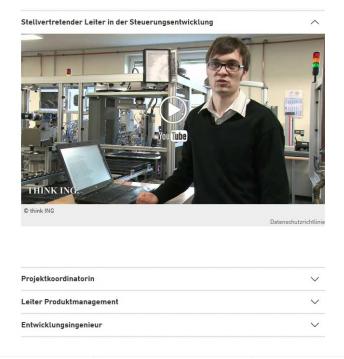


Informationsveranstaltung für Erstsemester

Diplomstudiengang Elektrotechnik

Dr.-Ing. Julia Kuß Studienfachberatung Elektrotechnik

Wo geht es hin? Mögliche Aussichten.

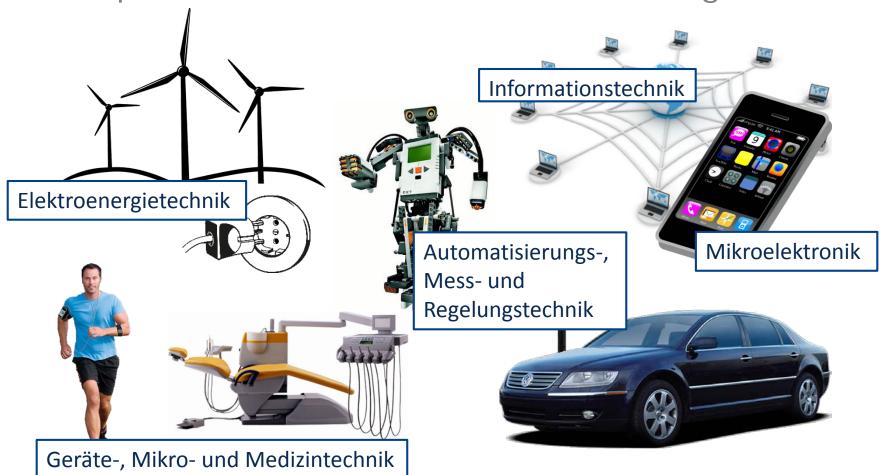

Zukunftsperspektiven und Berufsfelder

Die Elektrotechnik prägt alle Bereiche und Technologien der modernen Welt. Der ist der Bedarf an qualifizierten Elektrotechnik-Ingenieuren entsprechend hoch ur kontinuiertich. Dieser Trend ist technologisch begründet und wird anhalten. Dest erwarten die Absolventen unserer Studiengänge ausgezeichnete Zukunftsperspe und ein spannender, abwechslungsreicher Beruf.

Die Breite der Fachgebiete der Elektrotechnik spiegelt sich in der Vielfalt der potentiellen Arbeitsfelder wieder. Je nach Studiumsschwerpunkt können die Absolventen in Branchen wie Informations- und Kommunikationstechnik, Fahrzeugtechnik, Luft- und Raumfahrt, Medizintechnik, Energietechnik, oder Halbleiterindustrie tätig werden. Von Chipfabriken bis zu Fotogeräte- und Optikfii von Kraftwerken bis zu Maschinenbauunternehmen; Automobilindustrie, Chemieindustrie, Fertigungs-, Verarbeitungs- und Verfahrensindustrie- an diesei können nur einige mögliche Einsatzgebiete aufgeführt werden.

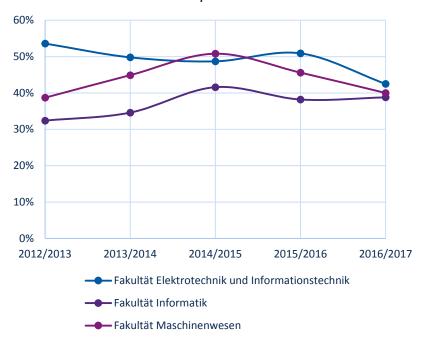
Was machen Ingenieure?

Je nach persönlichen Vorlieben und Neigungen können die Elektroingenieure frei



Oeffentlichkeitsarbeit eui Letzte Änderung: 25.10.2018 Diese Seite ...

Weitere Informationen: dies academicus (13.5.2020, SoSe, 4. Sem.)

