Directory of Modules for Visiting Students

Diplom Programme in Electrical Engineering

Faculty of Electrical and Computer Engineering
Information Package for International Visiting and Exchange Students
February 2022
The Faculty of Electrical and Computer Engineering at the Technische Universität Dresden offers the Diplom degree programme in Electrical Engineering. This programme is an integrated five-year (single-tier) programme and thus includes Bachelor as well as Master's level.

Structure

The degree programme in Electrical Engineering is divided into basic studies and main studies. The basic studies include semester 1-4 (= first and second year of the programme); the main studies include semester 5-10 (= third until fifth year of the programme).

The programme comes in modules. Each module consists of 1, 2, 3 or 4 parts, i.e. courses. Mostly the courses name is equivalent to the module name but sometimes it differs.

You must visit all parts/courses of one module!

Also, you have to choose minimum 70% of the modules offered by the Faculty of Electrical and Computer Engineering!

Language of instruction

The study programme is held in German, however, a very few modules are taught in English, too. Students who apply for this study programme should have German language skills of at least **B1**.

Specialization areas

Within the main studies, there are 5 specialization areas:

- Automation, Measurement and Control / Automatisierungs-, Mess- und Regelungstechnik
- Electrical Power Engineering / Elektroenergietechnik
- Electronic Systems and Technology and Biomedical Engineering / Geräte-, Mikro- und Medizintechnik
- Communications and Information Technology / Informationstechnik
- Microelectronics / Mikroelektronik

In order to avoid timetable conflicts you should choose from one specialization area!

Content of the following module catalogue

1. **Overview of the basic studies modules**, 1st-4th semester, Bachelor level – click [here](#)
2. **Overview of the main studies modules**, 5th-10th semester, all specializations – click [here](#)
 - Specialization Automation, Measurement and Control – click [here](#)
 - Specialization Electrical Power Engineering – click [here](#)
 - Specialization Electronic Systems and Technology and Biomedical Engineering – click [here](#)
 - Specialization Communications and Information Technology – click [here](#)
 - Specialization Microelectronics – click [here](#)
3. **Overview of the research oriented elective modules**, 9th semester – click [here](#)
4. **Module descriptions of the basic studies modules** – click [here](#)
5. **Module descriptions of the main studies modules** – click [here](#)
FAQ

The FAQ shall answer any questions about the module catalogue.

Why is it called modules but not courses?

Each module consists of 1, 2, 3 or 4 parts, i.e. courses. Mostly, if it is just one part, the course name is equivalent to the module name.

In which semester are the modules offered?

Please look in the columns “winter semester” / “summer semester”. The academic year at the TU Dresden is divided into the winter semester (October–March) and summer semester (April–September). The semester dates for the following academic years can be found here. Our module descriptions inform you in which semester, i.e. winter or summer semester, the respective module is offered. When setting up your learning agreement it is important to consider at first which semester you are coming to the TU Dresden (either the winter or summer semester) and then choose appropriate modules.

What level does the module have?

Please look in the columns “1st semester”, “2nd semester” etc. to find out the semester when it is held. Basic studies are from 1st-4th semester; main studies from 5th-10th semester.

Why are the 7th and 10th semester not indicated?

During the 7th our students conduct a traineeship in companies. In the 10th they write their final thesis. That is why you see the columns for the 5th, 6th, 8th, 9th semester only. The 8th is in summer semester and the 9th in winter semester. Some modules take two semesters and start in the 8th semester, i.e. summer semester. Please make sure that you visit the whole module!

How long is an “hour per week“?

An hour per week (German: SWS =Semesterwochenstunde) is one lesson of 45 minutes per week during the teaching period. At the TU Dresden, lessons usually last for 90 minutes, i.e. one double lesson (German: Doppelstunde (DS)). 1 double lesson (Doppelstunde) = 2 hours per week (Semesterwochenstunde)

What does L/T/P mean?

- L means lecture
- T means tutorial
- P means practical lab course
What does 2/2/0 or 4/4/1 mean?

The first number stands for the hours per week for the lecture.
The second number stands for the hours per week for the exercise.
The third number stands for the hours per week for the practical lab course.

Examples:
2/2/0 = 2 hours per week lectures (90 minutes lecture every week), 2 hours per week tutorial (90 minutes exercise every week), no practical lab course

4/1/1 = 4 hours per week lectures (180 minutes lecture every week), 1 hour (45 minutes) per week tutorial but mostly conducted as 90 minutes every other week, 1 hour (45 minutes) per week practical lab course but conducted as 90 minutes every other week or as block course.

What does “PL” mean?

It is German for Prüfungsleistung which means assessment.

I have chosen a module – what to do next?

After you have chosen a module you should know which parts are included in the module, in which semester the parts take place, and if a lecture, tutorial and/or practical lab course is included. Furthermore you should search for it in the timetables.

Detailed information you can find on the websites Plan your Studies as well as Create your timetable.

Note: The English version of our module descriptions is not legally binding.
<table>
<thead>
<tr>
<th>Module number, with link to description</th>
<th>Module name</th>
<th>1<sup>st</sup> semester</th>
<th>2<sup>nd</sup> semester</th>
<th>3<sup>rd</sup> semester</th>
<th>4<sup>th</sup> semester</th>
<th>Language of instruction</th>
<th>ECTS Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-01 04 01</td>
<td>Introduction to Analysis and Algebra Algebraische und analytische Grundlagen</td>
<td>6/4/0 PL</td>
<td></td>
<td></td>
<td></td>
<td>German</td>
<td>11</td>
</tr>
<tr>
<td>ET-01 04 02</td>
<td>Calculus for Functions with Several Variables Mehrdimensionale Differential- und Integralrechnung</td>
<td></td>
<td>4/4/0 PL</td>
<td></td>
<td></td>
<td>German</td>
<td>9</td>
</tr>
<tr>
<td>ET-13 00 01</td>
<td>Materials and Engineering Mechanics Werkstoffe und Technische Mechanik</td>
<td>2/1/0 PL</td>
<td>2/2/0 PL</td>
<td></td>
<td></td>
<td>German</td>
<td>7</td>
</tr>
<tr>
<td>ET-02 06 04 05</td>
<td>Basics of Science Naturwissenschaftliche Grundlagen</td>
<td>2/2/0 PL</td>
<td>2/1/0 PL</td>
<td></td>
<td></td>
<td>German</td>
<td>7</td>
</tr>
<tr>
<td>ET-11 02 01</td>
<td>Computer Science Informatik</td>
<td>2/1/0 PL</td>
<td>2/0/1 2 PL</td>
<td></td>
<td></td>
<td>German</td>
<td>6</td>
</tr>
<tr>
<td>ET-12 01 01</td>
<td>Microcomputer Technology Mikrorechentechnik</td>
<td></td>
<td>2/0/1 1/0/2 PL</td>
<td></td>
<td></td>
<td>German</td>
<td>7</td>
</tr>
<tr>
<td>ET-01 04 03</td>
<td>Complex Function Theory Funktionentheorie</td>
<td>2/2/0 PL</td>
<td></td>
<td></td>
<td></td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>ET-01 04 04</td>
<td>Partial Differential Equations and Probability Theory Partielle Differentialgleichungen und Wahrscheinlichkeitstheorie</td>
<td></td>
<td>2/2/0 PL</td>
<td></td>
<td></td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>ET-12 08 01</td>
<td>Fundamentals of Electrical Engineering Grundlagen der Elektrotechnik</td>
<td>2/2/0 PL</td>
<td></td>
<td></td>
<td></td>
<td>German</td>
<td>6</td>
</tr>
<tr>
<td>ET-12 08 02</td>
<td>Electric and Magnetic Fields Elektrische und magnetische Felder</td>
<td>4/2/0 PL</td>
<td></td>
<td></td>
<td></td>
<td>German</td>
<td>6</td>
</tr>
<tr>
<td>ET-12 08 03</td>
<td>Dynamical Electrical Networks Dynamische Netzwerke</td>
<td></td>
<td>2/2/1 PL</td>
<td>0/0/2 PL</td>
<td></td>
<td>German</td>
<td>8</td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>ECTS</td>
<td>Language</td>
<td>Notes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------</td>
<td>------</td>
<td>----------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 08 31</td>
<td>Electronic Circuits</td>
<td>4/2/0</td>
<td>PL</td>
<td>German</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 09 01</td>
<td>Systems Theory</td>
<td>2/1/0</td>
<td>2/2/0</td>
<td>German</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 01 02</td>
<td>Automation Engineering and Measurement</td>
<td>3/1/0</td>
<td>3/2/0</td>
<td>German</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 04 01</td>
<td>Electrical Power Engineering</td>
<td>3/1/0</td>
<td>0/0/1</td>
<td>German</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 05 01</td>
<td>Electronic Systems Design</td>
<td>2/2/0</td>
<td>PL</td>
<td>German</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 08 11</td>
<td>Microelectronic Technologies and Devices</td>
<td>5/1/0</td>
<td>PL</td>
<td>German</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 10 24</td>
<td>Communications</td>
<td>2/1/0</td>
<td>PL</td>
<td>German</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 06 10</td>
<td>Project Electronics Technology</td>
<td>0/0/2</td>
<td>PL</td>
<td>German</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Overview of the Main studies modules 5th-10th semester
(relevant for all specialization areas)

<table>
<thead>
<tr>
<th>Module number, with link to description</th>
<th>Module name</th>
<th>5th semester</th>
<th>6th semester</th>
<th>Language of instruction</th>
<th>ECTS Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>winter semester</td>
<td>summer semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L/T/P</td>
<td>L/T/P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 02 01</td>
<td>Electromagnetic Theory</td>
<td>2/2/0 PL</td>
<td>2/2/0 PL</td>
<td>German</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Theoretische Elektrotechnik</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 02 02</td>
<td>Numerical Analysis</td>
<td>2/1/0 PL</td>
<td></td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Numerische Mathematik</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 08 32</td>
<td>Electronic Circuits – Experiments and Measurements</td>
<td>0/0/2 PL</td>
<td></td>
<td>German</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Schaltungstechnik – Experimente und Messungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 08 06</td>
<td>Measurement and Sensor Techniques</td>
<td>2/1/1 PL</td>
<td></td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mess- und Sensortechnik</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Overview of the Main studies modules 5th-10th semester

In the specialization area: **Automation, Measurement and Control**

<table>
<thead>
<tr>
<th>Module number, with link to description</th>
<th>Module name</th>
<th>5th semester winter semester L/T/P</th>
<th>6th semester summer semester L/T/P</th>
<th>8th semester summer semester L/T/P</th>
<th>9th semester winter semester L/T/P</th>
<th>Language of instruction</th>
<th>ECTS Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 01 06</td>
<td>Advanced Seminar Automation, Measurement and Control Hauptseminar Automatisierungs-, Mess- und Regelungstechnik</td>
<td>0/2/0 PL</td>
<td></td>
<td></td>
<td></td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>ET-12 01 03</td>
<td>Discrete event systems and control Ereignisdiskrete Systeme und Steuerungen</td>
<td>2/1/0 PL</td>
<td>2/0/1 PL</td>
<td></td>
<td></td>
<td>German</td>
<td>6</td>
</tr>
<tr>
<td>ET-12 01 05</td>
<td>Modelling and Simulation Modellbildung und Simulation</td>
<td>1/1/0 PL</td>
<td>2/1/1 PL</td>
<td></td>
<td></td>
<td>German</td>
<td>8</td>
</tr>
<tr>
<td>ET-12 13 01</td>
<td>Control of Continuous-Time Processes Regelungstechnik</td>
<td>3/1/1 PL</td>
<td>2/1/1 PL</td>
<td></td>
<td></td>
<td>German</td>
<td>9</td>
</tr>
<tr>
<td>ET-12 01 04</td>
<td>Process Control Prozessleittechnik</td>
<td>6/2/2 PL</td>
<td></td>
<td></td>
<td></td>
<td>German</td>
<td>11</td>
</tr>
<tr>
<td>ET-12 01 10</td>
<td>Industrial Automation Engineering 1 Industrielle Automatisierungstechnik – Basismodul</td>
<td>3/1/0 PL</td>
<td>0/0/2 PL</td>
<td></td>
<td></td>
<td>German</td>
<td>7</td>
</tr>
<tr>
<td>ET-12 01 21</td>
<td>Project Planning for Process Automation Systems Projektierung von Automatisierungssystemen</td>
<td>2/2/2 PL</td>
<td></td>
<td></td>
<td></td>
<td>German / partly in English</td>
<td>7</td>
</tr>
<tr>
<td>ET-12 08 20</td>
<td>Laser Sensor Technology Lasersensorik</td>
<td>4/1/1 PL</td>
<td></td>
<td></td>
<td></td>
<td>German</td>
<td>7</td>
</tr>
<tr>
<td>ET-12 13 10</td>
<td>Nonlinear Systems and Process Identification Nichtlineare Systeme und Prozessidentifikation</td>
<td>4/2/0 PL</td>
<td></td>
<td></td>
<td></td>
<td>German</td>
<td>7</td>
</tr>
<tr>
<td>ET-12 01 11</td>
<td>Industrial Automation Engineering 2 Industrielle Automatisierungstechnik – Aufbaumodul</td>
<td>3/2/1 PL</td>
<td></td>
<td></td>
<td></td>
<td>German/English</td>
<td>7</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Lecture Hours</td>
<td>Tutorial Hours</td>
<td>Language</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------------------</td>
<td>---------</td>
<td>---------------</td>
<td>----------------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 01 12</td>
<td>Robotics</td>
<td>2/1/0</td>
<td>2/1/1 PL</td>
<td>2/1/2 PL</td>
<td>German</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 01 13</td>
<td>Systems Design</td>
<td></td>
<td></td>
<td>4/2/0 PL</td>
<td>German</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 13 11</td>
<td>Nonlinear Control Systems, Advanced</td>
<td>2/0/0</td>
<td>2/0/0 PL</td>
<td>2/0/2 PL</td>
<td>German</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 13 12</td>
<td>Optimal and Robust Multivariable</td>
<td>2/0/0</td>
<td>2/0/0 PL</td>
<td>2/0/2 PL</td>
<td>German</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 01 20</td>
<td>Human Machine System Technology</td>
<td></td>
<td>2/2/0 PL</td>
<td>2/2/2 PL</td>
<td>German</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 01 22</td>
<td>Process Simulation and Operation</td>
<td></td>
<td>1/1/0 PL</td>
<td>1/1/2 PL</td>
<td>German</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 08 21</td>
<td>Photonic Measurement System Technology</td>
<td></td>
<td>4/2/0 PL</td>
<td>4/2/2 PL</td>
<td>German</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Overview of the Main studies modules 5th-10th semester

In the specialization area: **Electrical Power Engineering**

<table>
<thead>
<tr>
<th>Module number, with link to description</th>
<th>Module name</th>
<th>5th semester winter semester</th>
<th>6th semester summer semester</th>
<th>8th semester summer semester</th>
<th>9th semester winter semester</th>
<th>Language of instruction</th>
<th>ECTS Credits</th>
</tr>
</thead>
</table>
| ET-12 02 04 | Electrical Machines
Elektrische Maschinen | 3/1/0 PL | 0/0/1 PL | | | German | 5 |
| ET-12 04 02 | High Voltage and High Current Engineering
Hochspannungs- und Hochstromtechnik | 2/1/1 2 PL | | | | German | 5 |
| ET-12 04 03 | Fundamentals of Electrical Power Systems
Grundlagen elektrischer Energieversorgungssysteme | 3/2/0 2 PL | | | | German | 5 |
| ET-12 02 03 | Power Electronics
Leistungselektronik | 2/1/0 | 1/1/1 2 PL | | | German | 7 |
| ET-12 02 05 | Electric Drives
Elektrische Antriebe | 3/1/1 2 PL | | | | German | 6 |
| ET-12 02 06 | Advanced Seminar Electrical Power Engineering
Hauptseminar Elektrische Energietechnik | 0/2/0 2 PL | | | | German | 4 |
| ET-12 04 04 | Operating of Electrical Power Systems
Betrieb elektrischer Energieversorgungssysteme | 2/1/2 3 PL | | | | German | 6 |
| ET-12 02 08 | Numerical Methods for Electromagnetic Theory
Numerische Verfahren der Theoretischen Elektrotechnik | | 3/1/2 2 PL | | | German | 7 |
| ET-12 02 10 | Power Electronics, advanced
Vertiefung Leistungselektronik | | 3/2/1 2 PL | | | German | 7 |
| ET-12 02 11 | Microprocessor Control in Power Electronics
Mikroprozessorsteuerung in der Leistungselektronik | | 2/1/2 2 PL | | | German | 7 |
<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Language</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 04 05</td>
<td>Network Integration, System Performance and Quality of Supply</td>
<td>3/2/1</td>
<td>German</td>
<td>7</td>
</tr>
<tr>
<td>ET-12 04 06</td>
<td>Planning of Electrical Power Systems</td>
<td>4/3/0</td>
<td>German</td>
<td>7</td>
</tr>
<tr>
<td>ET-12 04 07</td>
<td>High Voltage Engineering</td>
<td>5/0/1</td>
<td>German</td>
<td>7</td>
</tr>
<tr>
<td>ET-12 02 07</td>
<td>Electromagnetic Compatibility</td>
<td>2/0/2</td>
<td>German</td>
<td>7</td>
</tr>
<tr>
<td>ET-12 02 09</td>
<td>Selected Topics of Electromagnetic Theory</td>
<td>2/1/0</td>
<td>German</td>
<td>7</td>
</tr>
<tr>
<td>ET-12 02 12</td>
<td>Electromagnetic Energy Conversion</td>
<td>4/1/1</td>
<td>German</td>
<td>7</td>
</tr>
<tr>
<td>ET-12 02 13</td>
<td>Electrical Drive Engineering</td>
<td>4/1/1</td>
<td>German</td>
<td>7</td>
</tr>
<tr>
<td>ET-12 02 14</td>
<td>Selected Topics of Electrical Power Engineering</td>
<td>2/1/0</td>
<td>German</td>
<td>7</td>
</tr>
<tr>
<td>ET-12 02 15</td>
<td>Controlled Power Systems</td>
<td>4/1/1</td>
<td>German</td>
<td>7</td>
</tr>
<tr>
<td>ET-12 02 16</td>
<td>Design of Power Electronic Systems</td>
<td>4/2/0</td>
<td>German</td>
<td>7</td>
</tr>
<tr>
<td>ET-12 02 17</td>
<td>Application of Electric Drives</td>
<td>4/1/1</td>
<td>German</td>
<td>7</td>
</tr>
<tr>
<td>ET-12 04 08</td>
<td>Protection and Control of Electrical Power Systems</td>
<td>3/2/1</td>
<td>German</td>
<td>7</td>
</tr>
<tr>
<td>ET-12 04 09</td>
<td>Stress of Electrical Equipment</td>
<td>3/1/2</td>
<td>German</td>
<td>7</td>
</tr>
<tr>
<td>ET-12 04 10</td>
<td>Experimental High Voltage Engineering</td>
<td>4/0/2</td>
<td>German</td>
<td>7</td>
</tr>
</tbody>
</table>
Overview of the Main studies modules 5th-10th semester

In the specialization area: **Electronic Systems and Technology and Biomedical Engineering**

<table>
<thead>
<tr>
<th>Module number, with link to description</th>
<th>Module name</th>
<th>5<sup>th</sup> semester</th>
<th>6<sup>th</sup> semester</th>
<th>8<sup>th</sup> semester</th>
<th>9<sup>th</sup> semester</th>
<th>Language of instruction</th>
<th>ECTS Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 05 02</td>
<td>Advanced Seminar Electronic Systems and Technology and Biomedical Engineering Hauptseminar Geräte-, Mikro und Medizintechnik</td>
<td>0/2/0 2 PL</td>
<td>1/1/0 1 PL</td>
<td>2/0/1 2 PL</td>
<td>2/1/0 2 PL</td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>ET-12 05 04</td>
<td>Design Methodologies Konstruktion</td>
<td>1/3/0 PL</td>
<td>1/1/0 1 PL</td>
<td>2/0/1 2 PL</td>
<td>2/1/0 2 PL</td>
<td>German</td>
<td>6</td>
</tr>
<tr>
<td>ET-12 06 01</td>
<td>Technologies for Electronic Packaging and Assembly Technologien der Elektronik</td>
<td>2/0/1 PL</td>
<td>2/0/1 2 PL</td>
<td>2/1/0 2 PL</td>
<td>2/1/0 2 PL</td>
<td>German</td>
<td>6</td>
</tr>
<tr>
<td>ET-12 07 01</td>
<td>Biomedical Engineering Biomedizinische Technik</td>
<td>2/1/0 2 PL</td>
<td>2/0/0 1 PL</td>
<td>3/4/0 2 PL</td>
<td>2/0/0 1 PL</td>
<td>German</td>
<td>6</td>
</tr>
<tr>
<td>ET-12 05 03</td>
<td>System Design Gerätechnik</td>
<td>3/4/0 2 PL</td>
<td>2/0/1 2 PL</td>
<td>4/1/0 2 PL</td>
<td>3/4/0 2 PL</td>
<td>German</td>
<td>8</td>
</tr>
<tr>
<td>ET-12 05 05</td>
<td>Physical Design and Physical Design Automation Rechnergestützter Entwurf</td>
<td>2/0/1 2 PL</td>
<td>3/1/0 2 PL</td>
<td>2/1/0 2 PL</td>
<td>3/1/0 2 PL</td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>ET-12 06 03</td>
<td>Quality Assurance Qualitätssicherung</td>
<td>2/1/0 2 PL</td>
<td>2/0/1 2 PL</td>
<td>5/1/0 2 PL</td>
<td>5/1/0 2 PL</td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>ET-12 05 06</td>
<td>Product and Precision Device Engineering Entwicklung feinwerktechnischer Produkte</td>
<td>2/0/4 2 PL</td>
<td>2/0/1 2 PL</td>
<td>7/1/0 2 PL</td>
<td>7/1/0 2 PL</td>
<td>German</td>
<td>7</td>
</tr>
<tr>
<td>ET-12 05 07</td>
<td>Simulation Methodologies in System Design Simulation in der Gerätechnik</td>
<td>2/4/0 2 PL</td>
<td>2/0/1 2 PL</td>
<td>7/1/0 2 PL</td>
<td>7/1/0 2 PL</td>
<td>German</td>
<td>7</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Language</td>
<td>Grade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>---------</td>
<td>----------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 06 05</td>
<td>Board Level Reliability of Electronic Products</td>
<td>4/0/2</td>
<td>PL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Funktionsmaterialien der Aufbau- und Verbindungstechnik der Elektronik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 06 06</td>
<td>Computer-Aided Electronics Manufacturing</td>
<td>4/2/0</td>
<td>PL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rechnergestützte Elektronikfertigung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 07 02</td>
<td>Medical and Physiological Principles</td>
<td>4/1/1</td>
<td>PL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medizinisch-physiologische Grundlagen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 07 05</td>
<td>Medical Imaging</td>
<td>3/1/2</td>
<td>PL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medizinische Bildgebung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 05 08</td>
<td>Electromechanical Design</td>
<td>4/2/0</td>
<td>PL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gerätekonstruktion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 05 09</td>
<td>Electronic Design Automation</td>
<td>2/4/0</td>
<td>PL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Entwurfsautomatisierung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 06 07</td>
<td>Hybrid Integration</td>
<td>4/0/2</td>
<td>PL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hybridintegration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3d excursions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 06 08</td>
<td>Nondestructive Testing</td>
<td>4/0/2</td>
<td>PL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zerstörungsfreie Prüfung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 07 03</td>
<td>Biomedical Devices</td>
<td>3/2/1</td>
<td>PL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biomedizinisch-technische Systemen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 07 04</td>
<td>Cooperative Systems in Biomedical Engineering</td>
<td>4/1/1</td>
<td>PL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kooperative Systeme der Biomedizinischen Technik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Overview of the Main studies modules 5th-10th semester

In the specialization area: **Communications and Information Technology**

<table>
<thead>
<tr>
<th>Module number, with link to description</th>
<th>Module name English</th>
<th>Module name German</th>
<th>5th semester winter semester</th>
<th>6th semester summer semester</th>
<th>8th semester summer semester</th>
<th>9th semester winter semester</th>
<th>Language of instruction</th>
<th>ECTS Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 08 12</td>
<td>Integrated Analogue Circuits</td>
<td>Integrierte Analogschaltungen</td>
<td>2/2/0 PL</td>
<td></td>
<td></td>
<td></td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>ET-12 09 02</td>
<td>Signal Theory</td>
<td>Signaltheorie</td>
<td>4/2/0 2 PL</td>
<td></td>
<td></td>
<td></td>
<td>German</td>
<td>7</td>
</tr>
<tr>
<td>ET-12 08 18</td>
<td>Integrated Circuit Design</td>
<td>Schaltkreis- und Systementwurf</td>
<td>2/1/0</td>
<td>0/0/2 PL</td>
<td></td>
<td></td>
<td>German</td>
<td>7</td>
</tr>
<tr>
<td>ET-12 09 06</td>
<td>Acoustics</td>
<td>Akustik</td>
<td>2/2/0 PL</td>
<td></td>
<td></td>
<td></td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>ET-12 10 01</td>
<td>Information Theory</td>
<td>Informationstheorie</td>
<td>2/2/0 PL</td>
<td></td>
<td></td>
<td></td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>ET-12 10 02</td>
<td>Advanced Seminar Communication Systems</td>
<td>Hauptseminar Kommunikationssysteme</td>
<td>0/2/0 2 PL</td>
<td></td>
<td></td>
<td></td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>ET-12 10 03</td>
<td>RF Engineering</td>
<td>Hoch- und Höchstfrequenztechnik</td>
<td>2/2/0 PL</td>
<td></td>
<td></td>
<td></td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>ET-12 10 04</td>
<td>Communication Networks, Basic Module</td>
<td>Kommunikationsnetze, Basismodul</td>
<td>2/2/0 PL</td>
<td></td>
<td></td>
<td></td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>ET-12 08 16</td>
<td>Radio Frequency Integrated Circuits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/1/2 PL</td>
<td>English</td>
<td>7</td>
</tr>
<tr>
<td>ET-12 08 20</td>
<td>Laser Sensor Technology</td>
<td>Lasersensorik</td>
<td></td>
<td></td>
<td></td>
<td>4/1/1 2 PL</td>
<td>German</td>
<td>7</td>
</tr>
<tr>
<td>ET-12 09 13</td>
<td>Applied Intelligent Signal Processing</td>
<td>Angewandte intelligente Signalverarbeitung</td>
<td>4/1/1 PL</td>
<td></td>
<td></td>
<td></td>
<td>German</td>
<td>7</td>
</tr>
<tr>
<td>ET-12 09 08</td>
<td>Room Acoustics / Virtual Reality</td>
<td>Raumakustik / Virtuelle Realität</td>
<td>4/0/2 2 PL</td>
<td></td>
<td></td>
<td></td>
<td>German</td>
<td>7</td>
</tr>
<tr>
<td>ET-12 10 05</td>
<td>Communication Networks, Advanced I</td>
<td>Kommunikationsnetze, Aufbaumodul</td>
<td>4/2/0 2 PL</td>
<td></td>
<td></td>
<td></td>
<td>German</td>
<td>7</td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Language</td>
<td>ECTS</td>
<td>Semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>-------------------</td>
<td>------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| ET-12 10 09| Information Theory, Advanced I
| | Aufbaumodul Informationstheorie | German or English | 7 | 4/2/0 2 PL |
| ET-12 10 12| Antennas and Propagation
| | Antennen und Wellenausbreitung | German | 7 | 4/2/0 2 PL |
| ET-12 10 14| Optical Communications
| | Optische Nachrichtentechnik | German | 7 | 4/2/0 2 PL |
| ET-12 08 07| Introduction to the Theory of Nonlinear Systems
| | Einführung in die Theorie nichtlinearer Systeme | German/English | 7 | 2/1/0 2 PL |
| ET-12 08 08| Circuit Simulation and System Identification
| | Schaltungssimulation und Systemidentifikation | German | 7 | 1/1/0 2 PL |
| ET-12 09 05| Electro-Acoustics
| | Elektroakustik | German | 7 | 2/0/0 2 PL |
| ET-12 10 21| Network Coding in Theory and Practice
| | Netzwerkkodierung in Theorie und Praxis | German or English | 7 | 4/2/0 2 PL |
| ET-12 10 08| Statistics
| | Statistik | German | 7 | 2/1/0 2 PL |
| ET-12 10 16| Digital Signal Processing and Hardware
| | Implementation
| | Digitale Signalverarbeitung und Hardware-Implementierung | German/English | 7 | 2/1/0 2 PL |
| ET-12 08 17| Integrated Circuits for Broadband Optical
| | Communications | English | 7 | 3/1/2 2 PL |
| ET-12 08 19| VLSI Processor Design
| | VLSI-Prozessorentwurf | English | 7 | 2/2/2 2 PL |
| ET-12 08 21| Photonic Measurement System Technology
| | Photonische Messsystemtechnik | German | 7 | 4/2/0 2 PL |
| ET-12 09 04| Speech Technology
| | Sprachtechnologie | German | 7 | 4/0/2 2 PL |
| ET-12 09 07| Technical Acoustics / Vehicle Acoustics
| | Technische Akustik / Fahrzeugakustik | German | 7 | 2/2/2 2 PL |
| ET-12 09 09| Psychoacoustics / Sound Design
| | Psychoakustik / Sound Design | German | 7 | 4/2/0 2 PL |
| ET-12 10 20| Communication Networks, Advanced II
<p>| | Kommunikationsnetze, Vertiefungsmodul | English | 7 | 4/2/0 2 PL |</p>
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Title (German)</th>
<th>Start Date</th>
<th>Duration</th>
<th>Language(s)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 10 22</td>
<td>Cooperative Communications</td>
<td>Kooperative Kommunikation</td>
<td>4/2/0</td>
<td>2 PL</td>
<td>German or English</td>
<td>7</td>
</tr>
<tr>
<td>ET-12 10 19</td>
<td>Optimization in modern Communication Systems</td>
<td>Optimierung in modernen Kommunikationssystemen</td>
<td>4/2/0</td>
<td>2 PL</td>
<td>German or English</td>
<td>7</td>
</tr>
<tr>
<td>ET-12 10 13</td>
<td>RF Systems</td>
<td>Hochfrequenzsysteme</td>
<td>4/2/0</td>
<td>PL</td>
<td>German</td>
<td>7</td>
</tr>
<tr>
<td>ET-12 10 15</td>
<td>Basics Mobile Communications Systems</td>
<td>Grundlagen mobiler Nachrichtensysteme</td>
<td>4/2/0</td>
<td>PL</td>
<td>German</td>
<td>7</td>
</tr>
<tr>
<td>ET-12 10 17</td>
<td>Upgrade Mobile Communication Systems</td>
<td>Vertiefung Mobile Nachrichtensysteme</td>
<td>4/2/0</td>
<td>PL</td>
<td>German/English</td>
<td>7</td>
</tr>
<tr>
<td>ET-12 10 18</td>
<td>Digital Signal Processing Systems</td>
<td>Digitale Signalverarbeitungssysteme</td>
<td>3/1/2</td>
<td>2 PL</td>
<td>German</td>
<td>7</td>
</tr>
<tr>
<td>ET-12 08 27</td>
<td>Neuromorphic VLSI Systems</td>
<td>Neuromorphe VLSI Systeme</td>
<td>4/2/0</td>
<td>2 PL</td>
<td>German</td>
<td>7</td>
</tr>
</tbody>
</table>
Overview of the Main studies modules 5th-10th semester

