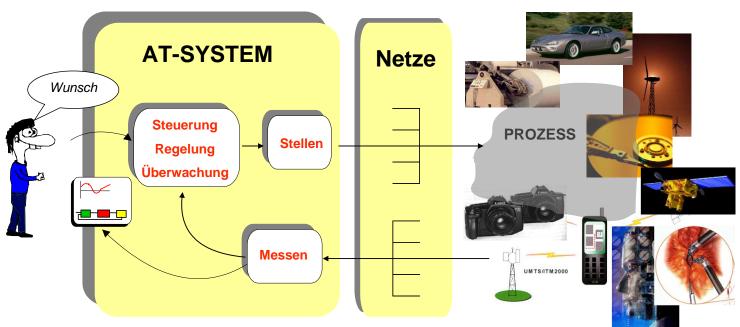


Automatisierungs-, Mess- und Regelungstechnik (AMR)

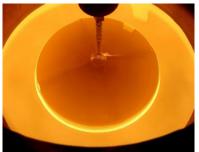
Vorstellung der Studienrichtung


Prof. K. Röbenack / Prof. K. Janschek / Prof. J. Czarske / Prof. L. Urbas

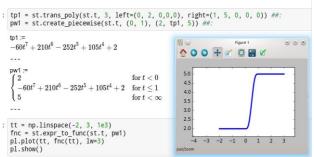
Automatisierungs-, Mess- und Regelungstechnik (AMR) Gegenstand der Studienrichtung

Entwicklung von Methoden und Technologien für die Automatisierung komplexer, **nichtlinearer**, **heterogener Systeme** im Hinblick auf

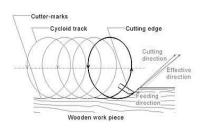
- interaktive Bedienung / Leitung,
- selbsttätige Steuerung / Regelung / Überwachung / Sicherung.



Automatisierungs-, Mess- und Regelungstechnik Was zeichnet das Fachgebiet aus?


Die Automatisierungs-, Mess- und Regelungstechnik

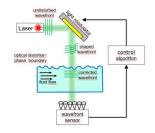
- ist eine unerlässliche, häufig "versteckte Technologie" (arbeitet im Hintergrund ohne weiteres menschliches Zutun),
- ist eine Schlüsseltechnologie für viele Anwendungen,
- besitzt ein extrem **breites Anwendungsfeld** in der Produktion & Fertigung, der autonomen Navigation, der Medizintechnik und auf vielen anderen Gebieten,
- ist stark **interdisziplinär** ausgerichtet (Nutzung von Methoden aus Naturwissenschaft Ingenieurpraxis Informatik Betriebswirtschaft Mathematik).


Die Forschungsprofile der Studienrichtung

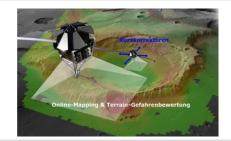
spiegeln die Vielfalt des Fachgebietes wider

Regelung, Steuerung

Modellbildung, Systemanalyse


Automatisierter Systementwurf

Komplexe heterogene Systeme


Mechatronik, Robotik, Raumfahrt, Verfahrenstechnik, Fertigungstechnik, Energie, Gesundheit, Verkehr

Messsysteme, Überwachung

Mensch-Maschine Interaktion

Intelligente Perzeption

Anforderungen an AMR-Ingenieure

Interdisziplinäres Projekt- und Lösungsgeschäft

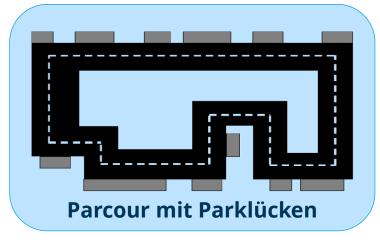
Aufgaben

Charakterisierung, Modellierung, Planung, Realisierung und Anwendung von AMR für

komplexe technische Systeme

Beispiel Schweißroboter

- Regelungs- und Steuerungstheorie: Modellbildung, Algorithmen zur Regelung und Steuerung
- Automatisierungstechnik: Bahnplanung, Trajektorienerzeugung, Datenfusion
- Mess- und Sensorsystemtechnik: Smarte adaptive Sensorsysteme, Echtzeitdatenverarbeitung
- Prozessleittechnik: Informationstechnische Modellierung und Einbettung in die digitale Anlage, Mensch-Maschine-Kommunikation



Beispiel einer interdisziplinären Lehrveranstaltung

Hauptseminar AMR (5. Fachsemester, Bearbeitung im Team)

Entwicklung von Algorithmen zur autonomen Navigation eines Fahrzeuges einschließlich Einparkassistenz

Anforderungen an den Roboter:

- Straßenverlauf folgen
- passende Parklücken finden
- Parkvorgang autonom durchführen
- Ausparken / zuverlässig Anhalten