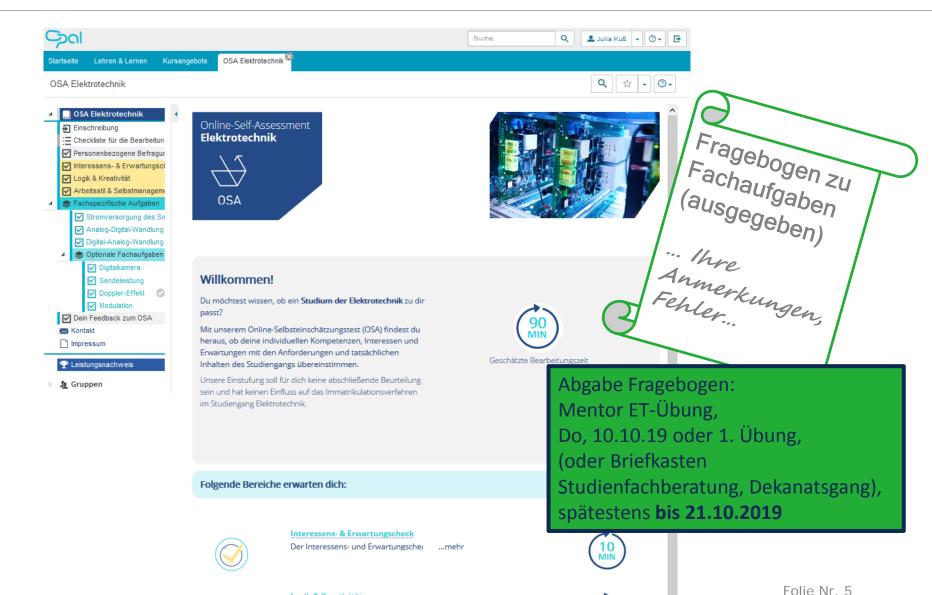

Hauptstudium – Ausblick Studienrichtungen

Studienerfolg – Was können Sie und wir tun?

[Daten aus Jahresbericht TU Dresden, 2017]

Studienabbruchstudie 2016 des Deutsches Zentrums

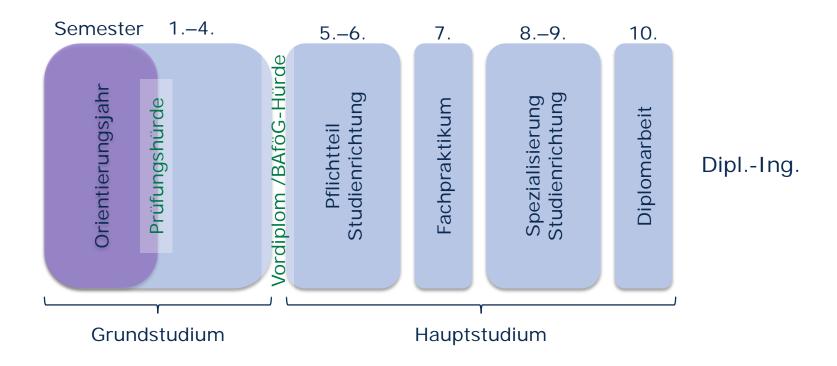
für Hochschul- und Wissenschaftsforschung


- → Studienabbruchgründe:
- unbewältigte Leistungsanforderungen: 38 % (Ingenieurwissenschaften, Universitäten, 11 %: endgültig nicht bestandene Prüfungen, 8 % zu hohe Studienanforderungen, 8 % Zweifel an der persönlichen Eignung)
- 2. mangelnde Studienmotivation: 17%

Hauptursachen [Hasenberg & Stoll, 2015]:

falschen Erwartungen und Informationsdefizite zu Studienbeginn

→ Online-Self-Assessment (OSA)



Logik & Kreativität

Ablauf des Studiums

Grundstudium

Studienablaufplan It. Studienordnung

	LP 1. Sem.	LP 2. Sem.	LP Gesamt
Algebraische und analytische Grundlagen	11 <i>KL</i>		11
Mehrdimensionale Differential- und Integralrechnung		9 KL	9
Naturwissenschaftliche Grundlagen	4	3 KL	7
Werkstoffe (1. Sem.) und Technische Mechanik (2. Sem.)	3 <i>KL</i>	4 KL	7
Informatik	3 <i>KL</i>	3 KL, PR	6
Grundlagen der Elektrotechnik	6 KL		6
Elektrische und magnetische Felder		6 KL	6
Geräteentwicklung		4 KL	4
Einführungsprojekt (1 Woche im Semester)	2 PR		2
Einführung in die Berufs- und Wissenschaftssprache	3 <i>KL</i>		3
Summe der Leistungspunkte (LP)	32	29	61

PL... Prüfungsleistung: Klausur (KL), Praktikum (P), Projektarbeit (PR), ...