In the specialization area: **Microelectronics**

<table>
<thead>
<tr>
<th>Module number, with link to description</th>
<th>Module name</th>
<th>5th semester winter</th>
<th>6th semester summer</th>
<th>8th semester summer</th>
<th>9th semester winter</th>
<th>Language of instruction</th>
<th>ECTS Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 08 12</td>
<td>Integrated Analogue Circuits</td>
<td>2/2/0 PL</td>
<td>0/0/0 PL</td>
<td>0/0/0 PL</td>
<td>0/0/0 PL</td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>ET-12 06 02</td>
<td>Electronic Packaging</td>
<td>2/0/0 PL</td>
<td>0/0/2 PL</td>
<td>0/0/2 PL</td>
<td>0/0/2 PL</td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>ET-12 08 13</td>
<td>Physics of selected devices</td>
<td>2/1/0 PL</td>
<td>2/0/1 PL</td>
<td>2/0/1 PL</td>
<td>2/0/1 PL</td>
<td>German</td>
<td>6</td>
</tr>
<tr>
<td>ET-12 08 23</td>
<td>Computer Aided Integrated Circuit Design</td>
<td>2/1/0 PL</td>
<td>2/0/2 PL</td>
<td>2/0/2 PL</td>
<td>2/0/2 PL</td>
<td>German</td>
<td>8</td>
</tr>
<tr>
<td>ET-12 12 01</td>
<td>Microsystems and Semiconductor Technology</td>
<td>2/0/0 PL</td>
<td>6/1/3 PL</td>
<td>6/1/3 PL</td>
<td>6/1/3 PL</td>
<td>German</td>
<td>12</td>
</tr>
<tr>
<td>ET-12 08 15</td>
<td>Advanced Seminar: Micro- and Nanoelectronics</td>
<td>0/2/0 PL</td>
<td>0/2/0 PL</td>
<td>0/2/0 PL</td>
<td>0/2/0 PL</td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>ET-12 05 07</td>
<td>Simulation Methodologies in System Design</td>
<td>2/4/0 PL</td>
<td>2/4/0 PL</td>
<td>2/4/0 PL</td>
<td>2/4/0 PL</td>
<td>German</td>
<td>7</td>
</tr>
<tr>
<td>ET-12 08 26</td>
<td>Characterization and Modeling of Nanoelectronic Devices</td>
<td>4/1/1 PL</td>
<td>2/0 PL</td>
<td>2/0 PL</td>
<td>2/0 PL</td>
<td>German</td>
<td>7</td>
</tr>
<tr>
<td>ET-12 08 16</td>
<td>Radio Frequency Integrated Circuits</td>
<td>3/1/2 PL</td>
<td>3/1/2 PL</td>
<td>3/1/2 PL</td>
<td>3/1/2 PL</td>
<td>English</td>
<td>7</td>
</tr>
<tr>
<td>ET-12 11 01</td>
<td>Solid-State and Nano Electronics</td>
<td>4/2/0 PL</td>
<td></td>
<td></td>
<td></td>
<td>German</td>
<td>7</td>
</tr>
<tr>
<td>ET-12 12 12</td>
<td>Design of Microelectromechanical Systems</td>
<td>4/2/1 PL</td>
<td>4/2/1 PL</td>
<td>4/2/1 PL</td>
<td>4/2/1 PL</td>
<td>German</td>
<td>7</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Pages</td>
<td>Language</td>
<td>Volume</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 12 03</td>
<td>Applied Thin-Film and Solar Technology</td>
<td>6/0/0 PL</td>
<td>German</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 12 04</td>
<td>Memory Technology</td>
<td>2/1/0 PL</td>
<td>English</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 05 09</td>
<td>Electronic Design Automation</td>
<td>2/4/0 PL</td>
<td>German</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 06 07</td>
<td>Hybrid Integration</td>
<td>4/0/2 PL 3 d excursion</td>
<td>German</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 08 17</td>
<td>Integrated Circuits for Broadband Optical Communications</td>
<td>3/1/2 PL</td>
<td>English</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 08 19</td>
<td>VLSI Processor Design</td>
<td>2/2/2 PL</td>
<td>English</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 11 04</td>
<td>Sensors and Sensor Systems</td>
<td>4/1/1 PL</td>
<td>German</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 11 05</td>
<td>Plasma Technology</td>
<td>4/2/0 PL</td>
<td>German</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 12 05</td>
<td>Characterization of Microstructures</td>
<td>6/0/1 PL</td>
<td>German</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 12 06</td>
<td>New Actuators and Actuator Systems</td>
<td>4/1/1 PL 3 PL</td>
<td>German</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET-12 12 07</td>
<td>Innovative Concepts for Active Nanoelectronic Devices</td>
<td>4/1/1 PL 3 PL</td>
<td>English</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Overview of the Research oriented elective modules, 9th semester

<table>
<thead>
<tr>
<th>Module number with link to description</th>
<th>Module name English</th>
<th>Module name German</th>
<th>9th semester winter semester</th>
<th>Language of instruction</th>
<th>ECTS Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 01 23</td>
<td>Seminar for Graduate Students on Human-Machine-Interaction</td>
<td>Oberseminar Mensch-Maschine-Interaktion</td>
<td>0/2/0 PL</td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>ET-12 01 24</td>
<td>Seminar for Graduate Students on Automation</td>
<td>Oberseminar Automatisierungstechnik</td>
<td>0/2/0 PL</td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>ET-12 02 18</td>
<td>Seminar for Graduate Students on Electromagnetic Theory and Compatibility</td>
<td>Oberseminar Theoretische Elektrotechnik und Elektromagnetische Verträglichkeit</td>
<td>0/2/0 PL</td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>ET-12 02 19</td>
<td>Seminar for Graduate Students on Power Electronics</td>
<td>Oberseminar Leistungselektronik</td>
<td>0/2/0 PL</td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>ET-12 02 20</td>
<td>Seminar for Graduate Students on Machines and Drives</td>
<td>Oberseminar Maschinen und Antriebe</td>
<td>0/2/0 PL</td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>ET-12 04 11</td>
<td>Seminar for Graduate Students on Electrical Power Engineering</td>
<td>Oberseminar Elektrische Energieversorgung</td>
<td>0/2/0 PL</td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>ET-12 05 10</td>
<td>Seminar for Graduate Students on System Design</td>
<td>Oberseminar Gerätetechnik</td>
<td>0/2/0 PL</td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>ET-12 06 09</td>
<td>Seminar for Graduate Students on Electronic Packaging</td>
<td>Oberseminar Aufbau- und Verbindungstechnik</td>
<td>0/2/0 PL</td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>ET-12 07 06</td>
<td>Seminar for Graduate Students on Biomedical Engineering</td>
<td>Oberseminar Biomedizinische Technik</td>
<td>0/2/0 PL</td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>ET-12 08 22</td>
<td>Seminar for Graduate Students on Measurement System Technology</td>
<td>Oberseminar Messsystemtechnik</td>
<td>0/2/0 PL</td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>ET-12 08 25</td>
<td>Seminar for Graduate Students on Micro- and Nanoelectronics</td>
<td>Oberseminar Mikro- und Nanoelektronik</td>
<td>0/2/0 PL</td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>ET-12 10 23</td>
<td>Seminar for Graduate Students on Information Technology</td>
<td>Oberseminar Informationstechnik</td>
<td>0/2/0 PL</td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>ET-12 12 08</td>
<td>Seminar for Graduate Students on Microelectronics</td>
<td>Oberseminar Mikroelektronik</td>
<td>0/2/0 PL</td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>ET-12 13 13</td>
<td>Seminar for Graduate Students on Control Theory</td>
<td>Oberseminar Regelungs- und Steuerungstheorie</td>
<td>0/2/0 PL</td>
<td>German</td>
<td>4</td>
</tr>
</tbody>
</table>
Module descriptions
Basic studies modules 1st-4th semester

<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-01 04 01</td>
<td>Introduction to Analysis and Algebra</td>
<td>Prof. Dr. rer. nat. habil. Z. Sasvári</td>
</tr>
</tbody>
</table>

Contents and objectives
Contents of the module are set theory, real and complex numbers, sequences of numbers and series, analysis of real functions of a variable, linear spaces and pictures, matrices and determinants, systems of linear equations, eigenvalues and eigenvectors.

Outcomes:
The students have basic mathematical knowledge and knowledge of algebra. They are capable to calculate with (complex) numbers and to apply functions, sequences and series, vectors (Vector space), determinants and matrices.

Modes of teaching and learning
6 hours per week lectures, 4 hours per week tutorials, and self-study

Prerequisites
knowledge of mathematics on highschool education level

Requirements for the award of ECTS credit points
The credit points are awarded when the module assessment is passed. The module assessment consists of a written exam of 180 minutes.

ECTS credit points and grades
11 ECTS credit points
The module grade is the grade of the exam.

Frequency
Annually, in the winter semester

Workload
330 hours

Duration
1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-01 04 02</td>
<td>Calculus for Functions with Several Variables</td>
<td>Prof. Dr. rer. nat. habil. Z. Sasvári</td>
</tr>
</tbody>
</table>

Contents and objectives

Contents of the module is the analysis of real functions of several variables, vector analysis, function series (power and Fourier series), differential equations.

Outcomes:
The students have knowledge of the differentiation and integration of functions with one and more variables, for the analytical solution of differential equations and differential equation systems and for the vector analysis.

Modes of teaching and learning

4 hours per week lectures, 4 hours per week tutorials, and self-study

Prerequisites

Competencies acquired in modules such as ET-01 04 01 Introduction to Analysis and Algebra.

Requirements for the award of ECTS credit points

The credit points are awarded when the module assessment is passed. The module assessment consists of a written exam of 150 minutes.

ECTS credit points and grades

9 ECTS credit points

The module grade is the grade of the exam.

Frequency

Annually, in the summer semester

Workload

270 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-13 00 01</td>
<td>Materials and Engineering Mechanics</td>
<td>Prof. Dr.-Ing. habil. J. Bauch</td>
</tr>
</tbody>
</table>

Contents and objectives

Content:

Materials with focus on:

1. Overview of materials in Electrical Engineering and Mechatronics, practical examples
2. Fundamentals of materials science
3. Status diagrams and alloys
4. Conductor, semiconductor, dielectric and magnetic materials
5. Materials testing and diagnostics

Statics and science of strength of materials with focus on:

1. Rigid bodies
2. Independent loads, power and torque, method of sections
3. Balance of planar structures (balances of forces and moments)
4. Tensile, compressive and shear stresses including elementary dimensioning concepts
5. Torsion of bars with circular cross-section, straight bending of prismatic beams, strength theories and bar buckling

Objectives:

Having successfully completed this module, the students are familiar with the interrelation between the microscopic structure, the macroscopic properties and the practical aspects of application of materials. They know the theoretical principles of the atomic structure, the bond type, the crystal structure, the real structure as well as the microstructure and are familiar with material testing. Further, they are familiar with the fundamental laws of statics as well as the simplified interrelation between loads, material properties and loads of components. With regard to these topics, they master calculation methods of the structural design and strength evaluation.

Modes of teaching and learning

4 hours per week lectures, 3 hours per week tutorials, and self-study

Prerequisites

knowledge in mathematics and physics on highschool education level
| Requirements for the award of ECTS credit points | The credit points are awarded when the module assessment is passed. The module assessment consists of a written exam of 90 min. (K1) and a written exam of 120 min. (K2, 120 min.). Both elements of assessment must be passed. |
| ECTS credit points and grades | 7 ECTS credit points
The module grade M is calculated as follows:
M = (3PL1 + 4PL2)/7 |
<p>| Frequency | Annually, starting in the winter semester |
| Workload | 210 hours |
| Duration | 2 semesters |</p>
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-02 06 04 05</td>
<td>Basics of Science</td>
<td>Dr. Eduard Lavrov</td>
</tr>
</tbody>
</table>

Contents and objectives

The module covers the main areas of mechanics as well as vibrations and waves from the field of physics. In addition, students can choose either the further particular topics of physics, especially thermodynamics, optics and structure of matter or basic introductions to chemical reactions and processes, especially general and organic chemistry, chemical thermodynamics and electrochemistry, and their practical application.

Outcomes:

After completing the module, the students understand nature-scientific contexts and their application in the engineering practice. With the thinking and working methods of physics and chemistry they are capable of solving problems in physics and chemistry on their own.

Modes of teaching and learning

4 hours per week lectures, 3 hours per week tutorials, and self-study

Prerequisites

knowledge of physics and chemistry on highschool education level.

Requirements for the award of ECTS credit points

The credit points are awarded when the module assessment is passed. The module assessment consists of a written exam of 180 minutes.

ECTS credit points and grades

7 ECTS credit points

The module grade is the grade of the exam.

Frequency

annually, beginning in the winter semester

Workload

210 hours

Duration

2 semesters
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-11 02 01</td>
<td>Computer Science</td>
<td>Prof. Dr.-Ing. Diana Göhringer</td>
</tr>
</tbody>
</table>

Contents and objectives
The module covers the areas of construction and programming of computers. This includes information presentation, Boolean basic circuits, arithmetic units, memory and control units as well as basic concepts of simple calculators and assembler programming, object-oriented programming and alternative programming paradigms. After completing the module the students have competencies and practical skills in the evaluation and design of computer circuits and processor architecture. They are able to program computer at low abstraction level in assembler and at a high level of abstraction in an object-oriented programming language.

Modes of teaching and learning
4 hours per week lectures, 1 hour per week tutorial, 1 hour per week practical lab course, and self-study.

Prerequisites
Knowledge of mathematics on “Abitur” level.

Requirements for the award of ECTS credit points
The credit points are awarded when the module assessment is passed. The module assessment consists of two written exams of 120 minutes each and an ungraded project work.

ECTS credit points and grades
6 ECTS credit points
If the project work is evaluated as “passed”, the module grade is the weighted mean of the two exams.
If the project work is evaluated as “not passed”, the module grade is the weighted mean of the exams as follows:
\[M = \frac{2 \cdot PL1 + 2 \cdot PL2 + 6 \cdot 5}{10}. \]

Frequency
Annually, beginning in the winter semester

Workload
180 hours

Duration
2 semesters
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 01 01</td>
<td>Microcomputer Technology</td>
<td>Prof. Dr.-Ing. habil. Leon Urbas</td>
</tr>
</tbody>
</table>

Contents and objectives

Contents of the module are computer architecture and instruction set architecture, coupling with technical processes; instruction set oriented programming (assembler); efficient and portable programming of data structures and algorithms in a typical based procedural language (eg C) as well as object-oriented analysis, design and generic implementation of data structures and algorithms using examples of electrical engineering and information technology (eg C ++).

Modes of teaching and learning

3 hours per week lectures, 3 hours per week practical lab courses, and self-study.

Prerequisites

Competencies acquired in modules such as ET-11 02 01 Computer Science.

Requirements for the award of ECTS credit points

The credit points are awarded when the module assessment is passed. The module assessment consists of a practical lab course.

ECTS credit points and grades

7 ECTS credit points

The module grade is the grade of the module assessment.

Frequency

Annually, beginning in the winter semester

Workload

210 hours

Duration

2 semesters
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-01 04 03</td>
<td>Complex Function Theory</td>
<td>Prof. Dr. rer. nat. habil.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Z. Sasvári</td>
</tr>
</tbody>
</table>

Contents and objectives
Content of the module is the function theory with the main focus on differentiation, integration, series development and conformal transformation.
Outcomes:
The students have knowledge of functions with complex variables.

Modes of teaching and learning
2 hours per week lectures, 2 hours per week tutorials, and self-study.

Prerequisites
Competencies acquired in modules such as
ET-01 04 01 Introduction to Analysis and Algebra,
ET-01 04 02 Calculus for Functions with Several Variables.

Requirements for the award of ECTS credit points
The credit points are awarded when the module assessment is passed. The module assessment consists of a written exam of 120 minutes.

ECTS credit points and grades
4 ECTS credit points
The module grade is the grade of the exam.

Frequency
Annually, in the winter semester

Workload
120 hours

Duration
1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-01 04 04</td>
<td>Partial Differential Equations and Probability Theory</td>
<td>Prof. Dr. rer. nat. habil. Z. Sasvári</td>
</tr>
</tbody>
</table>

Contents and objectives
The content of the module focuses on partial differential equations and probability theory. Outcomes: After completion of the module, the students have knowledge of special analytical solution methods of partial differential equations and probability theory.

Modes of teaching and learning
2 hours per week lectures, 2 hours per week tutorials, and self-study.

Prerequisites
Competencies acquired in modules such as ET-01 04 01 Introduction to Analysis and Algebra, ET-01 04 02 Calculus for Functions with Several Variables, ET-01 04 03 Complex Function Theory.

Requirements for the award of ECTS credit points
The credit points are awarded when the module assessment is passed. The module assessment consists of a written exam of 120 minutes.

ECTS credit points and grades
4 ECTS credit points
The module grade is the grade of the exam.

Frequency
Annually, in the summer semester

Workload
120 hours

Duration
1 semester
Contents and objectives

Content:
The calculation of direct current (DC) electrical networks

Objectives:
Having successfully completed this module, the students have basic knowledge of electrical engineering and electronics and master methods for solving electrical engineering problems as a basis for further modules. The focus is on resistive circuits. Students are able to describe linear and nonlinear two poles and to consider the temperature dependence of their parameters, to analyze systematically electrical DC circuits and to apply simplified analysis methods (two pole theory, superposition theorem). They are able to calculate the power dissipation in circuits as well as to analyze and determine their thermal behaviour.

Modes of teaching and learning

2 hours per week lectures, 2 hours per week tutorials, and self-study

Prerequisites

Basic knowledge in mathematics and physics on highschool education level

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The module assessment consists of a written exam of 150 minutes.

ECTS credit points and grades

6 ECTS credit points
The module grade is the grade of the written exam.

Frequency

Annually, in the winter semester

Workload

180 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 08 02</td>
<td>Electric and Magnetic Fields</td>
<td>Prof. Dr. phil. nat. habil.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ronald Tetzlaff</td>
</tr>
</tbody>
</table>

Contents and objectives

The module content focuses on: fundamentals of electric and magnetic fields.

Outcomes:

After completing this module, students understand basic concepts, know physical quantities, and apply methods for calculating basic electric and magnetic fields. They are able to calculate the stored field energy, force effects, and induction phenomena of magnetic fields. Basic principles and the elementary electronic components resistor, capacitor, inductor, and transformer are known.

Modes of teaching and learning

4 hours per week lectures, 2 hours per week tutorial, and self-study

Prerequisites

Competences acquired in modules such as ET-12 08 01 Fundamentals of Electrical Engineering, or equivalent

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The module assessment consists of a written exam of 150 minutes.

ECTS credit points and grades

6 ECTS credit points

The module grade is the grade of the written exam.

Frequency

annually, in the summer semester

Workload

180 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 08 03</td>
<td>Dynamical Electrical Networks</td>
<td>Prof. Dr. phil. nat. habil. Ronald Tetzlaff</td>
</tr>
</tbody>
</table>

Contents and objectives

The module contents: the analysis of linear dynamic networks.

Outcomes:

After completing this module, students are able to apply methods for analyzing linear dynamic circuits excited by periodic signals and to determine the transient behavior between stationary states. They are able to describe, to model and to analyze linear two-ports. They can determine transfer functions, analyze and graphically represent the network behavior for different frequencies, and determine basic filter structures. Phasor representations and Nyquist plots are mastered.

Modes of teaching and learning

2 hours per week lectures, 2 hours per week tutorial, 3 hours per week practical lab course, and self-study.

Prerequisites

Knowledge acquired in modules such as ET-12 08 01 Fundamentals of Electrical Engineering, or equivalent.

The prerequisites for participation in the lab course is to pass the module exam of the module ET-12 08 01 Fundamentals of Electrical Engineering.

Requirements for the award of ECTS credit points

The credit points are awarded if the module assessment is passed. The module assessment consists of a written exam of 150 minutes and a lab course. Both assessments must be passed.

ECTS credit points and grades

8 ECTS credit points can be earned.

The module grade is determined by the weighted average of the grades of both elements of assessment. The module grade consists to 2/3 of the grade of the written exam and to 1/3 of the lab course grade.

Frequency

Annually, starting in the winter semester

Workload

240 hours

Duration

2 semesters
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 08 31</td>
<td>Electronic Circuits</td>
<td>Prof. Dr. sc. techn. habil. F. Ellinger</td>
</tr>
</tbody>
</table>

Contents and objectives

This module gives an introduction to electronic circuits, such as basic analogue circuits, differential amplifiers, power amplifiers, operational amplifiers and its applications, power supply, basic digital circuits, combinational und sequential logic.

Students learn fundamental principles and practical realisations of analogue and digital circuits. They understand the properties of these circuits using different structures and the properties of the electronic devices. They can handle the methods of circuit analysis and they can dimension the circuits for specific applications.

Modes of teaching and learning

4 hours per week lectures, 2 hours per week tutorials, and self-study.

Prerequisites

Competences acquired in modules such as ET-01 04 01 Introduction to Analysis and Algebra, ET-01 04 02 Calculus for Functions with Several Variables, ET-12 08 01 Fundamentals of Electrical Engineering, ET-12 08 11 Microelectronic Technologies and Devices, or equivalent.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The module assessment consists of a written exam of 180 minutes.

ECTS credit points and grades

7 ECTS credit points

The module grade is the grade of the written exam.

Frequency

annually, in the summer semester

Workload

210 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 09 01</td>
<td>Systems Theory</td>
<td>Prof. Dr.-Ing. habil. E. Jorswieck</td>
</tr>
</tbody>
</table>

Contents and objectives

Content:
The module deals with the fundamentals of systems theory with focus on digital systems, analogue time-continuous systems, analogue time-discrete systems and selected applications.

Objectives:
Having successfully completed the module, the students are familiar with the regulative significance of the system concept in engineering. They master the application of signal transformations for the effective description of the system behaviour in the area of image. In particular, they are able to apply the approach of system theory to important areas of their own discipline, e.g. to the calculation of electrical networks in the case of non-sinusoidal or stochastic excitation and to the realization of systems with desired transfer behaviour in time-discrete form (digital filter).

Modes of teaching and learning
4 hours per week lectures and 3 hours per week tutorials and self-study

Prerequisites
Competences acquired in modules such as ET-01 04 01 Introduction to Analysis and Algebra, ET-01 04 02 Calculus for Functions with Several Variables, ET-12 08 01 Fundamentals of Electrical Engineering, or equivalent.

Requirements for the award of ECTS credit points
The ECTS credit points are awarded when the module assessment is passed. The module assessment is a written exam of 120 minutes.

ECTS credit points and grades
7 ECTS credit points
The module grade is the grade of the written exam.

Frequency
Annually, beginning in the winter semester

Workload
210 hours

Duration
2 semesters

<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 01 02</td>
<td>Automation Engineering and Measurement</td>
<td>Prof. Dr. techn. K. Janschek</td>
</tr>
</tbody>
</table>

Contents and objectives

Content:
1. Fundamentals of automation engineering with the focus on behavioral description, control design in the frequency domain, digital control loops, industrial standard controllers, discrete-event control systems, elementary control concepts and automation technologies.

2. Fundamentals of measuring with the focus on measurement principles, SI units, analogue measurement technology (fundamentals, measurement bridges, lock-in measurement technique, quadrature demodulation technique, measurement of transit times and distances) and statistical measurement data evaluation (calculation of standard deviation and confidence intervals, propagation of the measurement uncertainty, setup of uncertainty budget for measurement).

Objectives:

Having successfully completed the modules, the students

1. understand fundamental behavior description forms for technical systems. Further, they master the basic theoretical and computer-aided handling of linear, time-invariant and discrete-event behavior models for the control of technical systems. They are able to design control algorithms for simple tasks.

2. are familiar with the principles of analogue measuring procedures and are able to evaluate measurement results by using statistical methods. They are able to calculate and interpret random and systematic measuring uncertainties.

Modes of teaching and learning

3 hours per week lectures, 2 hours per week tutorial, and self-study

Prerequisites

Competences acquired in basic modules on Physics

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The module assessment consists of a written test of 210 minutes.

ECTS credit points and grades

5 ECTS credit points

The module grade is the grade of the written exam.

Frequency

annually, in the summer semester
<table>
<thead>
<tr>
<th>Workload</th>
<th>150 working hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module number</td>
<td>Module name</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>ET-12 04 01</td>
<td>Electrical Power Engineering</td>
</tr>
</tbody>
</table>

Contents and objectives

Contents:
- Generation, transformation, transport, distribution and usage of electrical energy
- Structure of electrical energy supply
- Fundamentals of three-phase power and their mathematical description
- Electrical safety and coordination of stress and strength
- Fundamentals of power electronics
- Electromechanic energy converters

Objectives:
Having successfully completed this module, the students are able to undertake basic calculations and measurements for simple three-phase systems. They are familiar with principles of safety measures in electrical networks. They are able to calculate simple insulation configurations. The students are familiar with the fundamental mode of operation of power electronic circuits, electrical machines and three-phase transformers.

Modes of teaching and learning

3 hours per week lectures, 1 hour per week tutorial, 1 hour per week practical lab course, and self-study

Prerequisites

None

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The module assessment consists of a written exam of 150 min. (PL1) and a lab course (PL2). Both elements of assessment have to be passed.

ECTS credit points and grades

5 ECTS credit points
The module M grade is calculated as follows:
$$M = \frac{2PL1 + PL2}{3}$$

Frequency

annually, in the winter semester

Workload

150 working hours

Duration

2 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 05 01</td>
<td>Electronic Systems Design</td>
<td>Prof. Dr.-Ing. habil. J. Lienig</td>
</tr>
</tbody>
</table>

Contents and objectives

Content:
The module focuses on constructional fundamentals with technical illustration and CAD, device design and device requirements, reliability of electronic systems, thermal dimensioning and electromagnetic compatibility.

Objectives:
Students completing this module obtain basic knowledge for the construction and development of electronic assembly groups and devices. They will have an understanding of engineering tasks as well as related requirements. Thus, the students will be enabled to follow engineering principles while developing and constructing such products under consideration of all relevant aspects.

Modes of teaching and learning
2 hours per week lecture, 2 hours per week tutorial, and self-study

Prerequisites
none

Requirements for the award of ECTS credit points
The credit points are obtained by passing the module examination. This examination is conducted as a written exam (120 minutes).

ECTS credit points and grades
4 ECTS credit points
The module grade is the grade of the written exam.