Professur für Automatisierungstechnik Prof. Dr. techn. Klaus Janschek

Forschungsfelder des Lehrstuhles AT

Robotics - Mechatronics - Systems Design - Industrial Automation

EU

FSA

Systems Design

Model-based Systems Engineering

Dependability Engineering

Safety Engineering for Autonomous Driving

Modeling & Simulation

Information-based Automation DEG

Internet Technologies

Model-based Technologies

Human-Machine Interfaces

Industrial Automation

Guidance
Navigation
Control

DFG DLR ESA EU Airbus D&S

Image-based Navigation / SLAM
Motion and trajectory planning
Aerial manipulation
Spacecraft Docking HIL Simulation
Control architectures

Robotics

Optical Computers
Opto-Mechatronics

Control of MEMS-Micromirrors
Wavefront Shaping
Optical Fourier Processors
Optical Correlators
Smart Imaging Systems
Surface Inspection

ESA AiF FhG

Mechatronics

Lehrangebote im Hauptstudium

LV Modellbildung & Simulation (PF*)

Systems Design

LV Ereignisdiskrete Systeme 1,2 (PF*)

ngineering

Safety Engineering for Autonomous Driving
Modeling & Simulation

Mechatronic Systems Design LV Bahn- und Lageregelung Raumfahrzeuge

Guidance

Navigation Control

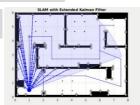
LV Systementwurf

Information-based Automation

LV Projekt Teleautomation

chnologies

LV Internetanwendungen in der AT


Industrial Automation

LV Steuerung von Manipulatoren

LV Mobile Robot Control

Control architecture

LV Hauptseminar AMR - Einparkassistent

Teilaufgaben: Lokalisierung, Bewegungsplanung

LV Entwurf eingebetteter Systeme

Optical Computers

Control of MEMS-Micromirrors
Wavefront Shaping
Optical Fourier Processors

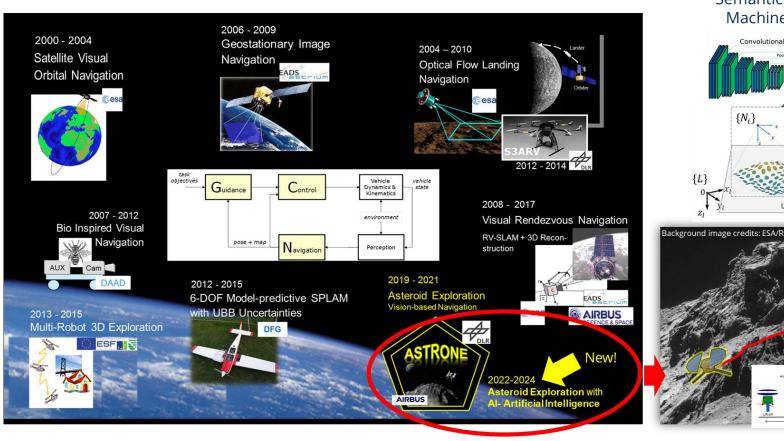
LV Regelung von Mehrkörpersystemen

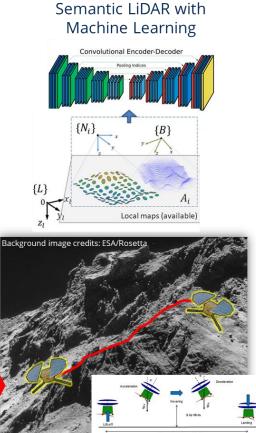
Mechatronics

LV Mechatronische Systeme

LV Oberseminar AT zu aktuellen Forschungsthemen

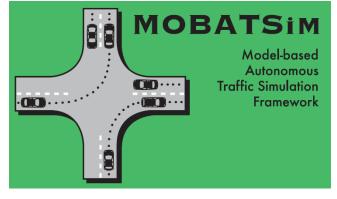
z.B. Künstliche Intelligenz, Bildverarbeitung



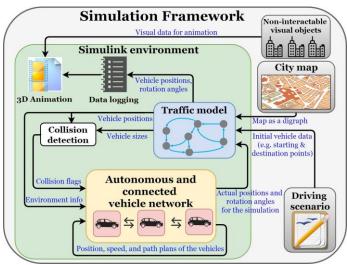


Guidance-Navigation-Control

Projects


Autonomous Driving

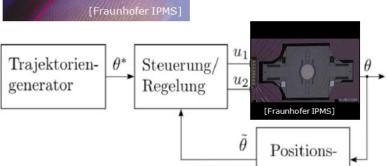
Safe Traffic Management

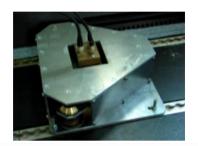


MOBATSIM: Model-based Autonomous Traffic
Simulation Framework for the Safety Analysis of
Autonomous and Connected Vehicles