Grundstudium

Studienablaufplan It. Studienordnung

Prüfungshürden	LP 1. Sem.	LP 2. Sem.	LP Gesamt
Algebraische und analytische Grundlagen	11 <i>KL</i>		11
Mehrdimensionale Differential- und Integralrechnung		9 KL	9
Naturwissenschaftliche Grundlagen	4	3 KL	7
Werkstoffe (1. Sem.) und Technische Mechanik (2. Sem.)	3 <i>KL</i>	4 KL	7
Informatik	3 <i>KL</i>	3 KL, PR	6
Grundlagen der Elektrotechnik	6 KL		6
Elektrische und magnetische Felder		6 KL	6
Geräteentwicklung		4 KL	4
Einführungsprojekt (1 Woche im Semester)	2 PR		2
Einführung in die Berufs- und Wissenschaftssprache	3 <i>KL</i>		3
Summe der Leistungspunkte (LP)	32	29	61

PL... Prüfungsleistung: Klausur (KL), Praktikum (P), Projektarbeit (PR), ...

Lehr- und Lernformen

Vorlesungen (V / VO)

Übungen (Ü)

Praktika (P)

Selbststudium

Module – Lehrveranstaltungen – Leistungspunkte

- 1 Leistungspunkt (LP) = 30 h Arbeitsaufwand
- 30 LP laut Studienplan pro Semester
- Arbeitsaufwand pro Jahr: 2 x 30 LP → 1800 h

Vergleich: 45 Wochen x 40 h = 1800 h

Studienablauf

Semester

- 15 Wochen Lehrveranstaltungen
- Anschließend: 4 Wochen Prüfungszeit

Lernen nur während der Prüfungszeit reicht nicht aus!

Lernen Sie mit Ihren Kommilitonen. Das macht mehr Spaß und ist effektiv.

Arbeitsaufwand je Modul

Arbeitsaufwand wird in Modulbeschreibung angegeben.

Beispiel: Grundlagen der ET: 6 LP x 30 h/LP = 180 Stunden

Vorbereitung auf Prüfung Prüfung	38 h 2 h
Selbststudium	80 h
Arbeitsaufwand	180 h

Selbststudium: 5 h 20 min pro Woche

Persönliche Zeiteinteilung

Stunden	tundenplan für das Wintersemester 2014/2015 (01.10.2014 - 31.03.2015)		Stand: 06.10).2014 E u I	Seminargruppe: 01/ET/01
Zeit	Montag	Dienstag	Mittwoch	Donnerstag	Freitag
1.DS 1.WO	Wille V Informat.I/ ET HSZ/AUDI/H	Tetzlaff VO Grdl. der ET BAR/SCHÖ/E			
1.DS 2.WO	Wille V Informat.I/ ET HSZ/AUDI/H	Tetzlaff VO Grdl. der ET BAR/SCHÖ/E			
2.DS 1.WO		Feldmann Ü Math/1 WIL/C107/U	Lern-		Feldmann Ü Math/1 WIL/C133/H
2.DS 2.WO		Feldmann Ü Math/1 WIL/C107/U	gruppe		Feldmann Ū Math/1 WIL/C133/H
3.DS 1.WO	Wensch V Math/1 TRE/PHYS/E		Hildebrand/Mögel/Tetzlaff ÜO Grdl. der ET GÖR/0127/U	Lern-	Bauch VO Werkstoffe/Eul HSZ/AUDVH
3.DS 2.WO	Wensch V Math/1 TRE/PHYS/E		Hildebrand/Mögel/Tetzlaff ÜO Grdl. der ET GÖR/0127/U	gruppe	Bauch VO Werkstoffe/Eul HSZ/AUDVH
4.DS 1.WO		Bauch/Ass. ÜO Werkstoffe/Eul HSZ/0101/U		Lavrov V Physik 1 TRE/PHYS/E	
4.DS 2.WO				Lavrov V Physik 1 TRE/PHYS/E	
5.DS 1.WO	Schöne Ü Informat.I/ ET APB/E010/U	Lern-	Wensch V Math/1 HSZ/AUD//H	Schaffer Ü Lernr.ET ab 21.10. POT/0106/U	
5.DS 2.WO		gruppe	Wensch V Math/1 HSZ/AUDVH	Schaffer Ü Lernr.ET ab 21.10. POT/0106/U	
6.DS 1.WO		Schwab/Danzenbächer/Schwierz Ü Physik 1 HSZ/0E03/U,HSZ/0E05/U,WIL/C307/U	Schaffer Ü Lernr.ET ab 21.10. BAR/0218/U	Wensch V Math/1 HSZ/AUDVH	
6.DS 2.WO		Schwab/Danzenbächer/Schwierz Ū Physik 1 HSZ/0E03/U,HSZ/0E05/U,WIL/C307/U	Schaffer Ū Lernr.ET ab 21.10. BAR/0218/U	Wensch V Math/1 HSZ/AUDVH	
7.DS 1.W0					
7.DS 2.WO					
8.DS 1.W0					
8.DS 2.WO					