Frequency
annually, during the summer semester

Workload
120 hours

Duration
1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 08 11</td>
<td>Microelectronic Technologies and Devices</td>
<td>Prof. Dr.-Ing. habil. M. Schröter</td>
</tr>
</tbody>
</table>

Contents and objectives

The module includes
- the physical fundamentals of electronic devices
- the physical-technical fundamentals for their production by means of microtechnologies

Objectives:
The students are capable of:
- understanding the fundamental functioning and electrical features of the most important semiconductor electronic devices on basis of a simplified description of the physical potential ratio and transport mechanisms in semiconductors
- discussing the most important characteristic lines
- constructing physical modell descriptions (including equivalent circuit diagrams) of semiconductor electronic devices for their application
- working with fundamental principles for the production and miniaturisation of devices and circuits
- understanding the modes of functioning of the individual technologies as well as their coaction resulting in simple process flows

Modes of teaching and learning

5 hours per week lectures, 1 hour per week tutorial, and self-study.

Prerequisites

Competences acquired in modules such as
- ET-01 04 01 Introduction to Analysis and Algebra,
- ET-01 04 02 Calculus for Functions with Several Variables,
- ET-12 08 01 Fundamentals of Electrical Engineering,
- ET-02 06 04 05 Basics of Science

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. This assessment is a written exam of 210 minutes.

ECTS credit points and grades

6 ECTS credits
The module grade is the grade of the exam.

Frequency

annually, in the winter semester

Workload

180 hours

Duration

1 Semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 10 24</td>
<td>Communications</td>
<td>Prof. Dr.-Ing. Dr. h. c. G. Fettweis</td>
</tr>
</tbody>
</table>

Course contents and intended learning outcomes

The module includes:

- Signal theory (sine waves, Dirac function, convolution, Fourier transform),
- linear time-invariant systems (transfer function, impulse response),
- bandpass signals (real and complex up and down mixing of signals, equivalent lowpass signal),
- analogue modulation (modulation, demodulation, properties of AM, PM, FM),
- analogue-digital conversion (sampling, signal reconstruction, quantization, sub- and oversampling),
- digital modulation schemes (modulation methods, matched-filter receiver, bit error probability).

Outcomes:

After completing this module, the students master the basic principles and the practical application of communications engineering. The students will be able to understand the basic signal processing in communications systems and to describe them mathematically. They are familiar with the transmission in base-band and band-pass area and know the basic analogue and digital modulation methods. They understand the impact of noise on the transmission quality for simple analogue and digital transmission scenarios.

Teaching methods

2 hours per week lectures, 1 hour per week tutorial, and self-study.

Required previous knowledge

Competences provided in modules such as

- ET-01 04 01 Introduction to Analysis and Algebra,
- ET-01 04 02 Calculus for Functions with Several Variables,
- ET-01 04 03 Complex Function Theory,
- ET-12 09 01 Systems Theory (1st semester of module),
 or equivalent.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The module assessment consists of a written exam of 120 minutes.

ECTS credit points and grades

3 ECTS credit points

The module grade is the grade of the written exam.

Frequency

Annually, in the summer semester

Workload

90 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 06 10</td>
<td>Project Electronics Technology</td>
<td>Prof. Dr.-Ing. habil. T. Zerna</td>
</tr>
</tbody>
</table>

Contents and objectives

The content of the module is:
- computer aided design of printed circuit boards
- manufacturing of printed circuit boards
- parameter optimization for technological processes
- technologies of assembling electronic modules
- testing and initial operation of electronic modules
- simulation of the quality behaviour of manufacturing processes
- Qualification purposes

The students acquire basic knowledge, competences and practical skills about designing substrates, about assembling and testing electronic modules as well as about parallel processes of quality management. In addition they will gain social, rhetorical and presentation competences as a result of the team oriented and self-organized lab work based on the division of labour.

Modes of teaching and learning

4 hours per week practical lab course, and self-study.

Prerequisites

Competences acquired in modules such as:
- ET-12 08 01 Fundamentals of Electrical Engineering,
- ET-13 00 01 Materials and Technical Mechanics,
- ET-02 06 04 05 Basics of Science.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The module assessment consists of an assignment and its presentation (90 min.) by the team.

ECTS credit points and grades

3 ECTS credit points

The grade is the arithmetic mean of the assignments and its presentation.

Frequency

Annually, in the winter semester

Workload

90 working hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 08 32</td>
<td>Electronic Circuits – Experiments and Measurements</td>
<td>Prof. Dr. sc. techn. habil. F. Ellinger</td>
</tr>
</tbody>
</table>

Contents and objectives
Content of the module are the assembling and metrological characterization of electronic circuits such as amplifier ground circuits, feedback circuits, power levels, operational amplifiers, power supply, power supply circuits, basic digital circuits, and combinational and sequential circuits.

Students learn practical realisations of analogue and digital circuits. They can determine the parameters of the circuits metrologically and compare and evaluate them in theoretical dimensions.

Modes of teaching and learning
2 hours per week tutorial, and self-study

Prerequisites
Competences acquired in modules such as **ET-12 08 31** Electronic Circuits.

Requirements for the award of ECTS credit points
The credit points are earned if the module assessment is passed. The assessment is a practical lab course.

ECTS credit points and grades
7 ECTS credit points
The module grade is the grade of the written exam.

Frequency
annually, in the winter and summer semester

Workload
90 hours

Duration
1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 08 06</td>
<td>Measurement and Sensor Techniques</td>
<td>Prof. Dr.-Ing. habil. J. Czarske</td>
</tr>
</tbody>
</table>

Contents and objectives

- Principles of digital measuring methods and of electric sensors for determining non-electric quantities
- Application of analogue and digital measuring methods with respect to sensors

Intended learning outcomes:

- Students will acquire skills to use analogue and digital measurement methods for the detection of e.g. position, velocity, force and temperature. They will be able to handle calculation methods for determining measurement uncertainties in consideration of noise processes.

Modes of teaching and learning

2 hours per week lectures, 1 hour per week tutorial, 1 hour per week practical lab course, and self-study

Prerequisites

Competences acquired in modules such as ET-12 09 01 Systems Theory.

Requirements for the award of ECTS credit points

Credit points are earned if the module assessment is passed. The assessment consists of a written exam (120 min) and a lab course. Both assessments must be passed.

ECTS credit points and grades

4 ECTS credit points
The module grade consists to 4/5 of the exam grade and to 1/5 of the lab course grade.

Frequency

annually, in the winter semester

Workload

120 hours

Duration

1 semester
Module descriptions

Main studies modules 5th-10th semester

<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 01 03</td>
<td>Discrete event systems and control</td>
<td>Prof. Dr. techn. Klaus Janschek</td>
</tr>
</tbody>
</table>

Contents and objectives

Content:

1. **Discrete event behavioral description forms**
 Signal based, finite automata, petri-nets, statecharts

2. **Discrete event control design**
 Bottom-up / top-down with automata and petri-nets

3. **Practical use of industrial control engineering**
 Language for specific purposes

Objectives: The students

1. understand basic behavioral description forms for discrete event systems. They have a command of theoretical and computational handling of event-discrete behavioral models for the control of technical systems.

2. are able to design discrete event control algorithms independently for manageable tasks.

3. know the basic structure of industrial control technology and are able to implement own control designs on industrial control platforms.

Teaching methods

4 hours per week lectures, 1 hour per week tutorial, 1 hour per week practical lab course, and self-study

Required previous knowledge

Competences acquired in modules such as ET-12 01 02 Automation and Measurement.

Requirements for the award of ECTS credit points

The credit points are awarded when the module assessment is passed. The module assessment consists of a written exam of 120 minutes (PL1), of a written exam of 90 minutes (PL2), and a practical lab course (PL3).

ECTS credit points and grades

6 ECTS credit points
The module grade is determined by the weighted average of PL1, PL2 and PL3:
\[M = \frac{3\text{PL1} + 2\text{PL2} + \text{PL3}}{6} \]

Frequency

Annually, starting in the winter semester.

Workload

180 hours

Duration

2 semesters
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 01 04</td>
<td>Process Control</td>
<td>Prof. Dr.-Ing. habil. L. Urbas</td>
</tr>
</tbody>
</table>

Contents and objectives

Content: The basic principles and practical implementation for the
- recording of process data
- processing of process data with the aim of conducting the
 process safely and economically
- influencing the process.

Objectives: The students
1. are able to realize cycles in industrial processes, including the functioning, construction and engineering methods for planning and implementing networked process control facilities. The students are able to present their knowledge about causal relationships in fault models.
2. know different measuring systems for the recording of processes, e.g. in the flow and production technology. They are also capable of presenting and evaluating the physical principle and the technical design of the measuring system techniques under real conditions.
3. know the functioning and the methods for the design of facilities for drive technology and actuators to influence a process.

Modes of teaching and learning

6 SWS lecture, 2 hours per week tutorial, 2 hours per week practical lab course, and self-study

Prerequisites

Competences acquired in basic modules on physics and modules such as
ET-12 09 01 Systems Theory,
ET-12 01 02 Automation Engineering and Measurement,
ET-12 04 01 Electrical Power Engineering.

Requirements for the award of credit points

The credit points are awarded when the module assessment is passed. The module assessment consists of a written exam of 120 minutes (PL1), of a written exam of 180 minutes (PL2), and a lab course (PL3).

ECTS credit points and grades

11 ECTS credit points
The module grade is determined by the weighted average of PL1, PL2 and PL3. PL1 contributes by 40%, PL2 by 50%, and PL3 by 10%.

Frequency

annually, in the summer semester

Workload

330 hours

Duration of module

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 01 05</td>
<td>Modelling and Simulation</td>
<td>Prof. Dr. techn. Klaus Janschek</td>
</tr>
</tbody>
</table>

Content and objectives

Content:

1. **Engineering Mechanics – Dynamics**
 Kinematics of the rigid body, kinematics of the point, kinetics of the rigid body, vibration of single degree of freedom systems

2. **Elements of physical modelling**
 Energy-based modelling paradigms (Euler-Lagrange), tor based modelling paradigms (generalized Kirchhoff networks), signal-based modelling paradigms, differential algebraic equation systems

3. **Elements of simulation technology**
 Numerical integration of ordinary differential equation systems, differential algebraic equation systems (DAE) and hybrid (event discrete continuous) equation systems, modular simulation (signal / object-oriented)

Objectives: The students

1. are able to cope with the area of dynamics
2. are qualified in physical modelling paradigms and are capable of creating mathematical models, such as DAE-systems, independently.
3. know the basic structure of numerical integration algorithms and special features in their application for technical, physical systems.

Modes of teaching and learning

3 hours per week lectures, 2 hours per week tutorial, 1 hour per week practical lab course, self-study

Prerequisites

Competences acquired in modules such as ET-12 01 02 Automation Engineering and Measurement.

Requirements for the award of credit points

The credit points are awarded when the module assessment is passed. The module assessment consists of a written exam of 60 minutes (PL1), of a written exam of 120 minutes (PL2), and a lab course (PL3).

ECTS credit points and grades

8 ECTS credit points

The module grade is the weighted average of the grades for the elements of assessment: PL1 contributes by $\frac{1}{4}$, PL2 by $\frac{1}{2}$ and PL3 by $\frac{1}{4}$.

Frequency

Annually. The module starts in the winter semester.

Workload

240 hours

Duration

2 semesters
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 01 06</td>
<td>Advanced Seminar Automation, Measurement and Control</td>
<td>Head of specialization area Automation, Measurement and Control</td>
</tr>
</tbody>
</table>

Contents and objectives
The module deals with topics and questions of Automation, Measurement and Control as well as the methodology of scientific and project-orientated work.

Objectives:
After completing this module, students will be able to apply their skills autonomously, individually or within a team to specific tasks. They are able to document the single steps of the procedures comprehensibly. The students are expected to present and discuss their results.

Modes of teaching and learning
2 hours per week seminar and self-study

Prerequisites
Competences acquired in modules such as ET-12 01 02 Automation Engineering and Measurement.

Requirements for the award of credit points
The credit points are awarded when the module assessment is passed. The module assessment consists of a project of 12 weeks and a colloquium.

ECTS credit points and grades
4 ECTS credit points
The module grade is determined by the weighted average of the grade of the project and the grade of the colloquium. The grade of the project is weighted with 2/3 and the grade of the colloquium with 1/3 for the module grade.

Frequency
annually, during the winter semester

Workload
120 hours

Duration of module
1 Semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 01 10</td>
<td>Industrial Automation 1</td>
<td>PD Dr.-Ing. Annerose Braune</td>
</tr>
</tbody>
</table>

Contents and objectives

Content: Automation technology solutions for locally distributed automation systems using current information technologies such as the Internet, XML and model-driven technologies in automation technology.

Objectives: The students
1. are capable of working with basic concepts, protocols and services of the Internet technologies
2. have basic experience and skills in dealing with current technologies that are relevant for automation
3. are capable of evaluating basic risks and opportunities of the application of modern information technologies
4. are capable of solving a manageable application with the learned methods as a small project.

Modes of teaching and learning

3 hours per week lectures, 1 hour per week tutorial, 2 hours per week project, and self-study.

Prerequisites

Competences acquired in modules such as ET-12 01 02 Automation Engineering and Measurement.

Requirements for the award of credit points

The credit points are awarded if the module assessment is passed. The module assessment consists of a written exam of 120 minutes (PL1) and a project of 15 weeks (PL2).

ECTS credit points and grades

7 ECTS credit points
The module grade (M) is determined by the weighted average of PL1 and PL2: \(M = \frac{4PL1 + 3PL2}{7} \).

Frequency

annually, beginning in the summer semester

Workload

210 hours

Duration

2 semesters
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 01 11</td>
<td>Industrial Automation Engineering 2</td>
<td>Prof. Dr. techn. Klaus Janschek</td>
</tr>
</tbody>
</table>

Content and objectives

Content: Automation technology concepts and solutions for selected applications, such as position control for space vehicles, embedded systems, or industrial automation means.

Objectives: The students
1. are able to design basic concepts, model descriptions and approaches of the respective application domain
2. master fundamental solution methods
3. are capable of dealing with examples of automation devices.

Modes of teaching and learning

3 hours per week lectures, 2 hours per week tutorial, 1 hour per week project, and self-study

Prerequisites

Competences acquired in modules such as ET-12 01 02 Automation Engineering and Measurement.

Requirements for the award of credit points

The credit points are awarded if the module assessment is passed. The module assessment consists of a written exam of 120 minutes (PL1) and a project of 15 hours (PL2).

ECTS credit points and grades

7 ECTS credit points
The module grade M is determined by the weighted average:
$$M = \frac{3 \times PL1 + 2 \times PL2}{5}$$

Frequency

Annually, in the summer semester

Workload

210 hours

Duration

1 semester
Module number	Module name	Lecturer in charge
ET-12 01 12 | Robotics | Prof. Dr. techn. Klaus Janschek

Content and objectives

Content:

1. **Control of serial manipulators**
 - Kinematic fundamentals
 - Trajectories
 - Robot dynamics
 - Position control
 - Force control

2. **Control of mobile robots**
 - Kinematic fundamentals
 - Navigation (localization)
 - Path planning

Objectives: The students are capable of

1. applying controlled industrial robot systems. They master the theoretical and computational handling of behavior models and algorithms for the controlling of industrial robot systems (manipulators, serial kinematics).
2. working with behavioral models for the navigation (position, orientation) and path planning of autonomous mobile robot platforms. They master the basic methodological and algorithmic approaches.
3. solving a manageable design task with the learned methods as a small project.

Modes of teaching and learning

4 hours per week lectures, 2 hours per week tutorials, 1 hour per week project, and self-study

Prerequisites

Competences acquired in modules such as ET-12 13 01 Control of Continuous-Time Processes and ET-12 01 05 Modelling and Simulation.

Requirements for the award of credit points

The credit points are awarded if the module assessment is passed. The module assessment consists of two written exams of 120 minutes each and a project of 20 hours.

ECTS credit points and grades

7 ECTS credit points

The module grade is the weighted mean of the grades for the elements of assessment: The grades for the written exams contribute by 3/7 each and the grade for the project by 1/7.

Frequency

Annually, beginning in the summer semester.

Workload

210 hours

Duration

2 semesters
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 01 13</td>
<td>Systems Design</td>
<td>Prof. Dr. techn. Klaus Janschek</td>
</tr>
</tbody>
</table>

Content and objectives

Content:

1. **System design of mechatronic systems**
 - Multi-body dynamics
 - Mechatronic converter principles
 - Stochastic behavior analysis
 - System budgets

2. **System design of complex automation systems**
 - Definition of requirements
 - Function-oriented behavior modeling
 - Object-oriented behavioral modeling
 - Fundamentals of project management

Objectives: The students are capable of

1. applying methods and tools of physically based behavior modeling and analysis (mechatronic systems). They are able to conduct a sound quantitative evaluation of design and optimization.

2. working with concepts, methods and tools of abstract behavior modeling and analysis (complex automation systems). They are able to conduct a sound quantitative evaluation of design and optimization.

Modes of teaching and learning

4 hours per week lectures, 2 hours per week tutorials, and self-study

Prerequisites

Competences acquired in modules such as ET-12 13 01 Control of Continuous-Time Processes and ET-12 01 05 Modelling and Simulation.

Requirements for the award of credit points

The credit points are awarded if the module assessment is passed. The module assessment consists of two written exams of 120 minutes each.

ECTS credit points and grades

7 ECTS credit points
The module grade is the arithmetic mean of both elements of assessment.

Frequency

Annually, in the winter semester.

Workload

210 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 01 20</td>
<td>Human Machine Systems Technology</td>
<td>Prof. Dr.-Ing. habil. Leon Urbas</td>
</tr>
</tbody>
</table>

Content and objectives

Content: Principles and methods of the human-machine-system to take into account the human factor in the analysis, evaluation and design of complex, interactive technical systems.

Objectives: The students

1. master fundamental methods of the human-machine systems technology for the description, analysis, evaluation and design of dynamic interactive systems.
2. are capable of working systematically on domain-specific issues of human-machine interaction.

Modes of teaching and learning

2 hours per week lectures, 2 hours per week tutorial, 2 hours per week practical lab course and self-study

Prerequisites

Competences acquired in modules such as ET-12 09 01 Systems Theory, ET-12 01 02 Automation Engineering and Measurement, and ET-12 01 04 Process Control.

Requirements for the award of credit points

The credit points are awarded if the module assessment is passed. The module assessment consists of a written exam of 120 minutes and a project of 30 hours.

ECTS credit points and grades

7 ECTS credit points

The module grade is determined by the weighted average of both elements of assessment.

Frequency

annually, in the winter semester

Workload

210 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 01 21</td>
<td>Project Planning for Process Automation Systems</td>
<td>Prof. Dr.-Ing. habil. Leon Urbas</td>
</tr>
</tbody>
</table>

Content and objectives

Content: Methods for Computer Assisted Engineering in Process Automation (CEA-PA) with the following focus:
1. computer-aided integrated and life-cycle-wide project planning of process automation systems with e.g. requirements analysis, basic, detail and order engineering, implementation and commissioning, information modeling for integrated engineering systems
2. implementation in automation projects

Objectives: The students
1. know the methods and means for computer-aided project planning of complex automation systems from process requirements and
2. can implement these in specific domains and application areas or deepen these by means of further computer-based methods.

Modes of teaching and learning

2 hours per week lectures, 2 hours per week tutorial, 2 hours per week project, and self-study.
The language of instruction is at least partly English.

Prerequisites

Competences in the field of automation.

Requirements for the award of credit points

The credit points are awarded if the module assessment is passed. The module assessment consists of a written exam of 120 minutes in English language and a project of 30 hours. The written exam can be answered in English or German, depending on the student’s choice.

ECTS credit points and grades

7 ECTS credit points can be earned. The module grade is determined by the arithmetic mean of both elements of assessment: $M = (PL_1 + PL_2) / 2$

Frequency

annually, in the summer semester

Workload

210 hours

Duration of the module

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 01 22</td>
<td>Process Simulation and Operation</td>
<td>Prof. Dr.-Ing. habil. Leon Urbas</td>
</tr>
</tbody>
</table>

Content and objectives

The module contains knowledge-based methods and algorithms for automated process evaluation, process diagnosis and process control.

Qualification goals:

The students will be able to plan, design, implement and operate complex knowledge-based close-to-process (partially) automated information processing systems. They will be able to combine and use such methods in systems theory and automation terms in order to create complex automation systems.

Modes of teaching and learning

- 2 hours per week lectures,
- 2 hours per week tutorial,
- 2 hours per week practical lab course,
- and self-study

Prerequisites

Competences acquired in modules such as ET-12 01 04 Process Control.

Requirements for the award of credit points

The credit points are awarded if the module assessment is passed. The module assessment consists of a written exam of 90 minutes each, an oral exam of 90 minutes, and a project of 30 hours.

ECTS credit points and grades

7 ECTS credit points

The module grade is the arithmetic mean of the module assessments.

Frequency

annually, in the summer semester

Workload

210 hours

Duration of the module

2 semesters
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 01 23</td>
<td>Seminar for Graduate Students on Human-Machine-Interaction</td>
<td>Prof. Dr.-Ing. habil. Leon Urbas</td>
</tr>
</tbody>
</table>

Content and objectives

Content:
- Specific aspects of the design and empirical evaluation of human-machine interaction
- Methods of scientific and project-based engineering

Objectives:
The students are capable of solving a given task independently, individually, and in teams. They master the documentation of the work and the methods used, and are capable of presenting and discussing the results.

Modes of teaching and learning

2 hours per week seminar, and self-study

Prerequisites

Competences acquired in modules such as ET-12 01 05 Modelling and Simulation.

Requirements for the award of credit points

The credit points are awarded if the module assessment is passed. The module assessment consists of an assignment and a presentation of 30 minutes.

ECTS credit points and grades

4 ECTS credit points
The module grade is calculated from the weighted mean of the grades for the different means of assessment: the grade for the assignment contributes by 2/3 and the presentation by 1/3.

Frequency

annually, in the winter semester

Workload

120 hours

Duration of the module

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 01 24</td>
<td>Seminar for Graduate Students on Automation</td>
<td>Prof. Dr. techn. K. Janschek</td>
</tr>
</tbody>
</table>

Content and objectives

Content:
- Current topics, trends and issues of automation for different applications
- Methods of scientific and project-based working as well as the presentation of results

Qualifikationsziele:
The students are capable of solving a given task independently, individually, and in teams. They master the documentation of the work and the methods used, and are capable of presenting and discussing the results. They are able to master the basic methods of modelling, design and analysis of automatic systems. They are further capable of presenting and discussing the results.

Modes of teaching and learning

2 hours per week seminar, and self-study

Prerequisites

Competences acquired in modules such as ET-12 01 05 Modelling and Simulation, ET-12 01 02 Automation Engineering and Measurement.

Requirements for the award of credit points

The credit points are awarded if the module assessment is passed. The module assessment consists of an assignment and a presentation of 30 minutes.

ECTS credit points and grades

4 ECTS credit points

The module grade is calculated from the weighted mean of the grades for the different means of assessment: the grade for the assignment contributes by 2/3 and the presentation by 1/3.

Frequency

annually, in the winter semester

Workload

120 hours

Duration of the module

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 02 01</td>
<td>Electromagnetic Theory</td>
<td>Prof. Dr. rer. nat. habil. H. G. Krauthäuser</td>
</tr>
</tbody>
</table>

Contents and objectives

With regard to contents, the module comprises the basics of the classical electromagnetic field theory.

After completion of the module, the students have the ability to assess the causes and connections between most electromagnetic phenomena and are capable solving field problems with fundamental analytical methods. The students can establish relationships between the different disciplines in electrical engineering, the motivation and the scientific limits.

Modes of teaching and learning

4 hours per week lectures, 4 hours per week tutorials and self-study

Prerequisites

Competences acquired in modules such as
- ET-01 04 01 Introduction to Analysis and Algebra,
- ET-01 04 02 Calculus for Functions with Several Variables,
- ET-01 04 03 Complex Function Theory,
- ET-12 08 02 Electric and Magnetic Fields,
or equivalent

Requirements for the award of credit points

The credit points are awarded when the module assessment is passed. The module assessment consists of two written examinations. Each examination takes 120 minutes.

ECTS credit points and grades

10 ECTS credit points
The module grade is the arithmetic mean of grades of the two examinations.

Frequency

annually,
first part in winter semester, second part in summer semester

Workload

300 hours

Duration of module

2 semesters
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 02 02</td>
<td>Numerical Analysis</td>
<td>Prof. Dr. rer. nat. habil. H. G. Krauthäuser</td>
</tr>
</tbody>
</table>

Contents and objectives

With regard to contents, the module comprises the basics of numerical analysis with a view to their application in electrical engineering.

After completion of the module, the students possess the ability to apply basic numerical methods to engineering problems and are capable to assess the error of the approximation.

Modes of teaching and learning

2 hours per week lectures, 1 hour per week tutorial and self-study

Prerequisites

Competences acquired in modules such as ET-01 04 01 Introduction to Analysis and Algebra, ET-01 04 02 Calculus for Functions with Several Variables, ET-01 04 03 Complex Function Theory, ET-12 08 01 Fundamentals of Electrical Engineering, ET-12 08 02 Electric and Magnetic Fields, ET-12 08 03 Dynamic Networks, or equivalent.

Requirements for the award of credit points

The credit points are awarded when the module assessment is passed. The module assessment is a written examination. The examination takes 120 minutes.

ECTS credit points and grades

4 ECTS credit points

The module grade is the grade of the examination.

Frequency

annually in winter semester

Workload

120 hours

Duration of module

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 02 03</td>
<td>Power Electronics</td>
<td>Prof. Dr.-Ing. St. Bernet</td>
</tr>
</tbody>
</table>

Contents and objectives

The module deals with

- the working principle of power electronical actuators,
- the design and function of power diodes and power semiconductor switches which can be turned on actively,
- analyses of the function of line-commutated and load-commutated converters,
- the simplification of the topologies for simulations,
- the design of the main components of power electronic systems,
- common modulation methods for the generation of the control signals,
- common feed-forward and feed-back control algorithms.

Objectives:

The module qualifies for the selection and design of usable topologies and the selection and dimensioning of the power semiconductor switches for typical applications. The students are capable of verifying the basic function of the power electronic system by the use of simulation tools.

Modes of teaching and learning

3 hours per week lectures, 2 hours per week tutorial, 1 hour per week practical lab course and self-study including a project.

Prerequisites

Competences acquired in modules such as **ET-12 08 01 Fundamentals of Electrical Engineering and ET-02 06 04 05 Basics of Science.**

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The module assessment consists of a written exam of 120 minutes and a project of 22 weeks.

ECTS credit points and grades

7 credit points

The module grade consists to 80% of the grade of the written exam and to 20% of the project grade.

Frequency

annually, starting in the winter semester

Workload

210 hours

Duration

2 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 02 04</td>
<td>Electrical Machines</td>
<td>Prof. Dr.-Ing. W. Hofmann</td>
</tr>
</tbody>
</table>

Contents and objectives

Content:

- Fundamentals of electrical machines in structure, function, performance, agitator speed or power setting and efficiency
- Fundamentals of electromagnetic energy conversion
- Transformers
- DC machines
- Synchronous machines
- Induction machines
- Small machines
- Linear motors
- Testing of electrical machines

Objectives:

Having successfully completed the module, the students can follow the steady-state operating performance of electrical machines and evaluate their properties by means of suitable calculations, measurements and tests.

Modes of teaching and learning

3 hours per week lectures, 1 hour per week tutorial, 1 hour per week practical lab course, and self-study

Prerequisites

Competences acquired in modules such as ET-12 08 01 Fundamentals of Electrical Engineering.

Requirements for the award of credit points

The credit points are awarded when the module assessment is passed. The module assessment consists of an oral examination of 40 minutes and a lab course.

ECTS credit points and grades

5 ECTS credit points

The module grade is the weighted average of both elements of assessment. The grade of the oral exam contributes by 70% and the grade of the lab course by 30%.

Frequency

Annually, in the winter semester

Workload

150 hours

Duration of module

2 semesters
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 02 05</td>
<td>Electric Drives</td>
<td>Prof. Dr.-Ing. W. Hofmann</td>
</tr>
</tbody>
</table>

Contents and objectives

Content:
- Electric Drives
- Basics of electromechanical drives
- Agitator speed and torque control of DC and AC drives with power electronic actuators
- Control of electrical drives

Objectives:

Having successfully completed the module, the students can follow the performance of electrical drives on the basis of equivalent circuits and evaluate their control properties by means of suitable calculations, measurements and tests.

Modes of teaching and learning

3 hours per week lectures, 1 hour per week tutorial, 1 hour per week practical ab course, and self-study

Prerequisites

Competences acquired in modules such as ET-12 08 01 Fundamentals of Electrical Engineering and ET-02 06 04 05 Basics of Science.

Requirements for the award of credit points

The credit points are awarded when the module assessment is passed. The module assessment consists of a written examination (180 minutes) and a lab course.