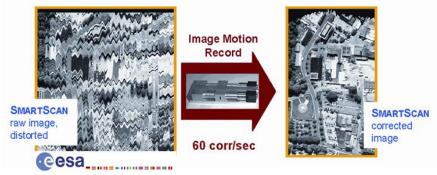
MATLAB & SIMULINK

https://youtu.be/rG8B0ip4dpk




Control of MEMS Laser Scanners (Lidar)

Smart Imaging Systems Optoelectronic Image Correction



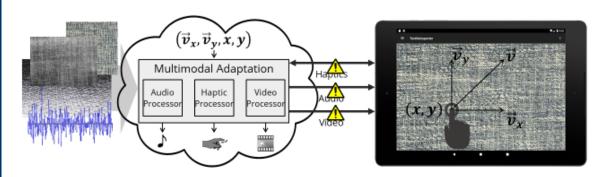
sensor

Optical Computers Opto-Mechatronics

Control of MEMS-Micromirrors
Wavefront Shaping
Optical Fourier Processors
Optical Correlators
Smart Imaging Systems
Surface Inspection

Mechatronics

Forschungsschwerpunkt Multimodale Benutzungsschnittstellen


Information-based Automation

DFG AiF BMBF

Internet Technologies
Model-based Technologies
Human-Machine Interfaces

Industrial Automation

Multimodal Inspection of Textile Surfaces

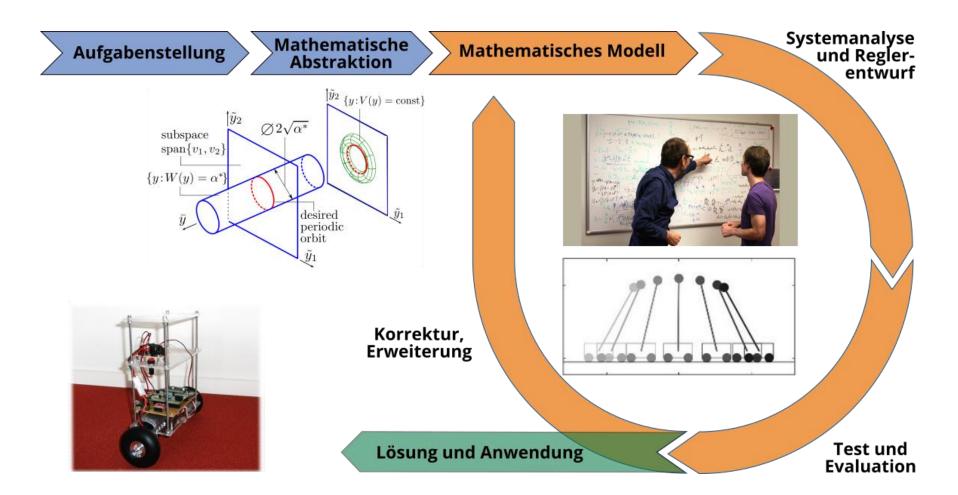
The 5G Lab Story on 5G Applications

Forschungsprojekt Multimodale Inspektion (haptisch, visuell, auditiv) von Produktoberflächen

- Ziel: räumlich entfernte Inspektion textiler Produktoberflächen über das Internet
- LS-AT: Entwicklung der Datenübertragung & Methodenentwicklung für die multimodale Interaktion mittels Geräten aus dem Consumerbereich

Input modality	Output modality	Max. latency
haptic	haptic	36ms [1]
haptic	auditory	24ms [2]
haptic	visual	30ms [3]

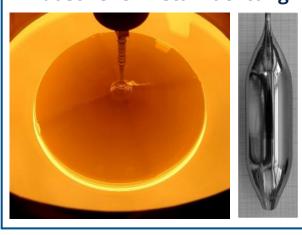
Professur Regelungs- und Steuerungstheorie Prof. Dr.-Ing. habil. Dipl.-Math. Klaus Röbenack



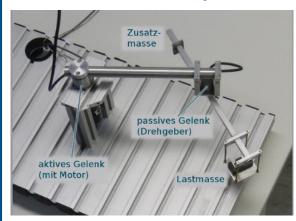
Betätigungsfeld der Professur:

Entwicklung und Untersuchung von Methoden zur gezielten Beeinflussung technischer Prozesse auf Basis ihrer mathematischen Modelle


Anwendungs- und Forschungsgebiete


vielfältige Abstufung zwischen Praxis und Theorie

Fahrzeugregelung © Radencoder ① INS ② Winkelsensor l_{G_1} l_{G_2} l_{G_3} l_{G_4} l_{G_1} l_{G_1} l_{G_2} l_{G_3} l_{G_4} l_{G_5} l_{G_5}


