 Automation Engineering and Measurement and MT-12 08 25 Measurement and Sensor Techniques/Actuators		
Usability	This module is an elective module of the group "applications" within the <i>Diplom</i> programme in Mechatronics. It lays the foundation for the module MT-A13-V Sensors and Measuring Systems, Advanced.		
Requirements for the award of ECTS credit points	The credit points are awarded if the module assessment is passed. The module assessment consists of two written exams (K1, K2, 90 min. each) on objective 1 and 2 as well as an oral exam (PL3, 20 min.) on objective 3.		
ECTS credit points	7 ECTS credit points		
and grades	The module grade is calculated as follows: M = (3K1 + 2K2 + 2PL3)/7		
Frequency			
Workload	210 hours		
Duration	i semester		

Module number	Module name	Lecturer in charge		
MT-A13-V	Sensors and Measuring Systems, Advanced (<i>Sensoren und Messsysteme Vertiefung</i>)	Prof. DrIng. habil. J. Czarske		
Contents and	Content:			
objectives	Pressure and temperature field measurement, speed measure- ment, particle size measurement, wall shear stress sensors, as well as the use and application of pressure, humidity, infrared, and gas sensors.			
	Objectives:			
	Having successfully completed this module, the students are familiar with the principles as well as master the practical implementation of sensors and measuring systems, especially for process, manufacturing, medical and fluid engineering. They			
	 are familiar with the fundamental principles of laser sensors for the study of fluid flows. These include, e.g. camera based measurement methods, multi-dimensional velocity measurement methods (e.g. by means of an electronic Doppler frequency measurement) and measurement methods for particles. 			
	 are be able to apply sensors on the basis of different physical effects for applications, such as humidity, pres- sure and temperature measurement. 			
	 are able to conduct optical measurem real conditions (disturbances, paramet They are able to set up process meas and to characterize their measuremen the temporal and spatial resolution and certainty. 	ent methods under er variations, etc.). urement techniques t properties such as d measurement un-		
Modes of teaching and learning	2 SWS lecture, 1 SWS lab course, 2 SWS pro	ject, and self-study		
Prerequisites	Competences in physics			
	Competences that can be acquired in modules such as MT-12 09 01 Systems Theory, MT-12 01 02 Automation Engineering and Measurement, MT-12 08 25 Measurement and Sensor Tech- niques/Actuators and MT-A13-G Sensors and Measuring Sys- tems, Basics			
Usability	This module is an elective module of the group "applications" within the <i>Diplom</i> programme in Mechatronics.			
Requirements for the award of ECTS credit points	The credit points are awarded if the module assessment is passed. The module assessment consists of an oral exam (PL1, 20 min.), a lab course (PL2) and a project (PL3, 30 hours).			
ECTS credit points	7 ECTS credit points			
and grades	The module grade M is calculated as follows: M = (4PL1 + PL2 + 2PL3)/7			
Frequency	Annually, in the winter semester			

Workload	210 hours
Duration	1 semester

Module number	Module name	Lecturer in charge
MT-A14-G	Electrified Mobility (<i>Elektrifizierte Mobilität</i>)	Prof. DrIng. B. Bäker
Contents and objectives	Image: Content: Description Energy management and operating strategies in mobile and stationary systems as well as diagnosis of mechatronic vehicle systems. The focus is on: 1. Electrification of the drive train and fundamentals of energy management 2. Characterization of electrical storage systems in stationary and mobile operation 3. Design of operating strategies for electrified drive trains 4. Methods of onboard and offboard diagnostics Objective: Having completed this module, the students are able to 1. develop, evaluate and optimize energy management systems and operating strategies. 2. develop diagnostic capable electrical and mechatronic vehicle systems. 2. develop diagnostic capable electrical and mechatronic vehicle systems.	
Modes of teaching and learning	3 SWS lecture, 2 SWS lab course, and self-study	
Prerequisites	Competences that can be acquired in modules such as MT-12 08 25 Measurement and Sensor Techniques/Actuators, MT-12 01 23 Micro Computer Engineering/Embedded Controller and MT-12 08 01 Fundamentals of Electrical Engineering	
Usability	This module is an elective module of the group "applications" within the <i>Diplom</i> programme in Mechatronics.	
Requirements for the award of ECTS credit points	The credit points are awarded if the module assessment is passed. The module assessment consists of one written exam (120 min.) on objective 1 (K1), a written exam (90 min.) on objective 2 as well as several lab sessions on objective 1 and 2.	
ECTS credit points and grades	7 ECTS credit points The module grade M is calculated as follows: M = (K1 + K2)/2	
Frequency	Annually, in the winter semester	
Workload	210 hours	
Duration	1 semester	