ECTS credit points and grades

6 ECTS credit points

The module grade is the weighted average of both elements of assessment. The grade of the written exam contributes by 70% and the grade of the lab course by 30%.

Frequency

Annually, in the summer semester.

Workload

180 hours

Duration of module

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 02 06</td>
<td>Advanced Seminar Electrical Power Engineering</td>
<td>Head of specialization area Electrical Engineering</td>
</tr>
</tbody>
</table>

Contents and objectives
The module comprises topics and questions of Electrical Power Engineering, as well as the methodology of scientific and project-orientated work.
After completion of the module, the students have the ability to independently apply their skills and abilities in a team or individually to solve problems. The workflow will be documented and the results presented and discussed. They can work in teams and develop concepts, which they implement and defend.

Modes of teaching and learning
2 hours per week project work and self-study

Prerequisites
Competences acquired in modules such as ET-12 08 01 Fundamentals of Electrical Engineering, ET-12 08 02 Electric and Magnetic Fields, ET-12 08 03 Dynamic Networks, ET-02 06 04 05 Basics of Science ET-12 01 01 Microcomputer Technology, ET-12 04 01 Electrical Power Engineering or equivalent.

Requirements for the award of credit points
The credit points are awarded when the module assessment is passed. The module assessment consists of a project of 12 weeks and a colloquium.

Credit points and grades
4 ECTS credit points
The module grade is the weighted mean of both elements of the assessment: \(M = (2 \cdot PL1 + PL2) / 3 \).

Frequency
Annually, in summer semester

Workload
120 hours

Duration of module
1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 02 07</td>
<td>Electromagnetic Compatibility</td>
<td>Prof. Dr. rer. nat. habil. H. G. Krauthäuser</td>
</tr>
</tbody>
</table>

Contents and objectives

The module contains topics and questions of the electromagnetic compatibility in electrical systems.

After completion of the module, the students have the ability to theoretically and practically assess electromagnetic compatibility problems. They know the legal framework within the EU and relevant norms. They recognise parasitic coupling phenomena and take appropriate countermeasures.

Modes of teaching and learning

4 hours per week lectures, 3 hours per week practical lab courses, and self-study.

Prerequisites

Competences acquired in modules such as ET-12 04 03 Fundamentals of Electrical Power Systems, ET-12 02 01 Electromagnetic Theory, or equivalent.

Requirements for the award of credit points

The credit points are awarded when the module assessment is passed. With up to 20 registered students, the module assessment consists of an oral examination of 30 minutes and laboratory work. With more than 20 registered students, the oral exam can be replaced by a written exam of 120 min.

ECTS credit points and grades

7 ECTS credit points

The module grade is the weighted mean of grades of the laboratory work and the oral examination. The grade of the oral examination counts 2/3 and the grade for the laboratory work 1/3.

Frequency

annually, beginning in the summer semester

Workload

210 hours

Duration of module

2 semesters
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 02 08</td>
<td>Numerical Methods for Electromagnetic Theory</td>
<td>Prof. Dr. rer. nat. habil. H. G. Krauthäuser</td>
</tr>
</tbody>
</table>

Contents and objectives

With regard to contents, the module comprises numerical and semi-analytical methods for the computation of electromagnetic field problems and electromagnetic compatibility problems.

After completion of the module, the students are able to attend a number of electromagnetic field problems with numerical procedures. Afterwards they will be able to distinguish between appropriate and less appropriate procedures for a specific problem, to review results in the context of intrinsic uncertainties, and to optimise the underlying models.

Modes of teaching and learning

3 hours per week lectures, 1 hour per week tutorials, 2 hours per week practical lab course and self-study

Prerequisites

Competences acquired in modules such as
ET-01 04 01 Introduction to Analysis and Algebra,
ET-01 04 02 Calculus for Functions with Several Variables,
ET-01 04 03 Complex Function Theory,
ET-12 02 02 Numerical Analysis,
ET-12 02 01 Electromagnetic Theory
or equivalent.

Requirements for the award of credit points

The credit points are awarded if the module assessment is passed. If 20 students or less take part in the module, the module assessment consists of an oral examination of 30 minutes and laboratory work. If more than 20 students take part in the module, the oral exam can be replaced by a written exam of 120 min.

ECTS credit points and grades

7 ECTS credit points

The module grade is the weighted mean of grades of the laboratory work and the oral examination. The grade of the oral examination counts 2/3 and the grade for the laboratory work 1/3.

Frequency

Annually, in summer semester

Workload

210 hours

Duration of module

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 02 09</td>
<td>Selected Topics of Electromagnetic Theory</td>
<td>Prof. Dr. rer. nat. habil. H. G. Krauthäuser</td>
</tr>
</tbody>
</table>

Contents and objectives
With regard to contents, the module comprises selected topics and questions of electromagnetic field theory.
After completion of the module, the students are able to assess currently relevant research topics in electromagnetics. They learn to apply and review the basic concepts of electromagnetic theory.

Modes of teaching and learning
4 hours per week lectures, 2 hours per week tutorials, and self-study

Prerequisites
Competences acquired in modules such as ET-12 02 01 Electromagnetic Theory.

Requirements for the award of credit points
The credit points are awarded when the module assessment is passed. With up to 20 registered students, the module assessment consists of an oral examination of 30 minutes. With more than 20 registered students, the oral exam can be replaced by a written exam of 120 min.

ECTS credit points and grades
7 ECTS credit points
The module grade is the grade of the oral examination.

Frequency
Annually, beginning in summer semester

Workload
210 hours

Duration of module
2 semesters
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 02 10</td>
<td>Power Electronics, Advanced</td>
<td>Prof. Dr.-Ing. St. Bernet</td>
</tr>
</tbody>
</table>

Contents and objectives

The module deals with

- design and function of power semiconductor switches which can be turned on and off actively,
- analyses of the function of self-commutated converters,
- simplification of the topologies for simulations,
- design of the main components of power electronic systems,
- common modulation methods for the generation of the control signals,
- common feed-forward and feed-back control algorithms.

Objectives:
The module qualifies for the selection and design of usable topologies and the selection and dimensioning of the power semiconductor switches for a wide range of applications. The students are capable of verifying the function of the power electronic system and its control by the use of simulation tools.

Modes of teaching and learning

3 hours per week lectures, 2 hours per week tutorial, 1 hour per week practical lab course and self-study including a project

Prerequisites

Competences acquired in modules such as ET-12 02 03 Power Electronics.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The module assessment consists of a written exam of 120 minutes and a project of 14 weeks.

ECTS credit points and grades

7 ECTS credit points

The module grade consists to 2/3 of the written exam grade and to 1/3 of the project grade.

Frequency

annually, starting in the summer semester

Workload

210 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 02 11</td>
<td>Microprocessor Control in Power Electronics</td>
<td>Prof. Dr.-Ing. St. Bernet</td>
</tr>
</tbody>
</table>

Contents and objectives

The module deals with
- the design and function of common power electronic topologies for energy and drive applications,
- analyses of the characteristics and simplification of the topologies for the modelling in order to design the control,
- common modulation methods for the generation of the control signals and possible implementations on digital control platforms,
- common feed-forward and feed-back control algorithms and issues of the implementation on digital control platforms,
- programming of the control of a voltage source converter in order to operate an induction motor.

Objectives:

The students are capable of implementing controllers on a digital control platform by using a high-level programming language. They are capable of understanding the structure and function of a digital control platform, and of rating the main characteristics of a digital control platform in relation to the application, and of evaluating the pros and cons of different solutions.

Modes of teaching and learning

2 hours per week lectures, 1 hours per week tutorial, 2 hours per week practical lab course, and self-study

Prerequisites

Competences acquired in modules such as ET-12 02 03 Power Electronics.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The module assessment consists of an oral exam of 20 minutes as group exam with up to 3 students and of 20 minutes per student, and a project of 3 weeks.

ECTS credit points and grades

7 ECTS credit points
The module grade consists to ¾ of the project grade and to ¼ of the oral exam grade.

Frequency

annually, in the summer semester

Workload

210 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 02 12</td>
<td>Electromagnetic Energy Conversion</td>
<td>Prof. Dr.-Ing. W. Hofmann</td>
</tr>
</tbody>
</table>

Contents and objectives

Content:

1. Design and calculation of electrical machines: parameters for optimum use of energy and general dimensions, windings and winding concepts, magnetic materials and magnetic circuit design, contacts: slip rings, brushes, commutator; determination and calculation of the machine parameters, loss calculation and efficiency, heating and cooling, concept development and optimization as well as laws of growth.

2. Transformers: power transformers; laws of growth; TK-number; core: structure, design, stationary mode and non-stationary mode; windings: structure and design of windings; insulation: terminology, insulation systems, insulation materials for transformers; design: core design, winding design, insulation design; clamping structures: terminology, principles, materials, design of core pressing elements, boiler design; sensors and control devices: oil monitoring, monitoring, EMC problems.

Objectives:

Having successfully completed this modules, the students have knowledge of the most important construction principles of electromagnetic power transformers and they are capable of designing, of calculating, of simulating with FEM and of rudimentally optimizing electrical machines and transformers.

Modes of teaching and learning

- 4 hours per week lectures,
- 1 hour per week tutorial,
- 1 hour per week practical lab course,
- 20 hours project,
- and self-study

Prerequisites

Competences acquired in modules such as ET-12 02 04 Electrical Machines.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The module assessment consists of an oral exam of 40 minutes (PL1) as individual exam and a lab course (PL2).

ECTS credit points and grades

- 7 ECTS credit points

The module grade (M) is derived from the weighted average of the grades of the elements of assessment:

\[M = \frac{7PL1 + 3PL2}{10} \]

Frequency

Annually, in the summer semester

Workload

210 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 02 13</td>
<td>Electrical Drive Engineering</td>
<td>Prof. Dr.-Ing. W. Hofmann</td>
</tr>
</tbody>
</table>

Contents and objectives

Content:

1. Automatic drives: Elements of the drive system; information technology and signal processing, control algorithms; automatic three-phase drives: converter supply, pulse control, interaction between power converter and motor, control methods, dynamic behaviour and field-oriented control, energy-efficient control, sensorless control; system integration of automated drives: systems solutions, regulation of drive systems with complex mechanical units, functionally integrated drives, combination drives.

and

2. Design of drive systems: basics and components, mechanical transmission system, selection and dimensioning, actuating drives and stepping drives, system perturbations, motion control and technology functions, data processing in converters, fieldbuses for electrical drives, hardware and software structure of digital controller modules, modelling and numerical algorithms, methods of system simulation, computer-aided design (Rapid Prototyping), possibilities of electrical power engineering, design and simulation of a belt drive of a conveyor belt system.

or

3. Electrical machine dynamics: methods and types, dynamic behaviour of orthogonal windings – externally excited direct current machine, dynamic behaviour successive windings – transformers, torque determined from energy efficiency or field sizes, types of space vectors, transmission behaviour and dynamic operating status of induction machines, upper shafts analysis, harmonics analysis, zero-sequence networks, wave processes and stress analysis.

Objectives:

The students will learn the operating system of electrical drives in automatic and mechatronic systems. They can describe, draft and design a drive system, and they will understand the dynamic processes in electrical machines. They can design and optimize regulated plants.

Modes of teaching and learning

4 hours per week lectures, 1 hour per week tutorial, 1 hour per week practical lab course, and self-study

Prerequisites

Competences acquired in modules such as ET-12 02 04 Electrical Machines and ET-12 02 05 Electric Drives.
Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The module assessment consists of an oral exam of 40 minutes (PL1) as individual exam and a lab course (PL2).

ECTS credit points and grades

<table>
<thead>
<tr>
<th>ECTS credit points and grades</th>
<th>7 ECTS credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The module grade (M) is derived from the weighted average of the grades of the elements of assessment: M=(7PL1+3PL2)/10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Annually, in the winter semester.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload</td>
<td>210 hours</td>
</tr>
<tr>
<td>Duration</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module number</td>
<td>Module name</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>ET-12 02 14</td>
<td>Selected Topics of Electrical Power Engineering</td>
</tr>
</tbody>
</table>

Contents and objectives

Contents of the module are current topics and questions of the electrical power engineering.

Outcomes:

After successful completion of the module, the students can deal with current and relevant and research-active areas of electrical power engineering. They can question and crosslink the knowledge acquired using new methodological approaches and contents.

Modes of teaching and learning

4 hours per week lectures, 2 hours per week tutorials, and self-study

Prerequisites

Competences acquired in modules such as ET-12 04 01 Electrical Power Engineering or ET-12 02 06 Advanced Seminar Electrical Power Engineering.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The module assessment consists of an oral exam of 40 minutes as individual exam.

ECTS credit points and grades

7 ECTS credit points

The module grade is the grade of the oral examination.

Frequency

Annually, beginning in the summer semester.

Workload

210 hours

Duration

2 semesters
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 02 15</td>
<td>Controlled Power Systems</td>
<td>Prof. Dr.-Ing. W. Hofmann</td>
</tr>
</tbody>
</table>

Contents and objectives

Content:

1. **Controlled energy systems:**
 - Definition of energy and performance, general control structures; synchronous generator: energy converters, modelling, regulation; network and isolated operation; asynchronous generators: single and double fed energy converters, modelling, regulation; network and isolated operation; exemplary regulations: steam power plant, hydro-powerplant, wind power plant, pump storage plant; flywheel accumulators: flywheel, motor/generator, converter, magnetic bearings, construction, regulation; grid control: primary, secondary and tertiary regulation; power flow regulators: contact based, line commutated, self commutated FACTS, regulating transformers, active filters; high voltage direct current transmission

2. **Electrical machine dynamics:**
 - Methods and types, dynamic behaviour of orthogonal windings – externally excited direct current machine, dynamic behaviour successive windings – transformers, torque determined from energy efficiency or field sizes, types of space vectors, transmission behaviour and dynamic operating status of induction machines, upper shafts analysis, harmonics analysis, zero sequence networks, wave processes and stress analysis.

Objectives:

The students will have knowledge of the design and the operating behaviour of electric energy transformers in power plants. They will understand the dynamic processes in electrical machines and networks, and they can design and optimize regulated plants.

Modes of teaching and learning

4 hours per week lectures, 1 hour per week tutorial, 1 hour per week practical lab course, 1 project (20 hours), and self-study

Prerequisites

Competences acquired in modules such as
- ET-12 02 04 Electrical Machines,
- ET-12 02 05 Electric Drives
- ET-12 13 01 Control of Continuous-Time Processes.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The module assessment consists of an oral exam of 40 minutes (PL1) as individual exam and a lab course (PL2).
| ECTS credit points and grades | 7 ECTS credit points
The module grade (M) is derived from the weighted average of the grades of the elements of assessment:
M = (7PL1 + 3PL2)/10 |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>annually, in the winter semester</td>
</tr>
<tr>
<td>Workload</td>
<td>210 hours</td>
</tr>
<tr>
<td>Duration</td>
<td>1 semester</td>
</tr>
</tbody>
</table>
Contents and objectives

The module deals with
- the function of basic topologies (DC/DC converter, voltage source converter) in order to derive a mathematical model,
- modelling of common power semiconductor switches,
- calculation of the system variables at a stationary operating regime,
- design of the passive components of power electronic systems,
- design of common feed-forward and feed-back control algorithms,
- verification of the function with simulation tools.

Objectives:
The students are capable of using basic methods to simplify a power electronic system and its components in order to derive a mathematical model. The students are capable of calculating the system variables with the mathematical model, and of designing the components and the control including observers.
Contents and objectives

Content:
1. Electric vehicle and traction drives:
 - traction drives: basics, mechanics of the train haulage, drive motors, converter technology, regulation of the mains current converter, regulation of the motor converter, railway control circuits;
 - vehicle drives: introduction, hybrid and electric drive structures, requirements and development goals, drive motors, power electronics, power supply, regulation

2. Direct drives and magnetic bearings techniques:
 - direct drives: introduction, torque motors, high-speed drives, linear drives, regulation;
 - magnetic bearings techniques: introduction, active and passive magnetic bearings, correcting elements, drafting and design, regulation of a radial bearing, rotor dynamics, imbalances, gyroscope effect, sensor technology.

Objectives:
The students are able to professionally select, design and optimize powertrains for mobile application as well as direct drive systems and magnetic bearings.

Modes of teaching and learning

4 hours per week lectures, 1 hour per week tutorial, 1 hour per week practical lab course, and self-study

Prerequisites

Competences acquired in modules such as **ET-12 02 04 Electrical Machines** and **ET-12 02 05 Electric Drives**.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The module assessment consists of an oral exam as individual exam of 40 minutes.

ECTS credit points and grades

7 ECTS credit points
The module grade is the grade of the oral exam.

Frequency

Annually, in the summer semester

Workload

210 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 02 18</td>
<td>Seminar for Graduate Students on Electromagnetic Theory and Compatibility</td>
<td>Prof. Dr. rer. nat. habil. H. G. Krauthäuser</td>
</tr>
</tbody>
</table>

Contents and objectives
The module comprises selected topics and questions of electromagnetic field theory and electromagnetic compatibility, as well as the methodology of scientific and project-orientated work.

The students have the ability to independently apply their skills and abilities in a team or individually to solve problems. The workflow will be documented and the results presented and discussed. Their knowledge, skills and abilities will be expanded through this.

Modes of teaching and learning
2 hours per week lectures and self-study

Prerequisites
Competences acquired in modules such as ET-12 02 01 Electromagnetic Theory, ET-12 02 07 Electromagnetic Compatibility.

Requirements for the award of credit points
The credit points are awarded when the module assessment is passed. The module assessment consists of an assignment and an oral presentation of 30 minutes.

ECTS credit points and grades
4 credit points
The module grade is the weighted mean of grades of the assignment and the oral presentation. The grade of the assignment counts 2/3 and the grade for the presentation 1/3.

Frequency
Annually, in the winter semester

Workload
120 hours

Duration of module
1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 02 19</td>
<td>Seminar for Graduate Students in Power Electronics</td>
<td>Prof. Dr.-Ing. St. Bernet</td>
</tr>
</tbody>
</table>

Contents and objectives

The module deals with
- recent topics, trends and problems in the field of power electronics,
- methods of scientific and project-based working and the presentation of the results.

Objectives:

The students are capable of solving a given task independently, individually, and in teams. They master the documentation of the work and the methods used, and are capable of presenting and discussing the results.

Modes of teaching and learning

2 hours per week seminar and self-study

Prerequisites

Competences acquired in modules such as ET-12 02 03 Power Electronics and ET-12 02 10 Power Electronics, advanced.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The module assessment consists of an assignment and a presentation of 30 minutes.

ECTS credit points and grades

4 ECTS credit points
The module grade consists to 2/3 of the grade for the assignment and to 1/3 of the grade for the presentation.

Frequency

annually, in the winter semester

Workload

120 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 02 20</td>
<td>Seminar for Graduate Students on Machines and Drives</td>
<td>PD Dr.-Ing. habil. V. Müller</td>
</tr>
</tbody>
</table>

Contents and objectives

Content:
- Current issues and questions of control, regulation and modelling
- Experimental studies of electrical machines and electrical drives

Objectives:
After completing this module, the students are capable of preparing a summarizing presentation on a specific topic on the basis of their scientific research. They are capable of presenting these results and defending these in a discussion. They are further capable of presenting their results on a poster clearly and graphically.

Modes of teaching and learning
2 hours per week seminar and self-study

Prerequisites
Competences acquired in modules such as ET-12 02 04 Electrical Machines, ET-12 02 05 Electric Drives, ET-12 02 12 Electrical Machines, Advanced and ET-12 02 13 Electrical Drive Engineering

Requirements for the award of ECTS credit points
The credit points are earned if the module assessment is passed. The module assessment consists of an assignment and a presentation of 30 minutes.

ECTS credit points and grades
4 ECTS credit points
The module grade consists to 2/3 of the grade for the assignment and to 1/3 of the grade for the presentation.

Frequency
Annually, in the winter semester

Workload
120 hours

Duration
1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 04 02</td>
<td>High Voltage and High Current</td>
<td>Prof. Dr.-Ing. S. Großmann</td>
</tr>
<tr>
<td></td>
<td>Engineering</td>
<td></td>
</tr>
</tbody>
</table>

Contents and objectives

The module contains basics and principles of

- High voltage engineering
- High current engineering

Qualification:

After successful completion of the module, the students will be able to comprehend the operating behaviour of components in an electrical power supply network. Furthermore, the students will be able to evaluate the stress of a component by electrical and mechanical loads by means of proper measurements and tests.

Modes of teaching and learning

2 hours per week lectures, 1 hour per week tutorial/seminar, 1 hour per week practical lab course and self-study

Prerequisites

Competences acquired in modules such as ET-12 08 01 Fundamentals of Electrical Engineering.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The module assessment consists of a lab course and an oral exam of 30 min. If more than 20 students take part in the module, the oral exam can be replaced by a written exam of 90 min.

ECTS credit points and grades

5 ECTS credit points

The module consists to 70% of the oral exam grade/the written exam grade and to 30% of the lab course grade.

Frequency

annually, in the winter semester

Workload

150 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 04 03</td>
<td>Fundamentals of Electrical Power Systems</td>
<td>Prof. Dr.-Ing. P. Schegner</td>
</tr>
</tbody>
</table>

Contents and objectives

Contents:
- Function, parameter estimation and modeling of all important equipment in electrical distribution networks
- Simplified methods for the calculation of voltage and current distribution as well as the basic aspects of design and dimensioning of electrical systems

Intended learning outcome:
Upon successful completion of the module, students are able to create and apply models for equipment in the electrical power system. They have the skills to determine the parameters for the most important equipment from geometrical data, manufacturer’s specification or with the help of measurements. The students are familiar with the basics of dimensioning of electrical equipment.

Modes of teaching and learning
3 hours per week lectures, 2 hours per week tutorial, and self-study.

Prerequisites
Competences acquired in modules such as ET-12 08 01 Fundamentals of Electrical Engineering.

Requirements for the award of ECTS credit points
The credit points are earned if the module assessment is passed. The module assessment consists of two written exams of 120 minutes and 90 minutes.

ECTS credit points and grades
5 ECTS credit points
The module grade consists to 2/3 of the grade for the exam of 120 min. and to 1/3 of the grade for the exam of 90 min.

Frequency
annually, in the winter semester

Workload
150 hours

Duration
1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 04 04</td>
<td>Operating of Electrical Power Systems</td>
<td>Prof. Dr.-Ing. P. Schegner</td>
</tr>
</tbody>
</table>

Contents and objectives

Contents:
- Calculation of symmetric and unsymmetric normal and failure processes in electrical power systems
- Assessing the stress of electrical equipment

Intended learning outcome:
Upon successful completion of the module, students are able to assess various operating modes and fault conditions in electrical power systems and calculate with simplified methods. They are able to comprehend these processes by measurements and to assess the stability of individual equipment regarding the resulting stress.

Modes of teaching and learning

2 hours per week lectures, 1 hour per week tutorial, 2 hours per week practical lab course, and self-study

Prerequisites

Competences acquired in modules such as ET-12 04 01 Electrical Power Engineering.

Requirements for the award of ECTS credit points
The credit points are earned if the module assessment is passed. The assessment consists of a written exam of 120 minutes and two lab courses.

ECTS credit points and grades

6 ECTS credit points
The grade is determined by the weighted average of the grades of the written test and the lab courses. The weights are 50% for the written exam and 25% for each lab course.

Frequency
annually, in summer semester

Workload
180 hours

Duration
1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 04 05</td>
<td>Network Integration, System Performance and Quality of Supply</td>
<td>Prof. Dr.-Ing. P. Schegner</td>
</tr>
</tbody>
</table>

Contents and objectives

Contents:
- all areas of quality of supply, i.e. service reliability, power quality and service quality in electrical power supply as well as
- the stress from transient operation processes.

Intended learning outcome:
The students are able to assess the connection of consumer and generator installations regarding their effect on power quality. They know the methods to assess the service reliability of electrical energy supply and evaluate the calculation results. They are familiar with transient operation processes and their effects.

Modes of teaching and learning

3 hours per week lectures, 2 hours per week tutorial, 1 hour per week practical lab course, and self-study

Prerequisites

Competences acquired in modules such as ET-12 08 01 Fundamentals of Electrical Power Systems, ET-12 04 04 Operating of Electrical Power Systems, or equivalent.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The assessment consists of two written exams of 150 minutes as well as of a lab course. If less than 20 students take part in the module, the written exam might be replaced by an oral exam of 45 minutes as individual exam.

ECTS credit points and grades

7 ECTS credit points
The grade is determined by the weighted average of the grades of the elements of assessment:
\[M = \frac{3 \text{ PL1} + 2 \text{ PL2}}{5} \]

Frequency

Annually, in summer semester

Workload

210 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 04 06</td>
<td>Planning of Electrical Power Systems</td>
<td>Prof. Dr.-Ing. P. Schegner</td>
</tr>
</tbody>
</table>

Contents and objectives

Contents:
- mathematical methods for calculating the stress of individual equipment within electrical power systems and
- the principles of planning electro technical installations and distribution networks.

Intended learning outcome:
The students are able to calculate and assess holistically, steady and transient stress. They have mastered all important procedures and methods to dimension respectively select the equipment with regard to their voltage and current stresses and other criteria. The students know the basic standards for the planning.

Modes of teaching and learning

4 hours per week lectures, 3 hours per week tutorials, and self-study

Prerequisites
Competences acquired in modules such as ET-12 04 03 Fundamentals of Electrical Power Systems.

Requirements for the award of ECTS credit points
The credit points are earned if the module assessment is passed. The assessment consists of a written exam of 120 minutes and two written exams of 90 minutes. With up to 5 registered students the written exams can be replaced by an oral exams of 45 minutes and two oral exams of 30 minutes.

ECTS credit points and grades
7 ECTS credit points
The grade is determined by the arithmetic mean of the grades of the exams: \(M = \frac{4 \cdot PL1 + 3 \cdot PL2 + 3 \cdot PL3}{10} \).

Frequency
annually, in summer semester

Workload
210 hours

Duration
1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 04 07</td>
<td>High Voltage Engineering</td>
<td>Prof. Dr.-Ing. S. Großmann</td>
</tr>
</tbody>
</table>

Contents and objectives

The module contains selected topics from
- High voltage engineering
- Insulation technology
- Lightning protection

Qualification:

After successful completion of the module, the students will be able to evaluate the function, design and rating of electrical equipment. Furthermore the students will learn simplified methods to dimension and test electrical equipment.

Modes of teaching and learning

5 hours per week lectures, 1 hour per week practical lab course, and self-study

Prerequisites

Competences acquired in modules such as ET-12 04 02 High Voltage and High Current Engineering.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The assessment consists of a lab course and an oral exam of 30 minutes.

ECTS credit points and grades

7 ECTS credit points
The grade for this module consists to 70% of the grade of the oral exam and to 30% of the lab course grade.

Frequency

Annually, in the summer semester

Workload

210 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 04 08</td>
<td>Protection and Control of Electrical Power Systems</td>
<td>Prof. Dr.-Ing. P. Schegner</td>
</tr>
</tbody>
</table>

Contents and objectives

Contents:
- the construction and operation of the protection and control systems in electrical power systems and
- the essential criteria of the selective protection technology and related algorithms.

Intended learning outcome:
After completing this module, the students will be able to evaluate the interfaces the process and the subsystems of the secondary equipment. They can evaluate criteria for detection of errors in electrical energy supply systems with respect to their suitability and accuracy. They can understand the basic principles of numerical protection devices and can comprehend and critically evaluate the methods and algorithms of the selective protection technology. Students are able to independently design protection systems and determine the necessary parameter settings.

Modes of teaching and learning
3 hours per week lectures, 2 hours per week tutorials, 1 hour per week practical lab course, and self-study.

Prerequisites
Competences acquired in modules such as ET-12 04 05 System Performance and Quality of Supply of Electrical Power Systems, ET-12 04 03 Fundamentals of Electrical Power Systems.

Requirements for the award of ECTS credit points
The credit points are earned if the module assessment is passed. The assessment consists of two written exams (of 120 minutes and of 90 minutes) and a lab course. With up to 5 registered students the written exams can be replaced by two oral exams as individual exams of 45 and 30 minutes.

ECTS credit points and grades
7 ECTS credit points
The grade is determined by the weighted average of the grades of the three elements of assessment.
\[M = \frac{(4 \times PL1 + 2 \times PL2 + 4 \times PL3)}{10} \]

Frequency
annually, in winter semester

Workload
210 hours

Duration
1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 04 09</td>
<td>Stress of Electrical Equipment</td>
<td>Prof. Dr.-Ing. S. Großmann</td>
</tr>
</tbody>
</table>

Contents and objectives

The module contains

- Basics of the design and operational mode of electrical equipment with high current load in electrical power engineering

Qualification:

By completing the module successfully, the students will be able to rate, evaluate and test components of systems with high current load. They will be enabled to do scientific research on the subject.

Modes of teaching and learning

3 hours per week lectures, 2 hours per week practical lab, 1 project, and self-study.