Smarte Textilien

Industrielle Kristallzüchtung

Unteraktuierte Manipulatoren

Theoretische Verfahren

Definition 1: Let k be a field. The Lie derivative $\operatorname{L}_f^\infty I$ of an ideal $I\subseteq k[x]=k[x_1,\ldots,x_n]$ with respect to a vector field $f\in k[x]^n$ is the set

$$L_f^{\infty} I = \left\{ a_1 L_f^{n_1} h_1 + \ldots + a_N L_f^{n_N} h_N \mid n_i \in \mathbb{N}_{>0}, \ h_i \in I, \ a_i \in k[x] \right\}.$$
 (3)

Algorithm 1 Lie derivative of an ideal

```
1: function LIE DERIVATIVE(f, H = \{h_1, \dots, h_s\})

2: H \leftarrow \text{Gr\"o}\text{bner basis}(\langle H \rangle)

3: for h \in H do

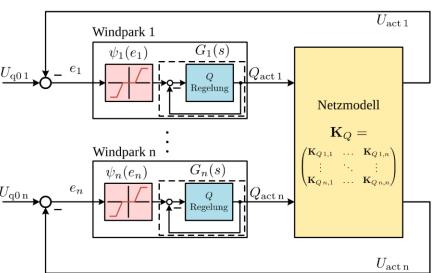
4: r \leftarrow \text{rem}(L_f h, H)

5: if r \neq 0 then

6: H \leftarrow H \cup \{r\}

7: goto \mathbb{Z}

8: return H
```

Praxisbezug: DFG-Projekt zur Regelung dezentraler Energie-Erzeugungsanlagen

Ziel: Entwicklung von Kriterien zum robusten Nachweis der Anlagenstabilität bei der Erbringung von Systemdienstleistungen durch eine Vielzahl von dezentralen Erzeugereinheiten (Windparks, Solarparks, ...)

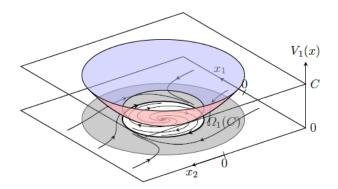
DFG-Projekt STABEEL: Stabilität dezentraler Erzeuger im Elektroenergieversorgungsnetz bei der Erbringung von Systemdienstleistungen

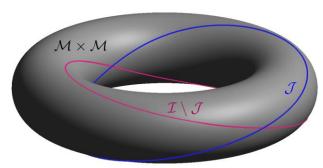
→ Sie können bei uns an hochaktuellen Themen mit starkem Praxisbezug mitarbeiten!

∓RST**→**

Theoriebezug: DFG-Projekt zum nichtlinearen Reglerentwurf mittels Quantorenelimination

Stabilitätsnachweis für nichtlineare Systeme schwierig


- existierende Methoden nur auf spezielle Anwendungsfälle anwendbar
- mathematischer Apparat mitunter sperrig
- Ansätze benötigen häufig ein hohes Maß an Intuition


Automatisierter Stabilitätsnachweis

• wünschenswert für den Reglerentwurf

Projektinhalt

- Stabilitätsbeweis durch Quantorenelimination
- Entscheidung der Beobachtbarkeit resp. Bestimmung lokal nicht beobachtbarer Punkte
- Einbettung der Systeme in höherdimensionale Räume zur Beschreibung durch polynomiale Gleichungen
- algebraische Parameteridentifikation
- Entwurf strukturvariabler Regler

$$\begin{array}{ccc} \mathcal{L}_f^\infty(I\cap J) & \xrightarrow{\mathbf{rad}} & \mathbf{rad} \left(\mathcal{L}_f^\infty(I\cap J)\right) \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ \mathcal{L}_f^\infty I \cap \mathcal{L}_f^\infty J & \xrightarrow{\mathbf{rad}} & \mathbf{rad} \left(\mathcal{L}_f^\infty I\right) \cap \mathbf{rad} \left(\mathcal{L}_f^\infty J\right) \end{array}$$

→ Sie können sich bei uns also auch an rein theoretischen Themen austoben, wenn Sie möchten!

Lehre - Vorlesungen / Übungen / Praktika

Die Lehrveranstaltungen decken ein weites Feld von Themengebieten ab

Pflichtveranstaltungen im 5. und 6. Semster

Lehrveranstaltungen in Wahlpflichtmodulen des 8. und 9 Semsters (je nach Bedarf)

Vertiefende Seminare

Nichtlineare Regelung

Nichtlineare Regelungstechnik 1 2/1/0 (Winkler)

Vertiefung lineare Regelung

Regelung von Mehrgrößensyst. 2/1/0 (Röbenack)

Spezielle Methoden

Prozessidentifikation 2/1/0 (Röbenack)

Regelungstechnik

2/1/1 (Röbenack)

Lineare Regelung

Grundlagen

Reg. & /Steu.-theorie Regelungstechnik 2 0/2/0 (Röbenack u.a.)

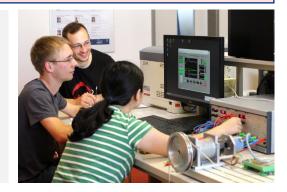
Oberseminar

Nichtlineare 2/1/0 (Röbenack)


Optimale Steuerung 2/0/0 (Bartholomäus)

Steuerung örtl. verteil. Systeme 2/0/0 (Winkler)

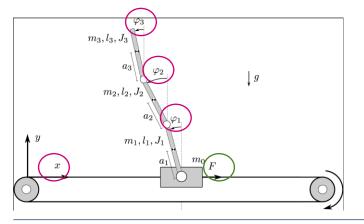
Regelungstechnik 3/1/1 (Röbenack)


Hauptseminar **AMR** 0/2/0 (Knoll u.a.) **Flachheitsbasierte** Folgeregelung 2/1/0 (Winkler)

Robuste Regelung 2/0/0 (Bartholomäus) Algorithmisches Differenzieren 2/0/0 (Röbenack)

Zusätzliches Methodenwissen:

- Numerik
- Computer-Algebra
- Programmierung



Beispiel Laborversuch "Verschiebliches 3-fach-Pendel"

4 Freiheitsgrade – aber nur ein Aktor

1. Übersicht

2. Modellbildung (Ausschnitt, Euler-Lagrange-Formalismus)

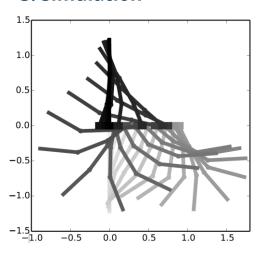
$$M(q)\ddot{q}+C(q,\dot{q})\dot{q}+D\dot{q}+K(q)= au$$

$$\frac{M_{11}(q) = J_1 + m_1 a_1^2 + (m_2 + m_3)l_1^2, \quad M_{12}(q) = (m_2 l_1 a_2 + m_3 l_1 l_2) \cos(\varphi_1 - \varphi_2),}{M_{13}(q) = m_3 l_1 a_3 \cos(\varphi_1 - \varphi_3), \quad M_{14}(q) = -(m_1 a_1 + m_2 l_1 + m_3 l_1) \cos\varphi_1,} \quad D := \begin{bmatrix} a_1 + a_2 & a_2 & b_3 & b_4 \\ -d_2 & d_2 + d_3 & -d_3 & 0 \\ 0 & -d_3 & d_3 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

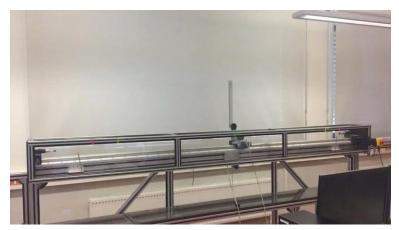
$$M_{21}(\mathbf{q}) = M_{12}(\mathbf{q}),$$
 $M_{22}(\mathbf{q}) = J_2 + m_2 a_2^2 + m_3 l_2^2,$ $M_{23}(\mathbf{q}) = m_3 l_2 a_3 \cos(\varphi_2 - \varphi_3),$ $M_{24}(\mathbf{q}) = -(m_2 a_2 + m_3 l_2) \cos \varphi_2$

$$M_{31}(\mathbf{q}) = M_{13}(\mathbf{q}),$$
 $M_{32}(\mathbf{q}) = M_{23}(\mathbf{q}),$ $M_{33}(\mathbf{q}) = J_3 + m_3 a_3^2,$ $M_{34}(\mathbf{q}) = -m_3 a_3 \cos \varphi_3,$

$$\begin{array}{ll} M_{41}({\boldsymbol q}) = M_{14}({\boldsymbol q}), & M_{42}({\boldsymbol q}) = M_{24}({\boldsymbol q}), \\ M_{43}({\boldsymbol q}) = M_{34}({\boldsymbol q}), & M_{44}({\boldsymbol q}) = m_0 + m_1 + m_2 + m_3. \end{array}$$


Tabelle 2 – Einträge der Massenmatrix.

$$\mathbf{D} := \begin{bmatrix} -a_2 & a_2 + a_3 & -a_3 & 0 \\ 0 & -d_3 & d_3 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$


$$K(q) := \begin{bmatrix} -(m_1a_1 + m_2l_1 + m_3l_1)g\sin\varphi_1 \\ -(m_2a_2 + m_3l_2)g\sin\varphi_2 \\ -m_3a_3g\sin\varphi_3 \\ 0 \end{bmatrix}$$