Prerequisites

Competences acquired in modules such as **ET-12 04 02** High voltage and high current engineering and **ET-12 04 07** High voltage engineering.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The assessment consists of an oral exam as individual exam of 30 minutes (PL1), one project (PL2), and a practical lab course (PL3).

ECTS credit points and grades

7 ECTS credit points

The grade for this module (M) is determined by the weighted average of the 3 assessments:

\[M = \frac{2PL1 + PL2 + PL3}{4} \]

Frequency

Annually, in the winter semester

Workload

210 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 04 10</td>
<td>Experimental High Voltage Engineering</td>
<td>Prof. Dr.-Ing. S. Großmann</td>
</tr>
</tbody>
</table>

Contents and objectives

The module contains
- High voltage test technique
- Measurement technique
- Scientific methods for planning experiments and their statistical evaluation.

Qualification:
After successful completion of the module, the students will be able to plan and perform scientific experiments as well as to evaluate them statistically. The students will gain HV-related and methodical knowledge for scientific research on the subject.

Modes of teaching and learning

4 hours per week lectures, 2 hours per week practical lab courses, and self-study

Prerequisites

Competences acquired in modules such as ET-12 04 02 High voltage and high current engineering and ET-12 04 07 High voltage engineering.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The assessment consists of a lab course and an individual oral as individual exam of 30 minutes.

ECTS credit points and grades

7 credit points
The grade for this module is determined by the weighted average of the lab course and the oral exam. The oral exam is weighted as 70% of the module grade and the lab course as 30%.

Frequency

Annually, in the winter semester

Workload

210 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 04 11</td>
<td>Seminar for Graduate Students Electrical Power Engineering</td>
<td>Prof. Dr.-Ing. P. Schegner</td>
</tr>
</tbody>
</table>

Contents and objectives

Contents:
- special issues and questions of the electrical energy supply, high voltage and high current engineering and
- methods of scientific and project-based working.

Intended learning outcome:
The students are able to apply skills independently, individually and in teams to solve a task. They will document the steps, present and discuss the results. This will help them expand knowledge and skills.

Modes of teaching and learning

2 hours per week seminar and self-study

Prerequisites

Competences that are provided by modules such as ET-12 04 01 Electrical Power Engineering, ET-12 04 03 Fundamentals of Electrical Power Systems, ET-12 04 04 Operating of Electrical Power Systems and ET-12 04 06 Planning of Electrical Power Systems

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The assessment consists of an assignment and the corresponding presentation of 30 minutes.

ECTS credit points and grades

4 ECTS credit points
The module grade consists to 2/3 of the grade of the assignment and to 1/3 of the grade of the presentation.

Frequency

annually in winter semester

Workload

120 working hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 05 02</td>
<td>Advanced Seminar Electronic Systems and Technology and Biomedical Engineering</td>
<td>Prof. Dr.-Ing. habil. J. Lienig</td>
</tr>
</tbody>
</table>

Contents and objectives

This module covers the steps of an engineering process based on annually announced assignments by participating institutes.

- Passing early engineering phases of a product, a technology or a fabrication process
- Detailed specification of assignment task
- Team assignments
- Documentation of engineering process
- Research of current-state applications
- Individual research of theoretical fundamentals for solution finding
- Creation of conceptual solution variants including their documentation
- Presentation of the solution concept

Intended learning outcomes:

Students completing this module are qualified to apply techniques, methods and principles for early engineering phases of a product, a technology or a fabrication process. This is accomplished by project- and team-oriented solving of complex tasks in recent research.

Modes of teaching and learning

2 hours per week project and self-study

Prerequisites

Competences acquired in modules such as

- **ET-12 08 01** Fundamentals of Electrical Engineering,
- **ET-02 06 04 05** Basics of Science,
- **ET-12 01 01** Microcomputer Technology,
- **ET-12 05 01** Electronic Systems Design and
- **ET-12 06 10** Project Electronics Technology.

Requirements for the award of ECTS credit points

The credit points are obtained by passing the module assessment. This assessment comprises a project of 12 weeks and a colloquium.

ECTS credit points and grades

4 ECTS credit points

The module grade is determined by the weighted average of the grades for the project (contributes by 1/3) and the colloquium (contributes by 2/3).

Frequency

Annually, during winter semester

Workload

120 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 05 03</td>
<td>System Design</td>
<td>Prof. Dr.-Ing. habil. J. Lienig</td>
</tr>
</tbody>
</table>

Contents and objectives

This module covers

1. **Design process and concepts** (*Entwicklungsprozess ausgehend vom Lösungskonzept*)
 - Design analysis and optimization with proof of functional correctness
 - Design reports and documentation
 - Presentation of design solution

2. **Introduction on Sensors** (*Einführung in die Sensorik*)
 - Sensor and measuring technology
 - Sensors for thermal, mechanical, magnetical and optical applications

3. **Optical Systems** (*Technische Optik*)
 - Wave optics and geometrical optic
 - Materials and elements
 - Fibre-optic guides, electro-optical and electro-micro-optical-mechanical elements and systems
 - Light engineering, digital and analog light processing, adaptive optics, optical devices

Intended learning outcomes:

Students completing this module are qualified to apply techniques and methods of system engineering in a creative manner, in particular for sensor and optical devices.

Modes of teaching and learning

- 3 hours per week lectures, 2 hours per week tutorials, 2 hours per week practical lab courses, and self-study

Prerequisites

Competences acquired in modules such as ET-12 05 02 Advanced Seminar Electronic Systems and Technology.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. This assessment consists of a written exam of 180 minutes and a project of 12 weeks. Both examinations must be passed.

ECTS credit points and grades

8 ECTS credit points

The module grade is determined by the weighted average of both elements of the module assessment, for which the written exam contributes by 2/3 and the project by 1/3.

Frequency

Annually, in the summer semester

Workload

240 hours

Duration

1 semester
Module number
ET-12 05 04

Module name
Design Methodologies

Lecturer in charge
PD Dr.-Ing. T. Nagel

Contents and objectives
This module covers

1 **Fundamentals of Design (Grundlagen der Konstruktion)**
 - Basics of system engineering
 - Standards for measures, tolerances, fittings, material load capacities
 - Mechanical connecting components
 - Mechanical functional components
 - Mechanical devices

2 **Computer-Aided Design (CAD-Konstruktion)**
 - Method of constructing CAD models
 - Modelling assembly constraints
 - Parametric and adaptive construction
 - Construction of variants
 - Deformation and load simulation

Intended learning outcomes:

Students completing this module are qualified to design components and devices, dimension components and assemble them properly. They are capable to provide documentation of the design process conforming to standards while using modern CAD tools.

Modes of teaching and learning
2 hours per week lectures, 4 hours per week tutorial, and self-study

Prerequisites
Comptences acquired in modules such as ET-12 05 01 Electronic Systems Design.

Requirements for the award of ECTS credit points
The credit points are earned if the module assessment is passed. This assessment comprises a written examination (120 minutes) on fundamentals of design and the tutorial assignments. Both elements of assessment must be passed.

ECTS credit points and grades
6 ECTS credit points

The module grade is determined by the arithmetic mean of both elements of assessment, i.e. the written examination and the tutorial assignments.

Frequency
Annually, starting in the winter semester

Workload
180 hours

Duration
2 semesters
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 05 05</td>
<td>Physical Design and Physical Design Automati</td>
<td>Prof. Dr.-Ing. habil. J. Lienig</td>
</tr>
</tbody>
</table>

Contents and objectives

This module covers
- Terms and concepts of physical design and physical design automation
- Related design phases
- The library concept
- Layout interfaces
- Goals and constraints for physical design
- Commercial physical design tools

Intended learning outcomes:

Students completing this module are qualified in the methodology of physical design and physical design automation. They are furthermore capable of handling a layout process using commercial design tools.

Modes of teaching and learning

2 hours per week lectures, 1 hour per week practical lab course, and self-study

Prerequisites

Competences acquired in modules such as ET-12 05 01 Electronic Systems Design and ET-12 05 02 Advanced Seminar Electronic Systems and Technology and Biomedical Engineering

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. This assessment comprises an assignment and an oral team examination of 30 minutes for each team member. Both elements of assessment must be passed.

ECTS credit points and grades

4 ECTS credit points

The module grade is determined by the weighted average of both elements of assessment, for which the assignment contributes by 40% and the oral examination by 60%.

Frequency

Annually, in the summer semester

Workload

120 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 05 06</td>
<td>Product and Precision Device Engineering</td>
<td>PD Dr.-Ing. T. Nagel</td>
</tr>
</tbody>
</table>

Contents and objectives

This module covers

1. **Fundamentals of Product Engineering** (*Grundlagen der Produktentwicklung*)
 - Systematic solving of production tasks
 - Methods of product engineering
 - Structural engineering process
 - Creativity techniques for finding solutions
 - Fault avoidance during product development
 - Scope of duties for product engineers

2. **Design of Precision Devices** (*Baugruppenentwicklung*)
 - Planning, construction and fabrication of a precision-mechanics drive mechanism
 - Finding of solution variants
 - Dimension and devise of an optimal solution
 - Creation of the set of drawings
 - Fabrication of parts and assembly of the device group
 - Initiation of the device group and verification of functionality

Intended learning outcomes:

Students completing this module are qualified to design innovative solutions of precision devices. They are capable of applying the concepts of product engineering and provide sets of drawings.

Modes of teaching and learning

2 hours per week lectures, 4 hours per week practical lab courses, and self-study

Prerequisites

Comptences acquired in modules such as ET-12 05 01 Electronic Systems Design and ET-12 05 04 Design Methodologies.

Requirements for the award of ECTS credit points

The credit points are obtained by passing the module assessment. This assessment consists of a written examination of 90 minutes and an assignment. With up to 5 registered students, the written exam can be replaced by an oral individual exam of 30 min. Both elements of assessment must be passed.

ECTS credit points and grades

7 ECTS credit points

The module grade is determined by the arithmetic mean of both elements of assessment, i.e. the examination and the assignment.

Frequency

annually, during the summer semester

Workload

210 hours

Duration

1 semester
Contents and objectives

Content:

- **Finite Element Method (FEM):**
 1. Fundamentals of modelling for the different physical domains of device technology using the example of structural mechanics, heat and electromagnetic fields,
 2. Generalized process steps for the creation of theoretically sound FEM models

- **Thermal design:**
 1. Fundamentals of heat transport,
 2. Thermal calculations and models

- **Optimization:**
 - Method of model creation and simulation, considering the holistic system-simulation approach for system design
 - Model experiments for the construction process (analysis, nominal value optimization, probabilistic optimization, multi-criteria optimization)

Objectives:

Students completing this module will obtain qualified fundamentals for systematic application of FEM tools. They understand the key concept of holistic system simulation for the design process. They are capable of finding robust and cost-effective solutions in system-design processes by applying system simulations while accounting for ubiquitous parameter variations and functional behaviour.

Modes of teaching and learning

2 hours per week lectures, 4 hours per week tutorials, and self-study

Prerequisites

Competences acquired in modules such as **ET-12 05 01 Electronic Systems Design**.

Requirements for the award of ECTS credit points

The credit points are earned when the module assessment is passed. The module assessment consists of individual tutorial assignments.

ECTS credit points and grades

7 ECTS credit point

The module grade is determined by the grade obtained for the tutorial assignments.

Frequency

Annually, during the summer semester

Workload

210 hours

Duration

1 semester
Module Number, Module Name, Lecturer in Charge

<table>
<thead>
<tr>
<th>Module Number</th>
<th>Module Name</th>
<th>Lecturer in Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 05 08</td>
<td>Electromechanical Design</td>
<td>PD Dr.-Ing. T. Nagel</td>
</tr>
</tbody>
</table>

Contents and Objectives

Content:

1. **Methodologies for Electromechanical Design**
 (Präzisionsgerätetechnik) with focus on:
 - Method of development
 - Construction guidelines and principles derived from technology and nature
 - Constructive guidelines for system design
 - Fundamentals for precision gears
 - Accuracy parameters for drive systems
 - Examples on development of precise-mechanics devices

2. **Actuators** *(Aktorik)* with focus on:
 - Composition of drive systems
 - Properties of different small-drive systems and actuators
 - Servomotors for system design
 - Innovative actuators

Objectives:

Students completing this module will obtain qualified knowledge to develop and design modern precise-mechanics devices under consideration of general construction guidelines, design guidelines and failure-detection principles. They are furthermore familiar with relevant principles of actuators and their constructive mechanic. In combination with the knowledge of specific actuator properties, the students can chose actuators appropriately for different applications and requirements.

Modes of Teaching and Learning

4 hours per week lectures, 2 hours per week tutorials, and self-study

Prerequisites

Competences acquired in modules such as ET-12 05 01 Electronic Systems Design and ET-12 05 04 Design Methodologies.

Requirements for the Award of ECTS Credit Points

The credit points are earned if the module assessment is passed. This assessment consists of a written exam of 180 minutes (PL1) and tutorial assignments (PL2). Both elements of assessment must be passed.

ECTS Credit Points and Grades

7 ECTS credit points

The module grade M is calculated as follows:

\[M = \frac{2 \times PL1 + PL2}{3} \]

Frequency

Annually, during the winter semester

Workload

210 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 05 09</td>
<td>Electronic Design Automation</td>
<td>Prof. Dr.-Ing. habil. J. Lienig</td>
</tr>
</tbody>
</table>

Contents and objectives

This module covers
- Relevance of electronic design automation (EDA)
- Design styles, design steps, layout design, geometrical fundamentals, etc.
- Floorplanning
- Partitioning and placement algorithms
- Routing algorithms
- Methods for compaction and verification
- Trends in EDA

Intended learning outcomes:

Students completing this module have obtained knowledge of algorithms which are used in modern design tools for physical design automation (going from netlist to the final layout). They are thus capable of writing design modules on their own or adapting commercial design tools for specific tasks.

<table>
<thead>
<tr>
<th>Modes of teaching and learning</th>
<th>2 hours per week lectures, 2 hours per week tutorials, 2 hours per week seminars, and self-study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisites</td>
<td>Students should have knowledge of the basics of electrical engineering.</td>
</tr>
<tr>
<td>Requirements for the award of ECTS credit points</td>
<td>The credit points are earned if the module assessment is passed. The module assessment consists of an oral examination of 30 minutes and tutorial assignments. Both elements of assessment must be passed.</td>
</tr>
<tr>
<td>ECTS credit points and grades</td>
<td>7 ECTS credit points</td>
</tr>
<tr>
<td></td>
<td>The module grade is determined by the weighted average of both elements of assessment: $M = (3PL1 + 2PL2) / 5$</td>
</tr>
<tr>
<td>Frequency</td>
<td>annually, during winter semester</td>
</tr>
<tr>
<td>Workload</td>
<td>210 hours</td>
</tr>
<tr>
<td>Duration</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module number</td>
<td>Module name</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>ET-12 05 10</td>
<td>Seminar for Graduate Students System design</td>
</tr>
</tbody>
</table>

Contents and objectives

This module covers
- specific topics and trends in system design and
- methods of scientific and project-based engineering

Intended learning outcomes:
Students completing this module are qualified to apply skills and techniques self-employed and in teams to complete specific tasks. They can create the documentation of process steps and can present and discuss the results.

Modes of teaching and learning

2 hours per week seminar and self-study

Prerequisites

Some specific expertise is required, which can for example be acquired by completing the modules ET-12 05 04 Design Methodologies, ET-12 05 03 System Design, and ET-12 05 05 Physical Design and Physical Design Automation.

Requirements for the award of ECTS credit points

The credit points are obtained by passing the module assessment. This assessment consists of an assignment and a related presentation of 30 minutes, which is graded as a separate examination.

ECTS credit points and grades

4 ECTS credit points
The module grade is determined by the weighted average of both elements of module assessment, for which the assignment contributes by 2/3 and the presentation by 1/3.

Frequency

Annually, during winter semester

Workload

120 hours

Duration

1 semester
Contents and objectives
This module covers

1 Finite Element Method (FEM) *(Finite Elemente Methode)*
- Fundamental theory of FEM for application in varying physical domains
- Basic process steps for the creation of theoretical substantiated FEM models
- Parametrization of FEM models based on script languages

2 Probabilist Simulation of Systems *(Probabilistische Systemsimulation mit FEM)*
- Method of model creation and probabilistic simulation, considering a holistic system-simulation approach
- Model experiments for the construction process (analysis of variants, probabilistic simulation, probabilistic optimization)
- Solution finding as robust multi-objective optimization
- Trends for system simulations

Intended learning outcomes:
Students completing this module will obtain qualified fundamentals for systematic application of FEM tools. They understand the key concept of holistic system simulation for the design process and have the required skills and knowledge to find robust solutions by applying system simulations while accounting for ubiquitous parameter variations and functional behaviour.
Module number
ET-12 06 01

Module name
Technologies for Electronic Packaging and Assembly

Lecturer in charge
Prof. Dr.-Ing. habil. Dr. h.c. Karlheinz Bock

Contents and objectives
This module covers

1 **Electronic Packaging** *(Aufbau- und Verbindungstechnik der Elektronik)*
 - trends in electronic packaging
 - packaging of semiconductor devices
 - assembly technologies for semiconductor devices
 - thin-film technologies for electronic circuits
 - thick-film technologies for electronic circuits
 - printed circuit board technologies
 - surface finish technologies for electronic components
 - packaging for optoelectronics

2 **Assembly Technologies** *(Montagetechnologien der Elektronik)*
 - packaging of electronic components
 - package types for SMD and THT
 - fine-pitch-assembly
 - theory on assembly precision
 - special technologies for component assembly
 - technologies for system integration

Intended learning outcomes:

Students completing this module gain knowledge as well as practical experience for the assembly of electronic components and the manufacturing process of printed circuit boards. The students are qualified to apply the fundamentals on joining technologies like bonding, soldering and adhesive bonding as well as structuring technologies for circuit boards including packaging and assembly of electronic components. They are familiar with the technological steps and the necessary equipment.

Modes of teaching and learning
4 hours per week lectures, 2 hours per week practical lab courses, and self-study

Prerequisites
Competences acquired in modules such as ET-12 05 01 Electronic Systems Design, ET-12 06 10 Project Electronics Technology or equivalent.

Requirements for the award of ECTS credit points
The credit points are earned if the module assessment is passed. The assessment consists of two written exams (90 min. each) and a practical lab course. All elements of assessment must be passed.

ECTS credit points and grades
6 ECTS credit points
The grade of the module is the arithmetic mean of all elements of assessment.
<table>
<thead>
<tr>
<th>Frequency</th>
<th>annually, starting in the winter semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload</td>
<td>180 hours</td>
</tr>
<tr>
<td>Duration</td>
<td>2 semesters</td>
</tr>
<tr>
<td>Module number</td>
<td>Module name</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>ET-12 06 02</td>
<td>Electronic Packaging</td>
</tr>
</tbody>
</table>

Contents and objectives

This module covers Electronic Packaging:
- trends in electronic packaging
- packaging of semiconductor devices
- assembly technologies for semiconductor devices
- thin-film technologies for electronic circuits
- thick-film technologies for electronic circuits
- printed circuit board technologies
- surface finish technologies for electronic components
- packaging for optoelectronics

Intended learning outcomes:

Students completing this module gain knowledge as well as practical experience for the assembly of electronic components and the manufacturing process of printed circuit boards. The students are qualified to apply the fundamentals on joining technologies like bonding, soldering and adhesive bonding as well as structuring technologies for circuit boards including packaging and assembly of electronic components. They are familiar with the technological steps and the necessary equipment.

Modes of teaching and learning

2 hours per week lectures, 2 hours per week practical lab courses, and self-study.

Prerequisites

Competences acquired in modules such as ET-12 06 10 Project Electronics Technology, ET-12 05 01 Electronic Systems Design or equivalent.

Requirements for the award of ECTS credit points

The credit points are acquired if the module assessment is passed. The module assessment consists of a written exam of 90 minutes and a lab course.

ECTS credit points and grades

4 ECTS credit points

The module grade is determined by the weighted average of both elements of module assessment, for which the written exam contributes by 2/3 and the lab course by 1/3.

Frequency

annually, starting in the winter semester

Workload

120 hours

Duration

2 semesters
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 06 03</td>
<td>Quality Assurance</td>
<td>Dr.-Ing. habil. H. Wohlrabe</td>
</tr>
</tbody>
</table>

Contents and objectives

The module includes methods for the application of quality assurance especially in electronics production
- Description of quality characteristics and their distribution and parameters
- Quality standards
- Statistical tests of quality data
- Construction and usage of quality control charts
- Machine and process capability analysis
- Analysis of reliability data
- Regression analysis

Outcomes:

Through knowledge of modern methods of quality assurance, especially the methods of statistical process control (SPC), students are able to secure the product quality during construction, design and production of assemblies and devices. They can examine, select and properly apply methods for quality assurance.

Modes of teaching and learning

2 hours per week lectures, 1 hour per week tutorials, and self-study

Prerequisites

Skills in mathematics, particularly in linear algebra, analysis, ordinary differential equations, theory of probability and mathematical statistics, are necessary.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The module assessment consists of a written exam of 120 minutes.

ECTS credit points and grades

4 ECTS credit points
The module grade is the grade for the written exam.

Frequency

Annually, in the summer semester

Workload

120 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 06 05</td>
<td>Board Level Reliability of Electronic products</td>
<td>Prof. Dr.-Ing. habil. Dr. h.c. Karlheinz Bock</td>
</tr>
</tbody>
</table>

Contents and objectives

1. **Package constructions, materials, modules, assembly demands**

Students that design and learn to specify electronic products as a way to meet their performance and reliability objectives despite pressure to deliver quickly technology solutions. The collected product design faces new challenges in: the need for further miniaturization; the use of higher speed signals; the introduction of new materials and device technologies; the information in globalization of the supply chain; and the exposure to harsher lifecycle environments associated with the penetration of electronics into a growing range of applications, many of which demand portability and in the future power electronics. The lectures are available to ensure that a product will meet its reliability goals, and to achieve this efficiently and economically aspects.

2. **Materials and reliability**

Design for reliability, demands on materials, interconnect materials/glues, solders, substrates, packages; Assembly parameters, design for manufacturing, design for reliability, stress consumption, stress free assemblies, goals for lifetime requirements.

Modes of teaching and learning

4 hours per week lectures, 2 hours per week practical lab courses, and self-study

Prerequisites

Competences in terms of materials and basics in electronic assemblies as well as knowledge of industrial requirements for save processes and products, life cycle requirements.

Requirements for the award of ECTS credit points

The credit points are earned when the module assessment is passed. The module assessment consists of a written exam of 120 minutes.

ECTS credit points and grades

7 ECTS credit points

The grade is the grade for the written exam.

Frequency

Annually, in the summer semester

Workload

210 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 06 06</td>
<td>Computer-Aided Electronics Manufacturing</td>
<td>Dr.-Ing. habil. H. Wohlrabe</td>
</tr>
</tbody>
</table>

Contents and objectives

This module includes two parts (2 hours per week lectures and 1 hour per week tutorial each)

1. **Production control and planning** (*Fertigungsplanung und -steuerung*)
2. **Statistical methods** (*Statistische Verfahren*)

The module gives a scientific introduction to the methods of analysis and optimization of production processes, particularly in electronic industry. Mathematical methods are applied for optimal design of manufacturing processes as well as product quality assurance. The most important areas are:

- Models for description of manufacturing systems and of quality characteristics of products
- Performance evaluation and scheduling of manufacturing and test processes
- Fundamentals of Discrete Event Simulation (DES)
- Application of various statistical analysis and optimization methods; e.g. Design of Experiments (DoE)

Modes of teaching and learning

4 hours per week lectures, 2 hours per week tutorials, and self-study

Prerequisites

Skills in mathematics are recommended, particularly in linear algebra, analysis, ordinary differential equations, theory of probability and mathematical statistics.

Requirements for the award of ECTS credit points

The credit points are earned when the module assessment is passed. The module assessment consists of a written exam of 180 minutes.

ECTS credit points and grades

7 ECTS credit points

The module grade is the grade for the written exam.

Frequency

Annually, in the summer semester

Workload

210 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 06 07</td>
<td>Hybrid Integration</td>
<td>Prof. Dr.-Ing. habil. Dr. h.c. Karlheinz Bock</td>
</tr>
</tbody>
</table>

Contents and Objectives

This module includes two parts

1. **Hybrid technique**
 (Hybridotechnik)
 - Technologies for the Hybrid technique,
 - thin film- and thick film technologies,
 - substrates and pastes,
 - thermal processes,
 - single layer and multilayer techniques,
 - design rules, hybridisation, components, housing
 - printing, sintering, laser application and trimming
 - packaging techniques,
 - functional test,
 and

2. **Micro und nano integration**
 (Mikro- und Nano-Integration)
 - Micro and nano integration of electronic components,
 - nano scaling und nano materials,
 - processes and tools for the nano structuring,
 - photonic und nano systems, 3D integration

The module provides skills in the fields of thin film and thick film technologies, hybrid integration and packaging of such components. The knowledge of micro and nano integration qualifies the students for the solving of innovative tasks in the electronic packaging technology. The students become able to estimate and choose such technologies.

Modes of Teaching and Learning

4 hours per week lectures, 2 hours per week practical lab courses, up to 3 one-day excursions, and self-study

Prerequisites

Competences in the field of electronic packaging technologies as acquired in the module
ET-12 08 11 Microelectronic Technologies and Devices.

Requirements for the Award of ECTS Credit Points

The credit points are earned if the module assessment is passed. The module assessment consists of a written exam of 150 minutes and a practical lab course. Both assessments have to be passed.

ECTS Credit Points and Grades

7 ECTS credit points
The module grade is the weighted average for the written exam (2/3) and the lab course (1/3).

Frequency

Annually, in the winter semester
<table>
<thead>
<tr>
<th>Workload</th>
<th>210 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module number</td>
<td>Module name</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>ET-12 06 08</td>
<td>Nondestructive Testing</td>
</tr>
</tbody>
</table>

Contents and objectives

This module covers

1. **Non-destructive testing of electronic devices** *(Zerstörungsfreie Prüfung elektronischer Baugruppen)*
 - including:
 - imaging techniques
 - storage of digital images
 - image pre-processing, image segmentation
 - attribute extraction, data classification
 and

2. **Micro and ano non-destructive testing methods** *(Zerstörungsfreie Prüfung elektronischer Baugruppen)*
 - including:
 - acoustic methods
 - imaging scanning probe methods
 - X-ray techniques
 - magnetic techniques
 - thermography and thermal wave microscopy.

Intended learning outcomes:

Students completing this module acquire knowledge and competences about function, design and use of non-destructive testing methods, particularly to characterise electronic components and devices.

Modes of teaching and learning

4 hours per week lectures, 2 hours per week practical lab courses, and self-study.

Prerequisites

Competences acquired in modules such as ET-12 08 06 Measurement and Sensor Techniques and ET-12 06 01 Technologies for Electronic Packaging and Assembly.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The assessment consists of a written exam of 180 minutes and of a practical lab course. Both elements of assessment have to be passed.

ECTS credit points and grades

7 ECTS credit points

The module grade is determined by the weighted average of both elements of module assessment, for which the written exam contributes by 2/3 and the lab course by 1/3.
<table>
<thead>
<tr>
<th>Frequency</th>
<th>Annually, in the winter semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload</td>
<td>210 hours</td>
</tr>
<tr>
<td>Duration</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module number</td>
<td>Module name</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>ET-12 06 09</td>
<td>Seminar for Graduate Students in Electronic Packaging</td>
</tr>
</tbody>
</table>

Contents and objectives

This module covers
- trends and special issues in electronic packaging
- methodology for scientific and project based engineering

Intended learning outcomes:
Students completing this module gain the skill and capability to solve specific problems autonomously, alone or in a team. They master the documentation of the workflow and have the ability to present and discuss their results.

Modes of teaching and learning

2 hours per week seminar, and self-study

Prerequisites

Competences acquired in modules such as ET-12 06 10 Project Electronics Technology, ET-12 06 01 Technologies for Electronic Packaging and Assembly, and ET-12 06 07 Hybrid integration is recommended.

Requirements for the award of ECTS credit points

The credit points are acquired if the module assessment is passed. The module assessment consists of an oral presentation of 30 min.

ECTS credit points and grades

4 ECTS credit points
The grade of the module is the grade of the oral presentation.

Frequency

Annually, during the winter semester

Workload

120 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 07 01</td>
<td>Biomedical Engineering</td>
<td>Prof. Dr.-Ing. habil. H. Malberg</td>
</tr>
</tbody>
</table>

Contents and objectives

The module contains the basics of biomedical engineering for diagnosis and therapy, particularly

- the relevant physical, physiological and biochemical phenomena
- the basic principles and the design of biomedical devices,
- the diagnostic biosignal recording and processing
- the automatic processing of diagnostic signals and information,
- the therapeutic basic principles in clinical applications
- the principles of organ assist systems,
- biomaterials and biocompatibility, and
- bionics

Outcome:

The students gain general knowledge about biomedical engineering and the complex interactions between the organism and engineering. They acquire the necessary qualifications to design devices for measuring physiological quantities. Furthermore, they are able to project automatic devices for diagnostic and organ assist systems and know the most important therapeutic procedures in clinical practice. They can transfer biological/physiological basics to technical components and work flows.