3. Simulation

TECHNISCHE

4. Umsetzung am Versuchsstand (hier: Überführung von Ruhelage UOO → OOO)

Vollständiges Video: https://tud.link/7rsv

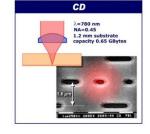
Professur für Mess- und Sensorsystemtechnik (MST) Prof. Dr.-Ing. habil. Jürgen Czarske

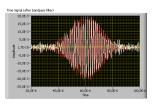
Lehre zur Messsystemtechnik und Sensorik

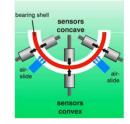
Messsystemtechnik

6. Semester, 2 SWS (im Modul Prozessleittechnik)

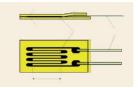
Mess- und Sensortechnik

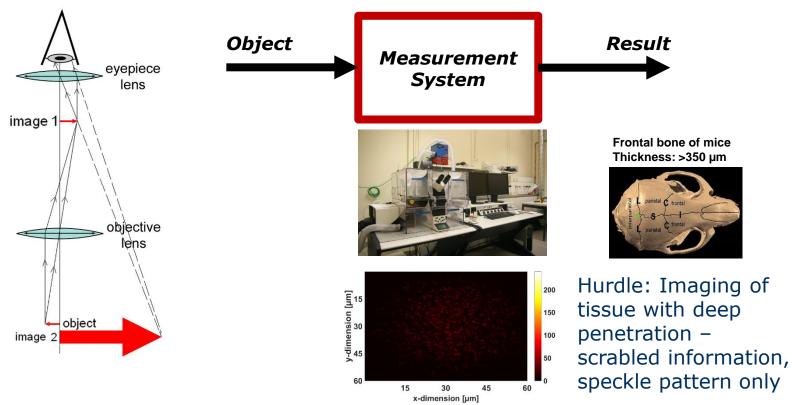

5. Semester, 4 SWS (inkl. Praktikum)




Grundzüge des Messens

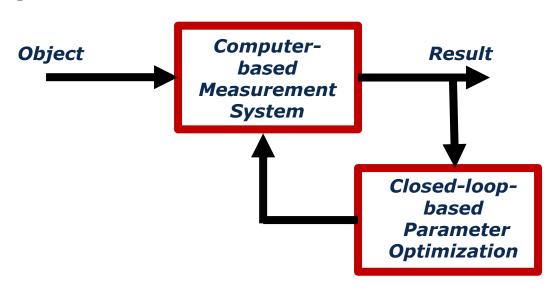
4. Semester, 2 SWS (im Modul Mess- und Automatisierungstechnik)



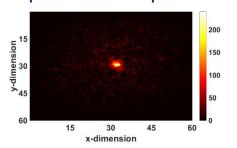

$$\Delta y = y - y_w \approx \sum_{i=1}^n \frac{\partial f}{\partial x_i} \cdot \Delta x_i$$

Computational Imaging

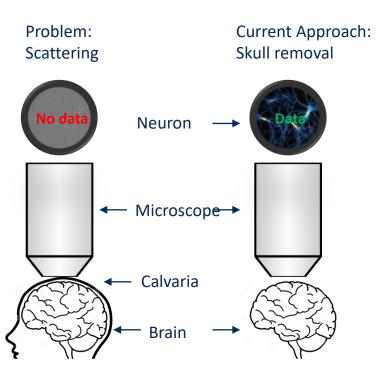
Optical Microscope (using the eye or a digital camera)



Computational Imaging with Self-Parametrization

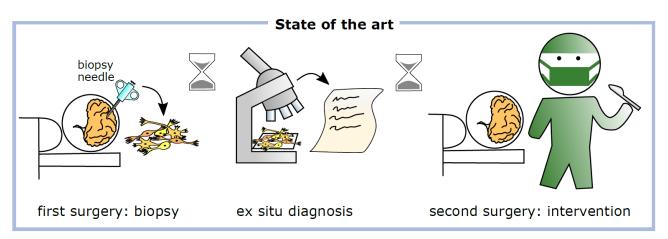

Self-parameterized measurement system:

- -Closed-Loop: Feedback of the measurement data via computer models (simulations)
- -Self-calibration (self-parameterization) using digital holography, deep learning/neural networks, etc.

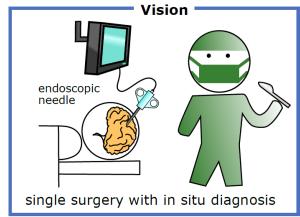


Computational
Imaging of
tissue with deep
penetration possible

Computational Laser Metrology using Wavefront Shaping: Noninvasive deep tissue diagnostics and therapy by light


brain alive brain dead

Cooperation with MPI-CBG



Motivation for novel optical endoscopy in biomedicine

- → For opening up applications in neurosurgery tiny diameters of the endoscope crucial: Lensless fiber imaging with diameter less than 1mm
- → Solving the challenge of sterilization (cleaning or disinfection are not sufficient): single-to-use fiber

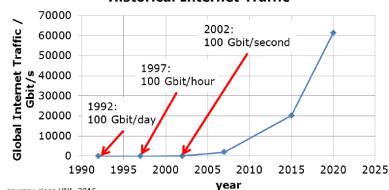
Tumor diagnosis

• High resolution fiber beam imaging can improve the efficiency of tumor diagnosis

Pathological biopsy: Long diagnosis cycle, the tissue is damaged

Introduction: Digital Transformation

2 robot tutors


3 big data in public health

- Novel technologies and services
- Number of connected devices increases exponentially 5

Demands on communication networks

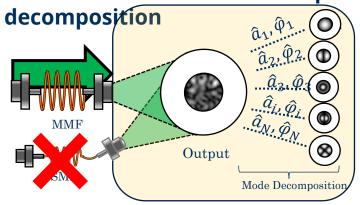
- Capacity
- Information security

Historical Internet Traffic

source: cisco VNI, 2016

28

¹ https://www.roboticsbusinessreview.com/unmanned/unmanned-ground/pbs-science-show-nova-shines-its-spotlight-on-self-driving-cars/2 http://www.l2tor.eu/what-is-l2tor/


³ https://www.verdict.co.uk/public-health-big-data/

⁴ N. Neumann (2018): Optical broadband communication, Skript, Professur für Hochfrequenztechnik, TU Dresden

⁵ T. Xu & D. Izzat, IEEE Internet of Things Journal 5(3) (2018), 2120-2129.

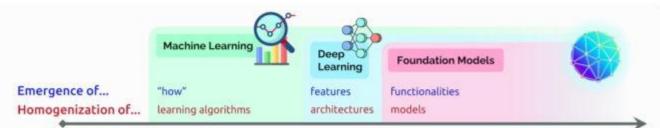
Motivation

TM Measurement: what is required? --- mode

- Phase and amplitude measurement of MMF-Output
- If possible: referenceless

Currently:

Digital Holography

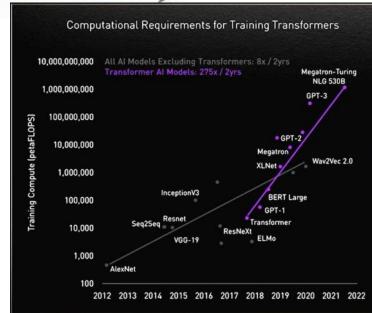

- + Quality
- Reference beam
- Impractical for application

Qian Zhang (during an award cerenomy)

Approach: Deep Neural Network (DNN)

- Training a DNN with synthetic data offline
- Measurement with amplitudes from camera pictures
 - → reconstruct amplitude and phase
- + Referenceless
- + Intensity-only images

Transformers and ChatGPT


Transformers often replacing convolutional neural networks (CNNs) recurrent neural networks (RNNs), popular types of deep learning models just five years ago

OpenAI lab: Generative Pretrained Transformer (GPT)

GPT-3: 175 billion parameters

1.5 billion: GPT-2.

https://blogs.nvidia.com/blog/2022/03/25/what-is-a-transformer-model/

In the race for higher performance, transformer models have grown larger.

Biophotonics

Digital Optical Phase Conjugation, Brillouin microscopy using Femtosecond Lasers, Adaptive Lenses, Structured Light Microscopy for Biomedicine, Nonlinear Optics, Plasmonics

Adaptive Lasersystems

Digital Holographic Optogenetics, Adaptive-Optical Imaging of Flows, U-Net, FPGA-Based Real-Time Closed-Loop Systems, Highly-Resolving 3D Laser Systems using Helix Waves

Quantum Techniques and Physical Layer Security for Smart Multimode Fiber Communication

Smart Imaging Systems

Phased-Array Systems/Time Reversal Virtual Arrays, Compressed Sensing, Machine Learning Approaches, Diagnostics in Biomedicine & Technical Processes

Computational Laser Metrology

Highspeed Speckle Interferometry, Holographic Tomography, In Situ Calibration, Lensless 3D Ultrathin Multicore-Fiber Endoscopes, 3D-Printing of Gratings, Deep Learning