Modes of teaching and learning

4 hours per week lectures, 1 hour per week tutorial, and self-study

Prerequisites

Competences acquired in modules such as ET-12 08 01 Fundamentals of Electrical Engineering and ET-12 05 01 Electronic Systems Design.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The assessment consists of a written exam of 120 minutes.

ECTS credit points and grades

6 ECTS credit points
The module grade is the grade of the written exam.

Frequency

annually, starting in the winter semester

Workload

180 hours

Duration

2 semesters
Contents and objectives

The module contains the
1. **Basics in Medicine and Physiology** *(Grundlagen der Physiologie und Medizin)*
 - the structure and function of cells, organs and organ systems,
 - the electro- and neurophysiologic basics,
 - the cardiovascular system,
 - the auto regulation and regulatory circuits of the organism,
 - the main pathophysiological phenomena, and
 - the clinical workflow

2. **Measuring of Physiological Signals** *(Messung physiologischer Signale)*
 - detection of electrical and nonelectrical physiological values,
 - medical sensing, and
 - artifacts and noise processing

3. **Biomedical Engineering in Clinical Practice** *(Biomedizinische Technik in Kliniken)*
 - Application of biomedical devices in clinics of the medical faculty “Carl Gustav Carus” at the TU Dresden
 - special technical effects in the clinical environment

4. **Medical Terminology** *(Medizinische Terminologie)*
 - basics of the interdisciplinary medical language in anatomy, physiology and biomedical engineering

Intended learning outcomes:
The students know the technical relevant processes of life, the basic physiological processes and pathomechanisms, and the main principles in diagnosis and therapy by biomedical engineering. Moreover, they know the features of the interface between organism and engineering. They know medical and biomedical terminology and are qualified for the interdisciplinary cooperation between physicians and engineers.

Modes of teaching and learning

- 4 hours per week lectures,
- 1 hour per week tutorial,
- 1 hour per week practical lab course,
- self-study

Prerequisites

Competences acquired in modules such as
ET-02 06 04 05 Basics of Science,
ET-12 07 01 Biomedical Engineering.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The module assessment consists of an individual oral exam of 20 minutes. If the number of registered students exceeds 10, the oral exam will be replaced by a written exam of 90 minutes.

ECTS credit points and grades

- 7 ECTS credit points
- The module grade is the grade of the oral exam.
<table>
<thead>
<tr>
<th>Frequency</th>
<th>annually, during summer semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload</td>
<td>210 hours</td>
</tr>
<tr>
<td>Duration</td>
<td>1 semester</td>
</tr>
</tbody>
</table>
Contents and objectives

The module contains

1. **Diagnostical and Therapeutical Systems** *(Diagnostische und therapeutische Systeme)*

 the design and function of devices in the cardiovascular medicine, for sensory organs, the musculoskeletal system, the genitor-urinary system, the digestion and the centrals and peripheral nervous system.

2. **Biosignal Processing** *(Biosignalverarbeitung)*

 the basics of automatic processing of physiological signals, the conception of sensors and electrodes, the artifact pre-processing and special structures of novel data processing including diagnosis and decision support.

Intended learning outcomes:

The students gain knowledge to assess diagnostical and therapeutical procedures and work flows in the clinical environment. They are able to solve given diagnostic and therapeutic problems by biomedical engineering. Furthermore they are able to design and to program biosignal processing algorithms.

Modes of teaching and learning

3 hours per week lectures, 2 hours per week tutorials, 1 hour per week practical lab course, and self-study

Prerequisites

Competences acquired in modules such as ET-02 06 04 05 Basics of Science, ET-12 07 01 Biomedical Engineering.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The module assessment consists of a written exam of 90 minutes and a lab course. Both assessments have to be passed.

ECTS credit points and grades

7 ECTS credit points
The module grade is generated by the weighted average of both elements of assessment:

\[
M = \frac{(2 \times PL1 + PL2)}{3}.
\]
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 07 04</td>
<td>Cooperative Systems in Biomedical Engineering</td>
<td>Prof. Dr.-Ing. habil. Hagen Malberg</td>
</tr>
</tbody>
</table>

Contents and objectives

The module focuses on

1. *Electronic Pacemaker Technology*, in particular:
 - therapeutic conception, functionality, pacemaker code
 - construction and application of electronic pacemakers
 - frequency adaptive systems, telemonitoring, safety

2. *Mechanical Rehabilitation Techniques*, in particular:
 - prosthetics and assistance systems (construction and regulation)
 - movement diagnosis

3. *Implants*, particularly with examples used in cardiovascular medicine and orthopaedic systems with focus on:
 - materials and functionality
 - energy supply and communication
 - measurement technology and regulation
 - surgical techniques and progress monitoring

Intended learning outcomes:

After completion of the module, students have knowledge, skills and proficiency in dealing with automated and cooperative systems in biomedical engineering.

Modes of teaching and learning

The module consists of 4 hours per week lectures, 1 hour per week tutorials, 1 hour per week practical lab courses, and self-study.

Prerequisites

Competences acquired in modules such as ET-02 06 04 05 Basics of Science, ET-12 07 01 Biomedical Engineering, or equivalent.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The module assessment consists of a written exam 90 minutes and a lab course. Both elements of assessment have to be passed.

ECTS credit points and grades

7 ECTS credit points

The module grade is determined by the weighted average of both elements of module assessment: \(M = (2 \cdot PL1 + PL2) / 3 \).

Frequency

Annually, in the winter semester

Workload

210 hours

Duration

1 semester
Contents and objectives

This module covers

1. Imaging Modalities: Principles and Devices (*Bildgebende Verfahren und Geräte in der Medizin*)
 - physical principles and modalities in medical diagnosis process (X-ray diagnosis, CT, MRI, PET, SPECT, US, multi-modal data fusion, visualisation)
 - quality assessment of diagnostic information as a basis for medical decision process and therapeutic procedures

2. Medical Image Processing and Autostereoscopic Visualisation (*Medizinische Bildverarbeitung und autostereoskopische Visualisierung*)
 - mathematical algorithms for medical image processing and visualisation of spatial data (image processing chain)
 - data format and volume data models
 - autostereoscopic presentation and 3D interaction
 - handling of real multidimensional medical data and training with images by various software systems (computed tomography, MATLAB / Image Processing Toolbox (Mathworks Corp.), AMIRA (Visage Imaging GmbH))

Intended learning outcomes:
Students completing this module are capable of applying the concepts of medical imaging for processing of real patient data with several software systems. They are qualified to design innovative solutions of imaging devices and principles and to use interactive presentation, navigation, and visualisation tools in biomedical engineering field.

Modes of teaching and learning
3 hours per week lectures, 1 hour per week tutorial, 2 hours per week practical lab courses, and self-study

Prerequisites
Competences acquired in modules such as ET-02 06 04 05 Basics of Science, ET-12 07 01 Biomedical Engineering.

Requirements for the award of ECTS credit points
The credit points are earned if the module assessment is passed. The assessment consists of a written exam (90 minutes) and a practical lab course. Both must be passed.

ECTS credit points and grades
7 ECTS credit points
The module grade is determined by the weighted average of both elements of module assessment, for which the written exam contributes by 2/3 and the lab course reports by 1/3.

Frequency
annually, during the summer semester

Workload
210 hours

Duration
1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 07 06</td>
<td>Seminar for Graduate Students in Biomedical Engineering</td>
<td>Prof. Dr.-Ing. habil. H. Malberg</td>
</tr>
</tbody>
</table>

Contents and objectives

The module contains
1. special topics and trends in diagnostic and therapeutic device technologies, and
2. the scientific and management methods of engineering

Intended learning outcomes:
The students are able to solve interdisciplinary tasks in biomedical engineering independently or in a working team. They know the main procedures of engineering and are able to present and to discuss their results.

Modes of teaching and learning

2 hours per week seminar, 1 presentation, and self-study

Prerequisites

Some specific expertise is required, which can for example be acquired by completing the modules **ET-02 06 04 05 Basics of Science**, **ET-12 07 01 Biomedical Engineering**.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The assessment consists of an assignment and a presentation of 30 minutes as an individual exam.

ECTS credit points and grades

4 ECTS credit points
The module grade consists to 2/3 of the grade of the assignment and to 1/3 of the grade of the presentation.

Frequency

annually, during winter semester

Workload

120 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 08 07</td>
<td>Introduction to the Theory of Nonlinear Systems</td>
<td>Prof. Dr. phil. nat. habil. R. Tetzlaff</td>
</tr>
</tbody>
</table>

Contents

The module contents:
1. phenomena and analysis of nonlinear systems (including chaotic systems)
2. specialization in the theory and application of “Cellular Neural Networks”.

Outcomes:
After completing the module the students know the stability analysis by linearization and by applying Lyapunov functions, as well as the Volterra analysis of nonlinear transmission systems. Students know the properties of Cellular Neural Networks (CNN) and are able to realize binary information processing by means of these networks. The participants have an understanding of the structure CNN-based computers and are able to simulate the behavior of such networks numerically.

Modes of teaching and learning

4 hours per week lectures, 2 hours per week tutorials, and self-study

Prerequisites

Competences acquired in modules such as
- ET-01 04 01 Introduction to Analysis and Algebra,
- ET-01 04 02 Calculus for Functions with Several Variables,
- ET-12 08 01 Fundamentals of Electrical Engineering,
- ET-12 08 02 Electric and Magnetic Fields and
- ET-12 09 01 Systems Theory.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. If the number of registered students exceeds 10, the assessment consists of two written exams of 90 minutes each. With up to 10 registered students, the written exams are replaced by oral exams as individual exams of 30 minutes each.

ECTS credit points and grades

7 ECTS credit points
The module grade is determined by the arithmetic mean of the grades of the two exams.

Frequency

annually, starting in the summer semester

Workload

210 hours

Duration

2 semesters
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 08 08</td>
<td>Circuit Simulation and System</td>
<td>Prof. Dr. phil. nat. habil.</td>
</tr>
<tr>
<td></td>
<td>Identification</td>
<td>R. Tetzlaff</td>
</tr>
<tr>
<td>Contents and objectives</td>
<td>The mathematical basics of system identification and its practical application, basic system properties, important modeling approaches, methods for parameter identification and essential aspects of signal selection and data conditioning as well as adaptation of model parameters with appropriate algorithms.</td>
<td></td>
</tr>
<tr>
<td>Outcomes:</td>
<td>The students can select suitable model approaches based on theoretical considerations (linear/nonlinear, time/frequency domain). They are aware of simplifications made and consider specific boundary conditions for the applied methods. Students are able to define and analyze the set of data available for the identification and to evaluate it in terms of suitability. The students master the application of common methods for system identification and are able to evaluate the result.</td>
<td></td>
</tr>
<tr>
<td>Modes of teaching and learning</td>
<td>3 hours per week lectures, 2 hours per week tutorials, and self-study</td>
<td></td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Competences acquired in modules such as ET-12 08 01 Fundamentals of Electrical Engineering, ET-12 08 31 Electronic Circuits, ET-12 09 01 Systems Theory, ET-01 04 01 Introduction to Analysis and Algebra, ET-01 04 02 Calculus for Functions with Several Variables.</td>
<td></td>
</tr>
<tr>
<td>Requirements for the award of ECTS credit points</td>
<td>The credit points are earned if the module assessment is passed. The assessment consists of two written exams of 120 minutes.</td>
<td></td>
</tr>
<tr>
<td>ECTS credit points and grades</td>
<td>7 credit points</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>annually, in the summer semester</td>
<td></td>
</tr>
<tr>
<td>Workload</td>
<td>210 hours</td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td>2 semesters</td>
<td></td>
</tr>
<tr>
<td>Module number</td>
<td>Module name</td>
<td>Lecturer in charge</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>ET- 12 08 12</td>
<td>Integrated Analogue Circuits</td>
<td>Prof. Dr.-Ing. habil. U. Jörges</td>
</tr>
</tbody>
</table>

Contents and objectives

Integrated analogue circuits, such as reference sources, translinear circuits, transconductance amplifiers, mixers, analogue switches, switched capacitor circuits, current conveyors and others.

Students learn the fundamental properties of devices and circuits, such as temperature dependency, nonlinearities, noise and matching. They learn important functionally blocks of integrated analogue systems. Students can analyse symbolically, dimension and design analogue circuits.

Modes of teaching and learning

2 hours per week lectures, 2 hours per week tutorials, and self-study

Prerequisites

Competences acquired in modules such as ET-12 08 01 Fundamentals of Electrical Engineering, ET-12 08 31 Electronic Circuits (1st module semester), ET-12 08 03 Dynamic Networks or equivalent.

Requirements for the award of credit points

The credit points are earned if the module assessment is passed. The module assessment consists of a written exam of 120 minutes.

ECTS credit points and grades

4 ECTS credit points

The module grade is the grade of the exam.

Frequency

annually, during the winter semester

Workload

120 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 08 13</td>
<td>Physics of Selected Devices</td>
<td>Prof. Dr.-Ing. habil. M. Schröter</td>
</tr>
</tbody>
</table>

Contents and objectives

The module contains the courses:
- **Numerical simulation of devices** (winter semester) and
- **Modeling for circuit design** (summer semester).

The module includes:
- Design, operation and electrical properties of micro- and nanoelectronic devices for integrated circuits.

Outcomes:
The students are capable of
- describing the behavior of components on the basis of important physical models,
- implementing numerical solution methods for physical models,
- applying Computer-aided tools for the numerical simulation of micro- and nanoelectronic devices,
- constructing equivalent circuits,
- developing compact models based on realistic devices and fit model parameter from measurements.

Modes of teaching and learning

4 hours per week lectures, 2 hours per week tutorials, and self-study.

Prerequisites

Competences acquired in modules such as
- **ET-12 08 11 Microelectronic Technologies and Devices** or equivalent.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The module assessment consists of a written exam of 150 minutes and an assignment.

ECTS credit points and grades

6 ECTS credit points

The grade is determined by the weighted average of the grades of both elements of assessment:

\[M = \frac{7 \times PL1 + 3 \times PL2}{10} \]

Frequency

annually, starting in the winter semester

Workload

180 hours

Duration

2 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 08 26</td>
<td>Modeling and Characterization of Nanoelectronic Devices</td>
<td>Prof. Dr.-Ing. habil. M. Schröter</td>
</tr>
</tbody>
</table>

Contents and objectives

Content:
Modeling and measuring in industrial practice; state-of-the-art nanoelectronic devices with great potential for future analog and high-frequency application

Main aspects:
- overview of typical methods for dimensioning electronic devices (small-signal, noise, power measurement)
- current research issues and special aspects of modeling that are, amongst others, relevant for industrial application (test structures, parameter determination etc.)
- basics of one-dimensional charge transport in future transistors with nanotubes and nanowires
- multiscale modeling of nanoelectronic transistors regarding charge-carrier transport or compact models for the circuit design by using experimental characteristic lines.

After completing this module, students are capable of analyzing test results and independently apply progressive solution methods on practical problems. Furthermore, they can understand the essential mechanism of selected nanoelectronic devices and their characteristics.

Modes of teaching and learning

4 hours per week lectures, 1 hour per week tutorial, 1 hour per week practical lab course, and self-study.

Prerequisites

Competences acquired in modules such as ET-12 08 11 Microelectronic Technologies and Devices, ET-12 08 13 Physics of Selected Devices or equivalent.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The module assessment consists of a written exam of 90 minutes and an assignment of 20 hours.

ECTS credit points and grades

7 ECTS credit points
The grade is the weighted mean of the grades of the assessments.

Frequency

Annually, in the summer semester

Workload

210 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 08 15</td>
<td>Advanced Seminar: Micro- and Nanoelectronics</td>
<td>Prof. Dr.-Ing. habil. M. Schröter</td>
</tr>
</tbody>
</table>

Contents and objectives

The module includes:
- Topics of micro- and nanoelectronics and the methodology of scientific and project-based work organization.

Outcomes:
The students are capable of
- solving tasks in teams or independently (conception and documentation) in the field of micro- and nanoelectronics,
- presenting and defending their own work,
- acquiring new topics from literature.

Modes of teaching and learning

2 hours per week project, and self-study.

Prerequisites

Competences acquired in modules such as **ET-12 08 11 Microelectronic Technologies and Devices**, **ET-12 08 12 Integrated Analogue Circuits** or equivalent.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The module assessment consists of a project of 12 weeks and a colloquium.

ECTS credit points and grades

4 ECTS credit points
The module grade is determined by the weighted average of the grade of the project and the grade of the colloquium (oral exam). The grade of the project is weighted with 2/3 and the grade of the colloquium with 1/3 for the module grade.

Frequency

Annually, in the summer semester

Workload

120 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET- 12 08 16</td>
<td>Radio Frequency Integrated Circuits</td>
<td>Prof. Dr. sc. techn. habil. F. Ellinger</td>
</tr>
</tbody>
</table>

Contents and objectives

The content of the module focuses on:
- high frequency integrated circuits for high speed wireless communications such as low noise amplifiers, power amplifiers, mixers, oscillators on basis of active and passive devices, as well as complete radio frontends and architectures.
- advantages and challenges of aggressively scaled CMOS and BiCMOS, Moore than Moore (e.g. FinFET, SOI, strained silicon) and Beyond more Moore (silicon nano wire, CNT and organic) technologies are discussed from circuit design perspective.

After completion of the module, the students obtain competences regarding:
- methods for the design of analog high frequency integrated circuits. They know the basic circuits and architectures of the systems.
- analysis and optimisation of these circuits,
- complete design cycle for high frequency integrated circuits using the Cadance CAD system and are therefore prepared in this field for the requirements in industry and academia,
- technical English

Modes of teaching and learning

3 hours per week lectures, 1 hour per week tutorial, 2 hours per week practical lab courses, and self-study. The lecture is given in English.

Prerequisites

Students should have basic knowledge of circuit design on Bachelor level.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The module assessment consists of a written exam of 120 minutes.

ECTS credit points and grades

7 ECTS credit points
The module grade is the grade of the written exam.

Frequency

annually, during the summer semester

Workload

210 hours

Duration

1 semester
Contents and objectives

Integrated circuits for optical broadband communications, such as transimpedance amplifiers, detector circuits, laser drivers, multiplexers, frequency dividers, oscillators, phase locked loops, synthesizers and data recovery circuits.

Students learn the methods of the design of fast integrated circuits and systems for optical broadband communications. They are able to analyse and optimise these circuits. The students know the complete design cycle using the program CADENCE.

Modes of teaching and learning

3 hours per week lectures, 1 hour per week tutorial, 2 hours per week practical lab courses, and self-study.

The language of instruction is English.

Prerequisites

Competences acquired in modules such as ET-12 08 31 Electronic Circuits (on Bachelor level).

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The module assessment consists of a written exam of 120 minutes.

ECTS credit points and grades

7 ECTS credit points

The module grade is the grade of the written exam.

Frequency

Annually, in the winter semester

Workload

210 hours

Duration

1 semester
Module number	Module name	Lecturer in charge
ET-12 08 18 | Integrated Circuit Design | Prof. Dr.-Ing. habil. C. Mayr

Contents and objectives

The content of the module includes the basics and methods for development of application-specific digital integrated circuits (ASICs). This involves the transformation of a numeric algorithm into a data-dependency graph, the usage of scheduling and allocation procedures, optimizing regarding the consumption of resources (area, duration) as well as the implementation and functional verification (simulation) of the ASIC.

After completing the module, the students are enabled to develop the data path (register transfer description) and the control unit (FSM) of a selected numeric algorithm using a data dependency graph. They know the implementation flow, which includes both the automated synthesis of complex blocks based on a hardware description language (e.g., Verilog), as well as manually optimized digital data path elements.

Modes of teaching and learning

2 hours per week lectures, 1 hour per week tutorial, 2 hours per week practical lab courses, and self-study

Prerequisites

Competences acquired in modules such as
- ET-01 04 01 Introduction to Analysis and Algebra,
- ET-01 04 02 Calculus for Functions with Several Variables,
- ET-01 04 03 Complex Function Theory,
- ET-01 04 04 Partial Differential Equations and Probability Theory,
- ET-12 08 01 Fundamentals of Electrical Engineering
- ET-12 08 11 Microelectronic Technologies and Devices
- ET-12 08 31 Electronic Circuits.

Requirements for the award of credit points

The credit points are earned if the module assessment is passed. The module assessment consists of a project report of 40 hours.

Credit points and grades

7 ECTS credit points
The module grade is the grade of the project report.

Frequency

Annually, beginning in the winter semester

Workload

210 hours

Duration

2 semesters
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 08 19</td>
<td>VLSI Processor Design</td>
<td>Prof. Dr.-Ing. habil. C. Mayr</td>
</tr>
</tbody>
</table>

Contents and objectives

<table>
<thead>
<tr>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content of the module:</td>
</tr>
<tr>
<td>- Basics, concepts and methods for designing complex digital VLSI-systems</td>
</tr>
<tr>
<td>- Architectures for highly integrated digital processing systems, with emphasis on user-specific signal processing systems</td>
</tr>
<tr>
<td>- Methods for the efficient transfer of architectural concepts in the highly integrated implementation of a digital system.</td>
</tr>
<tr>
<td>- Specification and abstract modelling of the system, conversion into a Register-Transfer-Level (RTL) description, automated circuit synthesis and physical implementation (place & route, layout synthesis), delivering the data for the manufacture of the chip.</td>
</tr>
<tr>
<td>- Verification of the design on all levels of abstraction (behaviour, implementation) via simulation (functional verification)</td>
</tr>
<tr>
<td>- Proof of the equivalence of transformation steps via formal verification, i.e. by checking compliance with design rules (signoff-verification)</td>
</tr>
<tr>
<td>- Training in working together as a design team (division of tasks, definition of interfaces, schedule planning and time management)</td>
</tr>
</tbody>
</table>

Objectives:

After completion of this module, the students will be able to carry out a complete implementation and verification of a VLSI-System (e.g. a processor with a complexity comparable to an 8051) using industrial design software (Synopsys, Cadence).

Modes of teaching and learning

2 hours per week lectures, 2 hours per week tutorials, 2 hours per week practical lab courses, and self-study

The language of instruction is at least partly English.

Prerequisites

Competences acquired in modules such as
- ET-12 08 01 Fundamentals of Electrical Engineering,
- ET-01 04 03 Complex Function Theory,
- ET-01 04 04 Partial Differential Equations and Probability Theory,
- ET-12 08 31 Electronic Circuits,
- ET-12 09 01 Systems Theory,
or equivalent.
<table>
<thead>
<tr>
<th>Requirements for the award of credit points</th>
<th>The credit points are earned if the module assessment is passed. The module assessment consists of a project report of 30 hours and an oral presentation of 20 minutes.</th>
</tr>
</thead>
</table>
| Credit points and grades | 7 ECTS credit points
The module grade is the weighted average of the grade of the project report and the grade of the oral presentation:
\[M = \frac{(2 \cdot PL1 + PL2)}{3}. \] |
| Frequency | annually, in summer semester
Workload | 210 hours
Duration | 1 semester |
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 08 20</td>
<td>Laser Sensor Technology</td>
<td>Prof. Dr.-Ing. habil. J. Czarske</td>
</tr>
<tr>
<td>ET-12 08 20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contents and objectives

The module deals with the basic principles and the realisation of laser sensors in practice.

- Laser measurement technology (laser technology, bio-photonics, fiber optic measurement systems, optical information technology)
- Mechatronic laser sensors
- Experimental investigation and application of laser sensors

Intended learning outcomes:

Students will acquire skills to describe the physical principle and the technical design of laser sensors and to assess them. They will be able to handle the basic approaches and methods for the system design of modern laser sensors.

Modes of teaching and learning

4 hours per week lectures, 1 hour per week tutorial, 1 hour per week practical lab course and self-study

Prerequisites

Competences acquired in modules such as ET-12 09 01 Systems Theory, ET-12 02 01 Electromagnetic Theory, and ET-12 08 06 Measurement and Sensor Techniques.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The assessment consists of an individual oral exam of 40 min duration and a lab course.

ECTS credit points and grades

7 ECTS credit points

The module grade is determined by the weighted average of both elements of module assessment, for which the oral exam contributes by 6/7 and the lab course by 1/7.

Frequency

annually, during the summer semester

Workload

210 hours

Duration

1 Semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 08 21</td>
<td>Photonic Measurement System Technology</td>
<td>Prof. Dr.-Ing. habil. J. Czarske</td>
</tr>
<tr>
<td>ET-12 08 21</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contents and objectives

Contents are the basic principles, the theoretical description and the realisation of photonic measurement systems in practice.

- Digital holography and image processing
- Laser measuring systems for fluid technology
- Biomedical systems technology and optogenetics
- Experimental investigation of photonic systems

Intended learning outcomes:
The students are able to implement laser-optical measuring systems and to measure physical quantities by applying these.

Modes of teaching and learning

4 hours per week lectures, 1 hour per week tutorials, 1 hour per week projects, and self-study

Prerequisites

Competences acquired in modules such ET-12 08 06 Measurement and Sensor Techniques.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The assessment consists of an individual oral exam of 40 min and a project of 12 weeks.

ECTS credit points and grades

7 ECTS credit points

The module grade is determined by the weighted average of both elements of module assessment, for which the oral exam contributes by 6/7 and the project by 1/7.

Frequency

annually, in the winter semester

Workload

210 hours

Duration

1 Semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 08 22</td>
<td>Seminar for Graduate Students on Measurement System Technology</td>
<td>Prof. Dr.-Ing. habil. J. Czarske</td>
</tr>
</tbody>
</table>

Contents and objectives

- Current trends and issues of measurement system technology
- Methods of scientific and project-based working as well the presentation of results

Objectives:
The students are capable of solving a given task independently, individually, and in teams. They master the documentation of the work and the methods used, and are capable of presenting and discussing the results.

Modes of teaching and learning
2 hours per week seminar and self-study

Prerequisites
Required are competences that can be acquired in modules such as ET-12 08 06 Measurement and Sensor Techniques. Further, competences are recommended that can be acquired in modules on Sensor Technology, Photonic Measurement System Techniques and Signal Processing.

Requirements for the award of ECTS credit points
The credit points are earned if the module assessment is passed. The module assessment consists of an assignment and a presentation of 30 minutes.

ECTS credit points and grades
4 ECTS credit points
The module grade consists to 2/3 of the grade for the assignment and to 1/3 of the grade for the presentation.

Frequency
annually, in the winter semester

Workload
120 hours

Duration
1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 08 23</td>
<td>Computer Aided Integrated</td>
<td>Prof. Dr.-Ing. habil. C.</td>
</tr>
<tr>
<td></td>
<td>Circuit Design</td>
<td>Mayr</td>
</tr>
</tbody>
</table>

Contents and objectives

1. **Integrated Circuit Design**
 - Basics and methods necessary for an Application-Specific Integrated Circuit (ASIC) design project. Each step of the design process from algorithmic specification to synthesis strategies (CDFG-Control Data Flow Graph, Scheduling, Allocation) will be explained. For one data path the according Register-Transfer-Level-Sequences (RTL) as well as the Random-, Microprogram- and Data Path control units will be described and verified through simulation.

2. **Physical Design**
 - Design methodology for layout generation of Integrated Circuits, MCMs and PCBs. Detailed step-by-step description of the computer assisted layout generation from a netlist description to the final layout.

After completion of this module, the students will have knowledge about the basics of the C-like hardware description language VERILOG used to design and to simulate the circuit at system-, behavioral-, RT- and logic level verification of a VLSI-System. Furthermore, the students will be able to use modern design tools for the physical layout implementation.

Modes of teaching and learning

- 4 hours per week lectures, 1 hour per week tutorial, 2 hours per week practical lab courses, and self-study.

Prerequisites

- Competences acquired in modules such as ET-12 08 01 Fundamentals of Electrical Engineering, ET-12 08 02 Electric and magnetic Fields, ET-12 05 01 Electronic Systems Design or equivalent.

Requirements for the award of credit points

- The credit points are earned if the module assessment is passed. The module assessment consists of a design project of 50 hours and an oral presentation of 20 minutes per person. Both elements of assessment must be passed.

Credit points and grades

- 8 ECTS credit points
 - The module grade is the weighted average of the grade of the project report (66%) and the grade of the oral presentation (33%).

Frequency

- Annually, starting in the winter semester

Workload

- 240 hours

Duration

- 2 semesters
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 08 25</td>
<td>Seminar for Graduate Students: Micro- and Nanoelectronics</td>
<td>Prof. Dr.-Ing. habil. M. Schröter</td>
</tr>
</tbody>
</table>

Contents and objectives

The module includes:
- Special issues and trends in the field of modeling of micro- and nanoelectronic components
- Methods of scientific and engineering project-based activities

Outcomes:
The students are capable of solving a given task independently, individually, and in teams. They master the documentation of the work methods, can present and discuss the results.

Modes of teaching and learning

- 2 hours per week seminar and self-study

Prerequisites

Competences acquired in modules such as ET-12 08 13 Physics of selected devices.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The assessment consists of a graded assignment and a graded presentation of 30 minutes duration as a single test.

ECTS credit points and grades

- 4 ECTS credit points
- The module grade is derived from the grades of the assignment and of the presentation; the assignment contributes by 2/3 and the presentation by 1/3.

Frequency

- Annually in the winter semester

Workload

- 120 hours

Duration

- 1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 09 02</td>
<td>Signal Theory</td>
<td>Prof. Dr.-Ing. P. Birkholz</td>
</tr>
</tbody>
</table>

Contents and objectives

The module content includes:

Analysis of continuous time and discrete time signals in the time and frequency domain. A second focus is the description of stochastic signals as realisations of stochastic processes and its processing by static and dynamic systems.

Learning outcomes:

The students master the fundamental principles and the practical application of methods of signal processing in the time domain and in the frequency domain. They are familiar with the relationship between the processing of continuous time and discrete time signals. They know the different forms of spectral analysis and are able to decide which forms are applicable under which conditions. In particular, they understand how short time spectral analysis works and the specifics concerning its application.

The students are able to describe stochastic signals as realisations of stochastic processes. They are capable of calculating the behaviour of deterministic and stochastic systems that are processing stochastic processes.

Modes of teaching and learning

4 hours per week lectures, 2 hours per week tutorials, and self-study

Prerequisites

Competences acquired in modules such as ET-12 09 01 Systems Theory, ET-01 04 03 Complex Function Theory, ET-01 04 04 Partial Differential Equations and Probability Theory.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The module assessment consists of 2 written exams of 120 minutes each.

ECTS credit points and grades

7 ECTS credit points

The module grade is the arithmetic mean of the grades of the 2 written exams.

Frequency

annually, in the winter semester

Workload

210 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 09 13</td>
<td>Applied Intelligent Signal</td>
<td>Prof. Dr.-Ing. P. Birkholz</td>
</tr>
<tr>
<td></td>
<td>Processing</td>
<td></td>
</tr>
</tbody>
</table>

Contents and objectives
The content of the module includes:
- methods for recording and analyzing audio signals, image signals and biosignals
- methods of classification and regression in the field of machine learning
- the implementation of selected processes from 1) and 2) on an embedded system

Modes of teaching and learning
4 hours per week lectures, 1 hour per week tutorial, 1 hour per week practical lab course, and self-study.

Prerequisites
Competences acquired in modules such as ET-12 09 02 Signal Theory.

Requirements for the award of ECTS credit points
The credit points are earned if the module assessment is passed. The module assessment is a written exam of 150 minutes and an ungraded lab course.

ECTS credit points and grades
7 ECTS credit points
The module grade is the unweighted mean of the parts of the assessment.

Frequency
Annually, in the summer semester

Workload
210 hours

Duration
1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 09 04</td>
<td>Speech Technology</td>
<td>Prof. Dr.-Ing. P. Birkholz</td>
</tr>
</tbody>
</table>

Contents and objectives
The module content includes:
The algorithms and methods required for the lingual human-machine interaction (speech recognition and speech synthesis).

Learning outcomes:
Successful students master the latest technologies being used in speech recognition and speech synthesis. They know the basic concepts of linguistics and the hierarchical semiotic system and the structures of natural language. They are able to define it by means of formal languages and grammars and employ this knowledge in the development of speech recognition systems.
Furthermore, they know the structure of speech synthesis systems and the algorithms used in linguistic-phonetic and acoustic-phonetic implementations. They know how to adapt these systems to meet specific demands such as multilingual or multimodal interaction.

Modes of teaching and learning
4 hours per week lectures, 2 hours per week practical lab courses, and self-study

Prerequisites
Competences acquired in modules such as ET-12 09 02 Signal Theory, ET-12 09 03 Intelligent Audio Signal Processing, or equivalent.

Requirements for the award of ECTS credit points
The credit points are earned if the module assessment is passed. If the number of registered students exceeds 15, the module assessment consists of a written exam worth 150 minutes and an ungraded lab course. With up to 15 registered students the module assessment consists of an oral exam as individual exam worth 30 minutes and an ungraded lab course.
The nature of the specific exam is announced at the end of the registration period as usually known from the faculty.

ECTS credit points and grades
7 ECTS credit points
The module grade is the grade of the written exam.

Frequency
Annually, in the winter semester

Workload
210 hours

Duration
1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 09 05</td>
<td>Electro-Acoustics</td>
<td>Prof. Dr.-Ing. habil. E. Altinsoy</td>
</tr>
</tbody>
</table>

Contents and objectives

The module content includes:

- in-depth knowledge of electro-acoustics with an emphasis on the evaluation of audio systems as well as the active control of sound and vibration.

Learning outcomes:

The students are able to integratively apply their knowledge in the various disciplines of electrical engineering/mechanics/acoustics to complex structures (nonlinear, time dependent, with distributed parameters). A typical example is the rating of sound systems using objective measurements. The students are proficient in the development of new measurement methods, which employ test signals as well as music for the rating of the electro-acoustic system. They understand the relationship between measured physical symptoms and physical causes and their impact on the perceived sound quality. They have learned advanced methods for modeling and analysis of electrical, mechanical and acoustic systems and the systematic design of measurement and control instrumentation, which are implemented using digital signal processors.

Modes of teaching and learning

4 hours per week lectures, 2 hours per week practical lab courses, and self-study.

Prerequisites

Competences acquired in modules such as

- ET-12 09 02 Signal Theory,
- ET-12 09 06 Acoustics, or equivalent.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The module assessment consists of 2 written exams of 90 minutes each and a lab course.

ECTS credit points and grades

7 ECTS credit points

The module grade is the weighted mean of the grades of the 3 elements of assessment, for which the 2 written exams contribute by 2/5 each and the grade for the lab course by 1/5.

Frequency

annually, beginning in the summer semester

Workload

210 hours

Duration

2 semesters
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 09 06</td>
<td>Acoustics</td>
<td>Prof. Dr.-Ing. habil. E. Altinsoy</td>
</tr>
</tbody>
</table>

Contents and objectives
The module focuses on physical acoustics, hearing acoustics, electroacoustics and room acoustics. This includes physical and psychoacoustic basic parameters of the acoustics, the description and measurement of acoustic events, electroacoustic transducers and basic principles of listening perception.

Modes of teaching and learning
2 hours per week lectures, 2 hours per week tutorials, and self-study

Prerequisites
Basic knowledge in physics, mathematics and electrical engineering

Requirements for the award of ECTS credit points
The credit points are earned if the module assessment is passed. The module assessment consists of a written exam of 180 minutes.

ECTS credit points and grades
4 ECTS-credit points
The module grade is the grade of the written exam.

Frequency
Annually, in the summer semester

Workload
120 hours

Duration
1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 09 07</td>
<td>Technical Acoustics / Vehicle Acoustics</td>
<td>Prof. Dr.-Ing. habil. E. Altinsoy</td>
</tr>
</tbody>
</table>

Contents and objectives
The design and quality of vehicle interior sound becomes increasingly important in the development process of new vehicles. The physical behaviour of vibration and sound generation (also transmission) ranked first in the design process. This module provides the theoretical and practical foundation for technical acoustics with focus on vehicle acoustics and includes a lab course on the sound and vibration measurement technique. Generation, transmission and damping of air- and structure-borne sound, transfer path analysis and synthesis, manipulation of the vehicle interior and exterior sound will be introduced. The lab course includes examples in the following areas:
- technical acoustics
- electromechanic and electroacoustic systems.

Modes of teaching and learning
2 hours per week lectures, 2 hours per week tutorials, 2 hours per week practical lab courses, and self-study.

Prerequisites
Competences acquired in modules such as ET-12 08 06 Measurement and Sensor Techniques, ET-12 09 06 Acoustics, or equivalent.

Requirements for the award of ECTS credit points
The credit points are earned if the module assessment is passed. The module assessment consists of an oral exam as individual exam of 30 minutes and a lab course.

ECTS credit points and grades
7 ECTS-credit points
The module grade is the weighted mean of both assessments: \(M = \frac{2 \times PL1 + PL2}{3} \).

Frequency
annually, in the winter semester

Workload
210 hours

Duration
1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 09 08</td>
<td>Room Acoustics/ Virtual Reality</td>
<td>Prof. Dr.-Ing. habil. E. Altinsoy</td>
</tr>
</tbody>
</table>

Contents and objectives

This module provides the theoretical and practical foundation for room acoustics (first part) and interface design for virtual reality applications (second part).

1) The first part of the module (room acoustics) includes the theory of sound fields in enclosed spaces, geometrical acoustics, sound absorbers, electroacoustic systems in rooms and design of lecture halls, concert halls, opera houses, etc.

2) The aim of the second part of the module is to present the advanced concepts for generation of real-time interactive auditory, haptic, and visual virtual environments. Nowadays, such kinds of systems play a pronounced role in scientific and industrial research & development and, thus, become more and more important as tools for automotive industry (e.g. driving simulators, prototyping of engineering designs, restyling, ergonomics, etc.), telecommunication industry, architecture, and entertainment industry. Students learn audio recording and reproduction technologies (binaural techn., stereophony, surround sound, VBAP, ambisonics, wave field synthesis), implementation of room acoustical models, sound synthesis techniques, haptic and visual reproduction technologies. Furthermore, students will be exposed to the process of creating virtual environments, by developing some small VR applications (auditory/haptic/visual) as members of a small team.

Modes of teaching and learning

4 hours per week lectures, 2 hours per week practical lab courses, and self-study

Prerequisites

Competences acquired in modules such as ET-12 09 01 Systems Theory, ET-12 09 02 Signal Theory and ET-12 09 06 Acoustics, or equivalent.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The module assessment consists an oral exam of 55 minutes as individual exam and a project work of 30 hours.

ECTS credit points and grades

7 ECTS credits points
The module grade is the arithmetic mean of the oral exam and the project work: \(M = (PL1 + PL2) / 2 \).

Frequency

annually, in the summer semester

Workload

210 hours

Duration

1 semester
Contents and objectives
This module gives an introduction to:

1. Psychoacoustics:
Psychoacoustics is concerned with the relationships between the physical characteristics of sounds and their perceptual attributes. The aim of this module is to give students an understanding on the theory and practice of psychophysics, including the various aspects of psycho-acoustics, such as sensitivity, masking, loudness, sharpness, pitch, timbre and roughness. In this module various binaural models and the aspects of the binaural hearing will be introduced.

2. Sound design
Each perceived sound in product use is a carrier of information. Each sound has a meaning to its listener, and as such each sound is perceived as a sign. The humming sound inside a car is mostly associated with, e.g., sportiness. This module outlines basic principles of sign theory and gives guidelines to how human perception of a product is affected by product sounds.

Intended learning outcomes:
Students learn to construct signals, which evoke – if they are heard – specific physical, affective or psychomotor reactions. They are qualified for the product development, e.g., in the automotive, hearing aid, household appliance or telecommunication industry and in medical engineering companies.
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 10 01</td>
<td>Information Theory</td>
<td>Prof. Dr.-Ing. E. Jorswieck</td>
</tr>
</tbody>
</table>

Contents and objectives

Content of this module:
- basic information theoretic measures
- source coding
- channel coding
- coding theorem
- rate-distortion theory

Intended learning outcomes:
Students are able to master the basic principles of Information Theory. They are familiar with the calculation and the meaning of entropy as well as the mutual information for discrete and statistical random variables. Furthermore, students know the source coding and channel coding theorems and are able to apply the results from these coding theorems for a practical system design. They are able to construct source codes as well as channel codes and are further able to indicate procedures for decoding. Various performance metrics for the evaluation of the performance of information systems e.g. the ergodic capacity or the outage capacity are used and interpreted confidently.

Modes of teaching and learning

2 hours per week lectures, 2 hours per week tutorials, and self-study

Prerequisites
Basic knowledge which can be acquired in modules such as ET-01 04 01 Introduction to Analysis and Algebra, ET-12 10 24 Communications.

Requirements for the award of ECTS credit points
The credit points are earned if the module assessment is passed. The module assessment consists of a written exam of 120 min.

ECTS credit points and grades
4 ECTS credit points
The grade of the written exam is the grade for the module.

Frequency
annually, during the summer semester

Workload
120 hours

Duration
1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 10 02</td>
<td>Advanced Seminar Communication Systems</td>
<td>Prof. Dr.-Ing. Frank Fitzek</td>
</tr>
</tbody>
</table>

Contents and objectives

This module encompasses new topics and issues regarding communications and network engineering combined with the methodology of scientific and project based operations.

Intended learning outcome:

After completing this module, students will be able to apply their skills autonomously, individually or within a team to specific tasks. In doing so, single steps of the procedures should be documented comprehensibly. Students are expected to present and discuss their results. Moreover, students can work in teams to develop their concepts, which they will then realize and defend.

Modes of teaching and learning

2 hours per week project and self-study

Prerequisites

Basic knowledge that can be acquired in modules such as ET-12 10 24 Communications ET-12 08 06 Measurement and Sensor Techniques ET-12 09 02 Signal Theory.

Requirements for the award of ECTS credit points

The credit points are earned if the module exam is passed successfully. The module exam consists of a project work of 12 weeks and a colloquium.

ECTS credit points and grades

4 ECTS credit points
The module grade consists to 2/3 of the project work and to 1/3 of the colloquium.

Frequency

annually, during the summer semester

Workload

120 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 10 03</td>
<td>RF Engineering</td>
<td>Prof. Dr.-Ing. D. Plettemeier</td>
</tr>
</tbody>
</table>

Contents and objectives

The modules content comprises: the physical basics of devices and circuits as well as RF systems and radio transmission systems. This includes theory and praxis of RF wave guides (micro strip lines, hollow wave guides and optical fibers), their associated circuit components and circuits as well as their characterization through scattering parameters.

Qualification objectives:

Students will have the ability to evaluate RF connections and design wave guides. They are trained in handling RF equivalent circuits and description of n-ports by scattering parameters. Students can certainly apply the basics of wave radiation, propagation and reflection and have basic knowledge of signal transmission over various wave guides.

Modes of teaching and learning

2 hours per week lectures, 2 hours per week tutorials, and self-study

Prerequisites

Competences acquired in modules such as ET-12 02 01 Electromagnetic Theory (1st semester of the module), ET-12 10 24 Communications and ET-12 09 01 Systems Theory.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The assessment is a written exam of 180 minutes.

ECTS credit points and grades

4 ECTS credit points

The module grade is the grade of the written exam.

Frequency

annually, in the summer semester

Workload

120 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 10 04</td>
<td>Communication Networks, Basic Module</td>
<td>Prof. Dr.-Ing. Frank Fitzek</td>
</tr>
</tbody>
</table>

Contents and objectives

- **Content:**
 The principles of message routing in communication networks, the architecture of communication networks in wire-bound, wireless and optical technology and the communication protocols of the OSI model. Media access methods, multiplexing techniques and the transmission technology ATM are introduced.

- **Objectives:**
 The students master circuit switching and packet switching methods, layered protocols and they can evaluate static and statistical multiplexing methods. The students are acquainted with TCP/IP and CSMA/CD exemplary. They know fundamental methods for network design.

Modes of teaching and learning

- 2 hours per week lectures, 2 hours per week tutorials, and self-study

Prerequisites

- Competences acquired in modules such as
 - ET-01 04 01 Introduction to Analysis and Algebra,
 - ET-01 04 02 Calculus for Functions with Several Variables,
 - ET-01 04 04 Partial Differential Equations and Probability Theory,
 - ET-12 10 24 Communications
 - ET-12 09 01 Systems Theory.

Requirements for the award of ECTS credit points

- The credit points are earned if the module assessment is passed. The assessment is a written exam of 150 minutes.

ECTS credit points and grades

- 4 ECTS credit points
 - The module grade is the grade of the written exam.

Frequency

- Annually, in the summer semester

Workload

- 120 hours

Duration

- 1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 10 05</td>
<td>Communication Networks, Advanced I</td>
<td>Prof. Dr.-Ing. Frank Fitzek</td>
</tr>
</tbody>
</table>

Contents and objectives

Content:
- The planning process for communication networks with transport, service and cost modelling and principles for the dimensioning and routing in communication networks, including their implementation in algorithmic or heuristic optimization approaches
- Integrated packet networks with selected basics of networking technologies and protocols for LAN, MAN and WAN

Objectives:
Having successfully completed this module, the students have a sound knowledge of planning, dimensioning and optimization of integrated communication networks. They understand the procedures and protocol structures that are used for efficient, flexible and reliable operation of these networks and have an overview of currently used technologies and their trends. The students are familiar with the basic technologies for integrated communication networks. They understand the system structures and processes and are able to evaluate and apply these. They master the most important networking technologies, their operating principles and protocols and are able to apply these to new problems.

Modes of teaching and learning

4 hours per week lectures, 2 hours per week tutorials, and self-study

Prerequisites
Competences acquired in modules such as ET-12 10 24 Communications and ET-12 10 04 Communication Networks, Basic Module or equivalent.

Requirements for the award of ECTS credit points
The credit points are earned if the module assessment is passed. If the number of registered students exceeds 15, the assessment consists of two written exams of 120 minutes each. With up to 15 registered students, the assessment consists of an oral exam as individual exam of 30 minutes and a written exam of 120 minutes.

ECTS credit points and grades
7 ECTS credit points
The module grade is the arithmetic mean of the grades for both elements of assessment.

Frequency
annually, in the summer semester

Workload
210 hours

Duration
1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 10 19</td>
<td>Optimization in modern Communication Systems</td>
<td>Prof. Dr.-Ing. E. Jorswieck</td>
</tr>
</tbody>
</table>

Contents and objectives

Content:
The foundations of optimization in communication systems and modern methods of signal processing for communication in radio systems

Objectives:
The students are familiar with optimization problems that occur in communication technology as well as with modern approaches and methods of information theory and signal processing. The students have the mathematical knowledge necessary for classifying these problems and master both analytical methods as well as numerical methods for the solution thereof. They are able to apply these to different scenarios and are thus able to develop optimal and efficient strategies for current problems in modern communication systems.

Modes of teaching and learning

4 hours per week lectures, 2 hours per week tutorials, and self-study.

The language of instruction can be either German or English. At the beginning of the teaching period, the lecturer announces the language the module will be taught in.

Prerequisites

Competences acquired in modules such as ET-12 10 01 Information Theory, ET-12 09 01 Systems Theory or equivalent.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The assessment consists of two written exams of 120 minutes each each.

ECTS credit points and grades

7 ECTS credit points

The module grade is the arithmetic mean of the grades for both elements of assessment.

Frequency

annually, in the winter semester

Workload

210 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 10 20</td>
<td>Communication Networks, Advanced II</td>
<td>Prof. Dr.-Ing. Frank Fitzek</td>
</tr>
</tbody>
</table>

Contents and objectives

Content:
- Tools for analyzing the performance of communication systems, in particular the analytical and simulative approach, and the exemplary realization by implementation
- Future communication systems, their planning, analysis and structure
- Approaches to project-based work, incl. work-structuring and presentation of the results (in writing and oral) in front of an expert public

Objectives:
Having successfully completed this module, the students have a thorough understanding of the modelling and performance analysis of communication networks and their protocols. They are able to chose and apply appropriate methods of investigation for various problems.

The students have learned to look at their tasks in a professional manner, to structure their project in terms of work and time, and to present their results in a public-oriented manner.

Modes of teaching and learning

4 hours per week lectures, 2 hours per week tutorials, and self-study.

The language of instruction is English.

Prerequisites

Competences acquired in modules such as ET-12 10 24 Communications, ET-12 10 04 Communication Networks, Basic Module, or equivalent.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. If the number of registered students exceeds 15, the assessment consists of a written exam of 120 minutes and a project of 30 hours. With up to 15 registered students, the assessment consists of an oral exam as individual exam of 30 minutes and a project work of 30 hours.

ECTS credit points and grades

7 ECTS credit points

The module grade is the arithmetic mean of the grades for both elements of assessment.

Frequency

annually, in the winter semester

Workload

210 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 10 08</td>
<td>Statistics</td>
<td>Prof. Dr.-Ing. Frank Fitzek</td>
</tr>
</tbody>
</table>

Contents and objectives

Content:
- Theoretical and practical fundamentals and methods of descriptive statistics (moments and calculation rules; important specific probability distributions, limit theorems)
- Estimation and testing of the assessing statistics (point and interval estimates, hypothesis tests, analysis of statistical correlations)

Objectives:
The students are able to carry out scientific investigations of mass phenomena based on combinatorics and probability theory. By doing so, they obtain information on the basic population of the considered objects or processes from concrete samples, taking probabilistic models into account. They are able to find the necessary statistical models and lead them to an analytical treatment. The students are able to determine sample function, to estimate statistical parameters, confidence and prediction intervals, to test hypotheses on distribution parameters or laws using statistical methods and to identify stochastic correlations between several parameters.

Modes of teaching and learning

4 hours per week lectures, 2 hours per week tutorials, and self-study

Prerequisites
Competences acquired in modules such as ET-01 04 01 Introduction to Analysis and Algebra, ET-01 04 02 Calculus for Functions with Several Variables, ET-01 04 03 Complex Function Theory, ET-12 09 01 Systems Theory or equivalent.

Requirements for the award of ECTS credit points
The credit points are earned if the module assessment is passed. The assessment consists of two written exams of 135 minutes each.

ECTS credit points and grades
7 ECTS credit points
The module grade is the arithmetic mean of the grades for both elements of assessment.

Frequency
Annually
The module starts in the summer semester.

Workload
210 hours

Duration
2 semesters
Module number

<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 10 09</td>
<td>Information Theory, Advanced I</td>
<td>Prof. Dr.-Ing. E. Jorswieck</td>
</tr>
</tbody>
</table>

Contents and objectives

This module comprises:

Elements of the multi-user information theory, meaning capacity regions and attainable rate regions of multiple access channels, broadcast channels, relay channels, interference channels with coding theorems and converse.

Intended learning outcome:

After completing this module, students are familiar with the elements of the network information theory and the basic results regarding capacity regions und attainable rate regions. Students further obtain information theoretical and mathematical tools to prove coding theorems. Amongst these coding theorems are superposition coding, Gelfand-Pinkser coding, dirty-paper coding, successive-interference-cancellation, Han-Kobayashi-coding, backward-decoding and many more. Furthermore, students will know the current status of technology – e.g. the capacity region of the multi-antenna broadcast channel – as well as unsolved issues regarding network information theory and its difficulties. They further apply their gained knowledge and the functional interpretation of system designs of future mobile communication systems, for cellular systems (multiple access and broadcast channel), relay and multi-hop systems as well as ad hoc networks to specific tasks. Moreover, they confidently deploy various performance metrics, are familiar with the stochastic description of wireless networks, and can evaluate average and outage-performances.

Modes of teaching and learning

4 hours per week lectures, 2 hours per week tutorials, and self-study. The language of instruction can be German or English, and is announced at the beginning of the semester by the lecturer.

Prerequisites

Competences provided by modules such as ET-12 10 01 Information Theory.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The assessment consists of two written exams of 120 minutes each.

ECTS credit points and grades

7 ECTS credit points

The module grade is the arithmetic mean of the two written exams.

Frequency

annually, in the winter semester

Workload

210 hours

Duration

1 semester
### Module number	Module name	Lecturer in charge
ET-12 10 12 | Antennas and Propagation | Prof. Dr.-Ing. D. Plettemeier

Contents and objectives
The content of this module is:
Basic concepts of antenna theory and electromagnetic wave propagation.

Objectives:
The students are familiar with the calculation of linear- and aperture radiators and know the basic principles and methods for the calculation of wave fields.
The students know the application of Green's theorems and approach. They are familiar with equivalent circuits of the input impedance and the design of matching networks. The students are capable of approximating radiation characteristics of phased antenna array as well as designing reflector antennas and compact high gain antennas (e.g. Cassegrain and Gregory systems). They will be able to evaluate characterize and measure antenna performance.

Modes of teaching and learning
4 hours per week lectures, 2 hours per week tutorials, and self-study

Prerequisites
Competences acquired in modules such as **ET-12 10 03 RF Engineering**.

Requirements for the award of ECTS credit points
The credit points are earned if the module assessment is passed. The module assessment consists of an oral exam of 45 minutes as individual exam.

ECTS credit points and grades
7 ECTS credit points
The module grade is the grade of the oral exam.

Frequency
annually, in the summer semester

Workload
210 hours

Duration
1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 10 13</td>
<td>RF Systems</td>
<td>Prof. Dr.-Ing. D. Plettemeier</td>
</tr>
</tbody>
</table>

Contents and objectives

The module content:
The operation and the physical basics of modern RF and wireless systems.

Objectives:
The students are familiar with ground- and satellite-based radio navigation and positioning systems. Communication satellite links can be described at system level. Basic understanding of satellite technology, antenna systems and phenomena of wave propagation (free space propagation, atmospheric absorption, plasma frequency, reflection and scattering, Doppler effect, etc.) are taught. The students are familiar with the different radar techniques (e.g. pulse-radar, pulse Doppler radar, FMCW radar and secondary radar, MTI principle, chirp) and with the system description and signal processing. They have obtained knowledge regarding the functionality and methods of the signal processing of radar imaging techniques (e.g. SAR principles).

Modes of teaching and learning

4 hours per week lectures, 2 hours per week tutorials, and self-study

Prerequisites

Competences acquired in modules such as ET-12 10 03 RF Engineering, or equivalent.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The module assessment is an individual oral exam of 45 minutes.

ECTS credit points and grades

7 ECTS credit points

The module grade is the grade of the oral exam.

Frequency

annually, in the summer semester

Workload

210 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 10 14</td>
<td>Optical Communications</td>
<td>Prof. Dr.-Ing. D. Plettemeier</td>
</tr>
</tbody>
</table>

Contents and objectives

The module comprises: the design and the development of optical transmission systems.

Intended learning outcomes:

The students are proficient with the physical basics of different types of optical waveguides (planar wave guides, single mode and multi mode fiber) and the transmission properties in linear and nonlinear regime. Further important points are optical connection and measurement methods, passive optical components (couplers, isolators, interferometers) as well as optical transmission systems from the system theoretical point of view. Here, recent and future synchronous and asynchronous optical networks operating in time and wavelength division multiplex are focused. The students know the different system approaches (e.g. optical packet switching, dynamically switched optical networks) and the network technologies needed for that (modulation formats, signal regeneration, compensation of transmission impairments).

Modes of teaching and learning

4 hours per week lectures, 2 hours per week tutorials, and self-study

Prerequisites

Competences acquired in modules such as ET-12 10 03 RF Engineering, ET-12 10 24 Communications and ET-12 09 01 Systems Theory.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The module assessment consists of an oral exam of 45 minutes.

ECTS credit points and grades

7 ECTS credit points
The module grade is the grade of the oral exam.

Frequency

annually, in the winter semester

Workload

210 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 10 15</td>
<td>Basics Mobile Communications Systems</td>
<td>Prof. Dr.-Ing. Dr. h.c. G. Fettweis</td>
</tr>
</tbody>
</table>

Contents and objectives
Having completed the module, the students know and understand the basic structure of cellular mobile communications systems (system and protocol architectures, radio network planning and optimization, capacity calculation). They are able to analyze and to solve problems of radio network planning. They know the phenomena of the mobile radio channel (Doppler effect, multipath propagation), master the basic principles of digital signal transmission over frequency-selective and time-variant transmission channels and are able to analyze, to describe mathematically and to work out solutions for real-word data transmission problems.

Modes of teaching and learning
4 hours per week lectures, 2 hours per week tutorials, and self-study.

Prerequisites
Competences acquired in modules such as
ET-12 10 24 Communications,
ET-12 09 01 Systems Theory
or equivalent.

Requirements for the award of credit points
The credit points are earned if the module assessment is passed. If the number of registered students exceeds 15, the assessment consists of a written exam of 150 minutes. With up to 15 registered students, the written exam will be replaced by an oral exam of 45 minutes.

ECTS credit points and grades
7 ECTS credit points
The module grade is the grade of the exam.

Frequency
Annually, in the summer semester

Workload
210 hours

Duration
1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 10 16</td>
<td>Digital Signal Processing and Hardware Implementation</td>
<td>Prof. Dr.-Ing. Dr. h.c. G. Fettweis</td>
</tr>
</tbody>
</table>

Contents and objectives

Having completed the module, the students master processes for software implementation of digital signal processing algorithms on different hardware platforms and can evaluate them with respect to various criteria. The students know methods for hardware and software realization of communications engineering problems as well as design and optimization methods for digital signal processing systems. They are able to design and optimize signal processing systems in the field of communications by taking into account the mutual influence of the hardware and software (HW / SW co-design).

Modes of teaching and learning

2 hours per week lectures, 1 hour per week tutorial, 2 hours per week practical lab courses, and self-study.

The language of instruction is at least partially in English.