Open Positions for Students, Predocs, Postdocs

Our partners

UNIVERSITÄTS

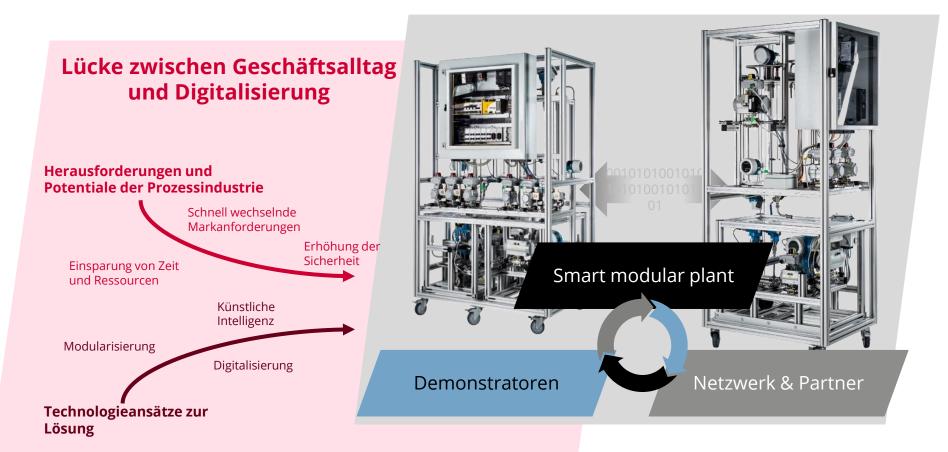
AUGENKLINIK BONN

Further Topics: Superresolution-Imaging, Adaptive Microscopy,...

Carl Gustav Carus

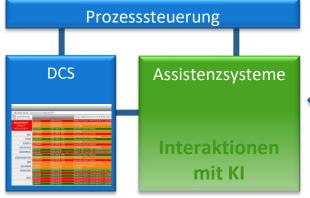
Professur für Prozessleittechnik Prof. Dr.-Ing. habil. Leon Urbas

Themenfelder der Professur



Inkubator Process-to-Order Lab

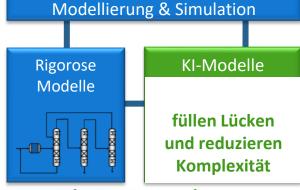
Projekt KEEN (2020-2023)



Prozessidentifikation & Modellierung

Zusätzliche Einblicke

Machine Learning Pattern Recognition Time Series Analyses



Verfahren-, Equipment- und Anlagentechnologien, Systemtheorie

Bessere Vorhersagen

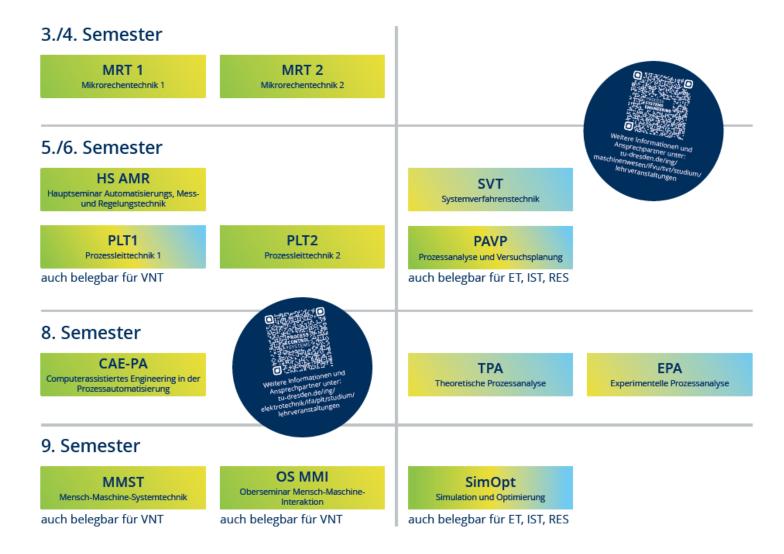
KI-basierte Optimierung Graphenbasierte Inferenz Hybride Modelle

Einsicht / Vorhersage / Exploration

Projekt eModule (2021-2025)

Forschungsfrage:

→ Welche Modulansätze und Schnittstellen im Asset Life Cycle führen zu einer **sicheren**, **skalierbaren**, **robusten** und **ökonomisch sinnvollen** Produktion von grünem H2?


Ziel: Standardisierte
Integrationsprofile für
Elektrolyse-Module
Skalierbare Musteranlage

Lehre

Vielen Dank für Ihre Aufmerksamkeit!

Weitere Informationen zu den einzelnen Professuren

Professur für Automatisierungstechnik https://tu-dresden.de/ing/elektrotechnik/ifa/at	
Professur für Regelungs- und Steuerungstheorie https://tu-dresden.de/ing/elektrotechnik/rst	
Professur für Mess- und Sensorsystemtechnik https://tu-dresden.de/ing/elektrotechnik/iee/mst	
Professur für Prozessleittechnik https://tu-dresden.de/ing/elektrotechnik/ifa/plt	