Prerequisites

Competences acquired in modules such as ET-01 04 01 Introduction to Analysis and Algebra, ET-01 04 02 Calculus for Functions with Several Variables, ET-01 04 03 Complex Function Theory, ET-12 10 24 Communications, ET-12 09 01 Systems Theory.

Requirements for the award of credit points

The credit points are earned if the module assessment is passed. The module assessment consists of two exams. Exam 1 is a written exam of 120 minutes if the number of participants exceeds 16. With up to 16 participants, the written exam will be replaced by an oral exam as an individual exam of 20 minutes. The type of exam will be announced at the end of the registration period at the faculty. Exam 2 is a lab report.

ECTS credit points and grades

7 ECTS credit points

The module grade results from the arithmetic mean of the grades of both elements of assessment.

Frequency

annually, beginning in the summer semester

Workload

210 hours

Duration

2 semesters
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 10 17</td>
<td>Upgrade Mobile Communications Systems</td>
<td>Prof. Dr.-Ing. Dr. h.c. G. Fettweis</td>
</tr>
</tbody>
</table>

Contents and objectives

Contents of the module are special and/or current topics in the field of mobile communications. The student has the option to choose two lectures from a catalogue of several lectures. Examples of contents to choose from:

1. Fundamentals of Estimation and Detection
2. Machine Learning in signal processing
3. Algorithms for multi-antenna systems

Objectives:

Having completed this module, the students are able to understand the concepts of modern mobile systems and to contribute creatively to solve radio transmission problems under mobile communications conditions. The students have a deeper understanding of the problems in mobile communications (signal transmission via disturbed frequency-variant and time-variant communication channels), have the knowledge and skills to analyze these problems theoretically, to develop and implement practical solutions. The students are able to express themselves in English technical terminology.

Modes of teaching and learning

The module includes lectures and tutorials in the amount of 6 hours per week, and self-study. The language of instruction is at least partly in English.

Prerequisites

Competences acquired in modules such as ET-12 10 24 Communications, ET-12 09 01 Systems Theory or equivalent.

Requirements for the award of credit points

The credit points are earned if the module assessment is passed. If the number of registered students exceeds 15, the module assessment is a written exam of 150 minutes. With up to 15 registered students, the written exam will be replaced by an oral exam as an individual exam of 45 minutes.

ECTS credit points and grades

7 ECTS credit points

The module grade is the grade of the exam.

Frequency

Annually, in the winter semester

Workload

210 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 10 18</td>
<td>Digital Signal Processing Systems</td>
<td>Prof. Dr.-Ing. Dr. h.c. G. Fettweis</td>
</tr>
</tbody>
</table>

Contents and objectives

Having completed the module, the students have the mathematical knowledge necessary for describing and analyzing discrete-time systems (e.g., fundamentals of time-discrete systems and spectral analysis of time, signal sampling and reconstruction, digital filtering, quantization, multirate systems, adaptive filtering), and can use this knowledge in the design and implementation of digital signal processing systems. The students are able to simulate signal processing modules and to implement them with the help of digital signal processors (DSPs).

Modes of teaching and learning

3 hours per week lectures, 1 hour per week tutorials, 2 hours per week practical lab courses, and self-study.

Prerequisites

Competences acquired in modules such as ET-01 04 01 Introduction to Analysis and Algebra, ET-01 04 02 Calculus for Functions with Several Variables, ET-01 04 03 Complex Function Theory, ET-12 09 01 Systems Theory, or equivalent.

Requirements for the award of credit points

The credit points are earned if the module assessment is passed. The module assessment consists of a written exam of 120 minutes and a lab report.

ECTS credit points and grades

7 ECTS credit point
The module grade results from the weighted grades of the elements of assessment; the written exam contributes by 2/3 and the lab report by 1/3.

Frequency

Annually, in the winter semester

Workload

210 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 10 21</td>
<td>Network Coding in Theory and Practice</td>
<td>Prof. Dr.-Ing. Frank Fitzek</td>
</tr>
</tbody>
</table>

Contents and objectives

Content:
- Theoretical fundamentals of network coding (NC)
- Evaluation of NC's performance in present and future communications systems

Objectives:
1. The students are able to cope with the joint treatment of coding and routing in networks. They understand the basics of graph theory for modelling and analysing networks as well as the central statements of the network coding theory. They can create network codes for various scenarios. They know both the classic NC in wire-bound and the extension to the wireless case. They are familiar with current research topics in the fields coding in networks.
2. They know the performance of NC systems and master the simulation as well as the implementation of NC on simple communication systems.

Modes of teaching and learning

- 4 hours per week lectures, 2 hours per week tutorials, and self-study
- The language of instruction can either be German or English.
- At the beginning of the teaching period, the lecturer announces whether the module will be taught in English or German.

Prerequisites

- Competences acquired in modules such as ET-12 10 01 Information Theory, ET-12 09 01 Systems Theory, ET-12 10 04 Communication Networks, Basic Module, or equivalent.

Requirements for the award of ECTS credit points

- The credit points are earned if the module assessment is passed. If the number of registered students exceeds 15, the assessment consists of two written exams of 120 minutes each. With up to 15 registered students, the written exams can be replaced by two oral exams as individual exams of 30 minutes each.

ECTS credit points and grades

- 7 ECTS credit points
- The module grade is the arithmetic mean of the grades for both elements of assessment.

Frequency

- Annually, in the summer semester

Workload

- 210 hours

Duration

- 1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 10 22</td>
<td>Cooperative Communications</td>
<td>Prof. Dr.-Ing. Eduard Jorswieck</td>
</tr>
</tbody>
</table>

Contents and objectives

Content:
- Modern methods of resource allocation in radio systems
- Their application to cooperative communication systems

Objectives:
The knowledge of approaches and methods of game theory makes it possible to analyse conflict situations such as occur in resource allocation in radio systems. The students are familiar with the fundamental mathematical tools of the game theory and master their application in cooperative and non-cooperative systems in the field of mobile communication. They are familiar with example systems and the corresponding analytical and simulative approach, as well as the exemplary realisation by means of implementation on practical systems.

Modes of teaching and learning

4 hours per week lectures, 2 hours per week tutorials, and self-study.

The language of instruction can be either German or English. At the beginning of the teaching period, the lecturer announces in which language the module will be taught.

Prerequisites

Competences acquired in modules such as ET-12 10 01 Information Theory, ET-12 09 01 Systems Theory, or equivalent.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. If the number of registered students exceeds 15, the assessment consists of two written exams of 120 minutes each. With up to 15 registered students, the written exams can be replaced by oral exams of 30 minutes each.

ECTS credit points and grades

7 ECTS credit points

The module grade is the arithmetic mean of the grades for both elements of assessment.

Frequency

Annually, in the summer semester

Workload

210 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 10 23</td>
<td>Seminar for Graduate Students on Information Technology</td>
<td></td>
</tr>
</tbody>
</table>

Contents and objectives

Content:
- Current trends and issues of Information Technology in various applications
- Methods of scientific and project-based working as well as the presentation of results

Objectives:
The students are capable of solving a given task independently, individually, and in teams. They master the documentation of the work and the methods used, and are capable of presenting and discussing the results.

Modes of teaching and learning

2 hours per week seminar and self-study

Prerequisites

Competences acquired in modules such as ET-12 09 02 Signal Theory, ET-12 10 01 Information Theory, ET-12 08 18 Integrated Circuit Design and ET-12 09 06 Acoustics

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The module assessment consists of an assignment and a presentation of 30 minutes.

ECTS credit points and grades

4 ECTS credit points
The module grade consists to 2/3 of the grade for the assignment and to 1/3 of the grade for the presentation.

Frequency

annually, in the winter semester

Workload

120 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 11 01</td>
<td>Solid-State and Nano Electronics</td>
<td>Prof. Dr. rer. nat. et Ing. habil. Thomas Härtling</td>
</tr>
</tbody>
</table>

Contents and objectives

The module comprises:

- **Solid-state electronics** with electronic functions based on di-, piezo-, pyro- and ferroelectricity, magnetic effects, electronic effects of plasmons and electron emission,

- **Nanotechnology and nanoelectronics** of nanoelectronic devices (effects in nanodots and nanowires as well as effects taking place at very small numbers of charge carriers).

Intended learning outcome:

After successfully passing the module, students are able

- to bring physically caused material effects to bear,

- to apply probability-based theoretical basics of these effects,

- to evaluate these effects, and

- to use electronic and ionic effects for up-to-date electron devices.

Modes of teaching and learning

4 hours per week lectures, 2 hours per week tutorials, self-study.

Prerequisites

Competences acquired in modules such as

- ET-01 04 01 Introduction to Analysis and Algebra,
- ET-01 04 02 Calculus for Functions with Several Variables,
- ET-01 04 03 Complex Function Theory,
- ET-01 04 04 Partial Differential Equations and Probability Theory,
- ET-13 00 01 Materials Science and Engineering Mechanics,
- ET-12 12 01 Microsystems and Semiconductor Technology or equivalent.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. If the number of registered students exceeds 8, the module assessment consists of a written exam of 90 minutes. With up to 8 registered students, the module assessment consists of an oral exam as individual exam of 30 minutes.

ECTS credit points and grades

7 ECTS credit points

The module grade is the grade of the exam.

Frequency

annually, in the winter semester

Workload

210 hours
<p>| Duration | 1 semester |</p>
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 08 27</td>
<td>Neuromorphic VLSI Systems</td>
<td>Prof. Dr.-Ing. habil. Ch. G. Mayr</td>
</tr>
</tbody>
</table>

Contents and objectives
The content of the module includes:
- Design Methods for Integrated Analog CMOS circuits and their circuit sizing,
- neuromorphic VLSI systems and their neurobiological basics, common abstraction models, as well as the use in research and technology, eg. in brain-machine-interfaces and for signal processing,
- foundations, concepts and methods for the preparation and analysis of analog and neuromorphic CMOS circuits with the design software Cadence DF2.
Outcomes:
After completing the module, students will be familiar with the area of neuronal networks from neurobiological foundations up to the application circuit. They are able to work with design tools (Cadence DF2, Specter), to design and dimension CMOS circuits, and to verify the parameters by simulation and to create associated circuit layouts.

Modes of teaching and learning
4 hours per week lectures, 2 hours per week tutorials, and self-study.

Prerequisites
Competences acquired in modules such as
ET-12 08 01 Fundamentals of Electrical Engineering,
ET-12 08 31 Electronic Circuits,
ET-12 09 01 Systems Theory,
ET-12 02 02 Numerical Analysis,
or equivalent.

Requirements for the award of ECTS credit points
The credit points are earned if the module assessment consists of an assignment and a report.

| ECTS credit points and grades | 7 ECTS credit points
The module grade is the grade is the weighted mean of the parts of the assessment: M = (2 PL1 + PL2 / 3) .. |
|------------------------------|-------------------|

Frequency
annually, in the summer semester

Workload
210 hours

Duration
1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 11 04</td>
<td>Sensors and Sensor Systems</td>
<td>Prof. Dr.-Ing. habil. G. Gerlach</td>
</tr>
</tbody>
</table>

Contents and objectives

The module comprises:
- Physical effects connecting diverse measurands of sensors with electronic sensor quantities
- Properties of sensors (material properties, transducer mechanisms, fabrication technology, construction of sensors, application requirements),
- Design, application and operation of sensors

Intended learning outcome:

After successfully passing the module students are able
- to apply physical basics of sensors,
- to connect coupling effects and interferences caused by material properties, fabrication and application,
- to estimate the impact of effects upon the sensor behaviour and to compare it with other influences, and
- to use sensors for diverse applications.

Modes of teaching and learning

Lectures, tutorials, and lab work with at least 6 hours per week (typically 4 hours per week lectures, 1 hour per week tutorial, 1 hour per week practical lab course), and self-study.

Prerequisites

Competences acquired in modules such as ET-01 04 01 Introduction to Analysis and Algebra, ET-01 04 02 Calculus for Functions with Several Variables, ET-01 04 03 Complex Function Theory, ET-01 04 04 Partial Differential Equations and Probability Theory, ET-12 12 01 Microsystems and Semiconductor Technology or equivalent.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The module assessment consists of a written exam of 150 minutes and a lab course.

ECTS credit points and grades

7 ECTS credit points
The module grade is calculated from the weighted mean of both the grade of the written exam (2/3) and the grade of the lab course (1/3).

Frequency

annually, in the winter semester

Workload

210 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 11 05</td>
<td>Plasma Technology</td>
<td>Prof. Dr.-Ing. habil. G. Gerlach</td>
</tr>
</tbody>
</table>

Contents and objectives
The module includes plasma process for coating, surface treatment, surface modification, structuring and cleaning as well as separation of functional layers and layer systems.

Outcomes:
Students are able to work with the physical basics of plasmas in process plants, to chose the most important technical plasma sources and plasma processing systems as well as to classify the most important layers and layer systems from technical practice in the main applications.

Modes of teaching and learning
4 hours per week lectures, 2 hour per week tutorials, and self-study.

Prerequisites
Competences acquired in modules such as ET-02 06 04 05 Basics of Science.

Requirements for the award of ECTS credit points
The credit points are earned if the module assessment is passed. The module assessment consists of a written exam of 90 minutes.

ECTS credit points and grades
7 ECTS credit points
The module grade is the grade of the written exam.

Frequency
annually, in the winter semester

Workload
210 hours

Duration
1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 12 01</td>
<td>Microsystems and Semiconductor Technology</td>
<td>Prof. Dr.-Ing. A. Richter</td>
</tr>
</tbody>
</table>

Contents and objectives

The module includes:
- Fundamentals of microsystems technology
- Micro-structuring technologies (manufacturing of complex, miniaturized systems)
- Materials for semiconductor and micro technology
- Sensory applications (basic material, semiconductor technologies, micro technology)

Outcomes:

On completion of the module, the students have the ability to specifically select the materials of the semiconductor and micro technology for micro sensor and micro actuator applications, to determine their functional parameters and to use the associated semiconductor technologies for structuring and system configuration.

Modes of teaching and learning

8 hours per week lectures, 1 hour per week tutorial, 3 hours per week practical lab courses, and self-study.

Prerequisites

Basic knowledge acquired in modules such as ET-12 08 01 Fundamentals of Electrical Engineering, ET-13 00 01 Materials Science and Engineering Mechanics, ET-12 08 11 Microelectronic Technologies and Devices or equivalent.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. With up to 15 registered students, the module assessment consists of two individual oral exams of 35 minutes. If the number of registered students exceeds 15, the module assessment consists of 2 written exams of 90 minutes and a lab course.

ECTS credit points and grades

12 ECTS credit points

The grade of the module is determined by the arithmetic mean of the grades of the exams:

\[M = \frac{2 \times PL1 + 2 \times PL2 + PL3}{5} \]

Frequency

annually, starting in winter semester

Workload

360 working hours

Duration

2 semesters
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 12 12</td>
<td>Design of Microelectromechanical Systems</td>
<td>Prof. Dr.-Ing. habil. U. Marschner</td>
</tr>
</tbody>
</table>

Contents and objectives

The module includes:

- Design of microsystems with modeling and simulation of techniques and processes (electrical devices, sensors and actuators as well as complete systems)
- Electromechanical networks with mechanical, magnetic, fluidic (acoustic) and coupled systems (circuit-oriented representation, interaction)
- Combination of network modelling with the method of finite element modeling (complete systems consisting of electrical and non electrical components)

Outcomes:

The students have competences:

- to describe the basic model of technological processes
- in effective design and descriptive analysis of the dynamic behavior of electro-mechanical, magnetic and fluidic systems
- about the function and modeling electromechanical transducers
- in operation and applications of FEM and FDM methods
- in complete system description using HDL languages

Modes of teaching and learning

4 hours per week lectures, 2 hours per week tutorials, 1 hour per week assignment, and self-study.

Prerequisites

Competencies acquired in modules such as ET-13 00 01 Materials and Engineering Mechanics, ET-02 06 04 05 Basics of Science or equivalent

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The module assessment is a written exam of 150 minutes PL1 and an assignment PL2.

ECTS credit points and grades

7 ECTS credit points

The grade of the module is weighted mean of the assessments: \(M = (3 \cdot PL1 + PL2) / 4 \).

Frequency

annually, in the summer semester

Workload

210 working hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 12 03</td>
<td>Applied Thin-Film and Solar Technology</td>
<td>Prof. Dr. rer. nat. J. W. Bartha</td>
</tr>
</tbody>
</table>

Contents and objectives

The module includes:

- the production of electronic devices and solar cells by the vacuum-based generation of thin films

Objectives:

Having successfully completed this module, the students are familiar with:

- the kinematic theory of gases
- the generation of vacuum and vacuum measurement
- the dimensioning of vacuum plants

The students are capable of:

- applying processes of thin film technology
- using interactions between materials and the characteristics of the film
- differentiating between the various types of solar cells and their manufacturing technologies
- mastering the methods of process control
- characterizing failure mechanisms of the devices

Modes of teaching and learning

6 hours per week lectures and self-study.

Prerequisites

Competencies acquired in modules such as ET-13 00 01 Materials and Engineering Mechanics, ET-02 06 04 05 Basics of Science or equivalent.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The module assessment is an individual oral exam of 45 minutes.

ECTS credit points and grades

7 ECTS credit points
The grade of the module is the grade of the oral exam.

Frequency

Annually, in the summer semester

Workload

210 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 12 04</td>
<td>Memory Technology</td>
<td>Prof. Dr.-Ing. T. Mikolajick</td>
</tr>
</tbody>
</table>

Contents and objectives
This module covers memory concepts in the market and in research respectively development stage:
- Magnetic memories
- Optival memories
- Semiconductor memories (SRAM, DRAM, nonvolatile Memories (EPROM, EEPROM, Flash))
- Innovative semiconductor memories (e.g. ferroelectric, magnetoresistive, resistive, organic, and single molecule memories)

Objectives:
After completion of the module the students have the competences to optimize and develop new generations of existing memory concepts. Based on the physical effects they will also be able to develop new memory concepts. Furthermore, the students are able to evaluate the areas of application for the memory concept and are aware of their limitation.

Modes of teaching and learning
3 hours per week lectures, 2 hours per week seminars, and self-study.
The module is taught in English.

Prerequisites
Competencies acquired in modules such as ET-12 08 11 Microelectronic Technologies and Devices, or equivalent.

Requirements for the award of ECTS credit points
The credit points are earned if the module assessment is passed. If the number of registered students exceeds 20, the module assessment consists of a written exam of 90 minutes. With up to 20 registered students, the written exam will be replaced by an oral exam as individual exam of 15 minutes.

ECTS credit points and grades
7 ECTS credit points
The grade of the module is the grade of the exam.

Frequency
Annually, beginning in the summer semester

Workload
210 working hours

Duration
2 semesters
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 12 05</td>
<td>Characterization of Microstructures</td>
<td>Prof. Dr. rer. nat. J. W. Bartha</td>
</tr>
</tbody>
</table>

Contents and objectives

The module consists of:

- Testing and assignment of micro and nanostructures of semiconductor devices and integrated circuits using semiconductor measurement techniques.
- Layer and substrate characterization by physical microanalysis.

Objectives for qualification:

The students are capable of

- generating and detecting photon and high energy particle based radiation
- using the interaction between photons or particles and solids
- applying micro analytical techniques for the characterization of materials
- determining geometrical and electrical parameters of micro devices

Modes of teaching and learning

6 hours per week lectures, 1 hour per week practical lab course, and self-study.

Prerequisites

Competences acquired in modules such as ET-13 00 01 Materials Science and Engineering Mechanics, ET-02 06 04 05 Basics of Science or equivalent.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The module assessment consists of an individual oral exam of 45 minutes.

ECTS credit points and grades

7 ECTS credit points

The grade of the module is the grade of the oral exam.

Frequency

annually, in the winter semester

Workload

210 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 12 06</td>
<td>New Actuators and Actuator Systems</td>
<td>Prof. Dr.-Ing. A. Richter</td>
</tr>
</tbody>
</table>

Contents and objectives

Content:
- Unconventional actuators (Systematics of actuatoric effects, the physical basis of these effects, operating principles, design and dimensioning guidelines, application examples and relevant application fields)
- Microfluidics (Fluid properties, fluid dynamics, phenomena of fluid manipulation, basic elements and basic operations, platform technologies, analytical methods)

Objectives:
The students are able to select appropriate actuator principles for specific tasks, to define the necessary interfaces for the system implementation and to dimension the actuator elements appropriately. They are able to recognize the unique physical characteristics of the fluid motion in microstructures and are able to apply technologies and analysis methods for microfluidic systems.

Modes of teaching and learning

4 hours per week lectures, 1 hour per week tutorial, 1 hour per week practical lab course, and self-study

Prerequisites

Competences acquired in modules such as ET-12 12 01 Microsystems and Semiconductor Technology or equivalent.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. If the number of registered students exceeds 15, the module assessment consists of a written exam of 90 minutes, a presentation and a lab course. With up to 15 registered students, the module assessment consists of an oral individual exam of 30 minutes, a presentation and a lab course.

ECTS credit points and grades

7 ECTS credit points
The grade of the module is the weighted mean of the grades for the different elements of assessment: the grade for the oral exam contributes by 50%, the grade for the presentation and for the lab course contribute by 25% each.

Frequency

Annually, in the winter semester

Workload

210 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 12 07</td>
<td>Innovative Concepts for Active Nanoelectronic Devices</td>
<td>Prof. Dr.-Ing. T. Mikolajick</td>
</tr>
</tbody>
</table>

Contents and objectives

Content:
- Technology of nanoelectronic devices
- (Generation of electronic devices in nm-dimensions)
- Modelling of nanoelectronic devices

Objectives: The students are able to
- to design innovative concepts for active nanoelectronic devices
- to understand physical effects and transport mechanisms
- to develop analytical descriptions of physical mechanisms in nanostructured devices
- to recognize concrete embodiments of devices that are currently in the research or development stage as well as the respective technological, material science and electrical conditions

Modes of teaching and learning

4 hours per week lectures, 2 hours per week tutorials, and self-study. The module is taught in English.

Prerequisites

Competences acquired in modules such as ET-12 08 13 Physics of Selected Devices or equivalent.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. If the number of registered students exceeds 20, the module assessment consists of 2 written exams of 90 minutes each and a collection of practical lab course tests. With up to 20 registered students the assessment consists of 2 individual oral exams of 20 minutes each.

ECTS credit points and grades

7 ECTS credit points

The grade of the module is the weighted mean of the different elements of assessment: \(M = (4PL1 + 4PL2 + 2PL3)/10 \).
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 12 08</td>
<td>Advanced Seminar Microelet-</td>
<td>Prof. Dr. rer. nat. J. W. Bartha</td>
</tr>
<tr>
<td></td>
<td>tronics</td>
<td></td>
</tr>
</tbody>
</table>

Contents and objectives
The module consists of:
- Specific topics and trends in microelectronics and
- Methods of scientific and project based engineering work.

Objectives for qualification:
The students are capable of applying their skills and expertise to solve specific problems individually or within a team. They master the documentation of their workflow and cope with the presentation of their results.

Modes of teaching and learning
2 hours per week seminar and self-study

Prerequisites
Competences acquired in modules such as ET-13 00 01 Materials Science and Engineering Mechanics, ET-02 06 04 05 Basics of Science.

Requirements for the award of ECTS credit points
The credit points are earned if the module assessment is passed successfully. The assessment consists of an assignment and a presentation of 30 minutes.

ECTS credit points and grades
4 ECTS credit points
The module grade is derived from the grade for the assignment (2/3) as well as the grade for the presentation (1/3).

Frequency
Annually, each winter semester

Workload
120 hours

Duration
1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 13 01</td>
<td>Control of Continuous-Time Processes</td>
<td>Prof. Dr.-Ing. habil. K. Röbenack</td>
</tr>
</tbody>
</table>

Contents and objectives

Content: Basic principles of control of linear systems with focus on frequency domain methods, state-space methods and sampled-data control.

Objectives: The students
- understand the basic structure of rules and control systems.
- They are able to mathematically describe linear continuous-time systems (mainly in the frequency range) and to analyse these with regard to their stability. Further, they are able to systematically design single-loop linear controllers.
- understand the solutions of state-space models in time and frequency domains, are familiar with the concepts of controllability and observability and are able to check these properties for given systems. They are also capable of designing state controller and state observer and understand the basics of sampled-data control.

Modes of teaching and learning

- 5 hours per week lectures
- 2 hours per week tutorials
- 2 hours per week practical lab courses, and self-study

Prerequisites

Competences acquired in modules such as ET-12 09 01 Systems Theory.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The assessment consists of two written exams of 120 minutes each (P1 and P2) as well as a lab course (P3).

ECTS credit points and grades

- 9 ECTS credit points
- The module grade is calculated from the weighted average of the grades of the written exams and the grade of the lab course. PL1 and PL2 contribute by 2/5 each, P3 by 1/5.

Frequency

Annually

The module starts in the winter semester.

Workload

270 hours

Duration

2 semesters
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 13 10</td>
<td>Nonlinear Systems und Process Identification</td>
<td>Prof. Dr.-Ing. habil. K. Röbenack</td>
</tr>
</tbody>
</table>

Contents and objectives

Content: The module includes
- Design and analysis of nonlinear control systems, such as sliding mode control, backstepping and
- Identification of parameters from measurement data, for example, by using classes of static, discrete-time and continuous-time models

Objectives:
The students are able to work with nonlinear control systems, mathematically analyze such systems and dimension simple controller for nonlinear systems. They are able to identify the parameters from measurement data for particular classes of static, discrete-time and continuous-time models.

Modes of teaching and learning

4 hours per week lectures, 2 hours per week tutorials, and self-study

Prerequisites

Competences acquired in modules such as ET-12 09 01 Systems Theory.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The assessment consists of two written exams of 120 minutes each.

ECTS credit points and grades

7 ECTS credit points
The module grade is determined by the arithmetic mean of both exams.

Frequency

annually, in the summer semester

Workload

210 hours

Duration

1 semester
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 13 11</td>
<td>Nonlinear Control Systems, Advanced</td>
<td>Prof. Dr.-Ing. habil. Klaus Röbenack</td>
</tr>
</tbody>
</table>

Contents and objectives

Content:
- Mathematical tools of nonlinear systems (e.g. differential geometry)
- System theoretical elements of complex control systems (e.g. spatially distributed systems)

Objectives:
The students are capable of analyzing complex control systems and dimension nonlinear control systems. They are able to model, identify, analyze, control and regulate complex control systems (e.g. spatially distributed systems) by means of mathematical and system theoretical correlations.

Modes of teaching and learning

4 hours per week lectures, 1 hour per week tutorial, and self-study

Prerequisites

Competences acquired in modules such as ET-12 09 01 Systems Theory and ET-12 13 01 Control of Continuous-Time Processes.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The assessment consists of two written exams of 90 minutes each.

ECTS credit points and grades

7 ECTS credit points
The module grade is determined by the arithmetic mean of both exams.

Frequency

Annually
The module starts in the summer semester.

Workload

210 hours

Duration

2 semesters
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 13 12</td>
<td>Optimal and Robust Multi-variable Control Systems</td>
<td>Prof. Dr.-Ing. habil. K. Röbenack</td>
</tr>
</tbody>
</table>

Contents and objectives

Content:
1. Analysis and design of optimal and / or robust control
2. Design of control concepts for multivariable systems or systems with model uncertainties

Objectives:
The students create optimal or robust controls and regulations (controller design). They are able to develop control concepts for multivariable systems or systems with model uncertainties, e.g. for the simultaneous influencing or decoupling of several sizes.

Methods of teaching and learning

4 hours per week lectures, 1 hour per week tutorial, and self-study

Prerequisites

Competences acquired in modules such as **ET-12 13 01 Control of Continuous-Time Processes.**

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The assessment consists of two written exams of 90 minutes.

ECTS credit points and grades

7 ECTS credit points
The module grade is determined by the arithmetic mean of both exams.

Frequency

Annually
The module starts in the summer semester.

Workload

210 hours

Duration

2 semesters
<table>
<thead>
<tr>
<th>Module number</th>
<th>Module name</th>
<th>Lecturer in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-12 13 13</td>
<td>Seminar for Graduate Students on Control Theory</td>
<td>Prof. Dr.-Ing. habil. K. Röbenack</td>
</tr>
</tbody>
</table>

Contents and objectives

The content of the module includes:
- Classical and modern concepts of control theory

Objectives:
After completing this module, students are capable of familiarising themselves with papers on Control Theory as well as Systems Theory, of presenting their hereby acquired knowledge as well as testing their knowledge in examples of use.

Modes of teaching and learning

2 hours per week seminars and self-study

Prerequisites

Competences acquired in modules such as ET-12 13 01 Control of Continuous-Time Processes, ET-12 13 10 Nonlinear Systems und Process Identification.

Requirements for the award of ECTS credit points

The credit points are earned if the module assessment is passed. The module assessment consists of an assignment and a presentation of 30 minutes.

ECTS credit points and grades

4 ECTS credit points
The module grade consists to 2/3 of the grade for the assignment and to 1/3 of the grade for the presentation.

Frequency

annually, in the winter semester

Workload

120 hours

Duration

1 semester