Selbststudium
Hausarbeit
Sport/Kultur
Freizeit

Lehr- und Lernformen

Vorlesungen

Übungen

Praktika

Selbststudium

Übungen

Gehen Sie vorbereitet zu den Übungen!

→ Übungsaufgaben besorgen und (versuchen zu) lösen

Schon in der ersten Vorlesungswoche geht es los!

Mathematik:

Übungsaufgaben siehe: https://tu-dresden.de/mn/math/wir/studium/lehrveranstaltungen/mathematik-fuer-et/mathe1#section-5

Bitte vor der 1. Übung rechnen

Elektrotechnik:

Information zur Vorbereitung der 1. Übung beim Auftakttreffen mit Mentor

Unterlagen zu weiteren Lehrveranstaltungen

Pflichtlehrveranstaltungen der Fakultät Elektrotechnik und Informationstechnik

Auf dieser Seite sind alle Lehrveranstaltungen aus dem Pflichtbereich der Studiengänge Elektektrotechnik (alle Studienrichtungen), Informationssystemtechnik, Mechatronik und Regenerative Energiesysteme jeweils mit einem Link auf weiterführende Informationen aufgeführt.

(Für die Studiengänge IST, MT und RES befindet sich das vollständige LV-Verzeichnis derzeit noch im Aufbau.)

9A|9B|9C|9D|9E|9F|9G|9H|9||9K|9L|9M|9N|9P|9Q|9R|9S|9T| 9W

Δ

- >Aktorik
- Akustik
- Algebraische und analytische Grundlagen (Mathematik I/2) | ☐ Dr. Franz | >Prof. Sasvári

Lernräume (fakultative Angebote)

Studenten helfen Studenten

- Hausaufgaben
- Vor- und Nachbereitung von Lehrveranstaltungen

Lernraum Elektrotechnik/Mathematik/Physik
tu-dresden.de/et → Studium → Studienbeginn → Lernräume

Termine:

→ Di, Do, jeweils 16:40 – 18:10 Uhr, GÖR 127 bzw. 229

Lernraum Mathe → Mo bis Do, jeweils 15:00 – 18:00 Uhr, WIL C 107

Lernraum Physik → Mo bis Do, jeweils 16:40 – 20:00 Uhr, REC D16

Weitere Informationen: Tutorium Dez./Jan. 19/20 (Aushang, E-Mail)

Prüfungseinschreibung und -abmeldung

Anmeldung im Januar, s. Aushang

Onlineanmeldung über HISQIS zu Prüfungen ist erforderlich
Informationen zu den Fristen für Prüfungsanmeldung auf
tu-dresden.de/et → Studium → Informationen für
Studierende → Prüfungen → Prüfungsanmeldung | Fristen

Ausnahme:

Automatische Anmeldung für

- Algebraische und analytische Grundlagen (Mathe I)
- Grundlagen der Elektrotechnik (ET I)

Einführungsprojekt Elektrotechnik

18.-22. November 2019 (ganztägig)

- Nur V Mathematik am Di 5. DS findet statt!
- Pflichtmodul
- Weitere Infos (Anfang November) unter <u>https://tu-dresden.de/et/eti/le</u>
- → Studium
- → Lehrveranstaltung
- → Einführungsprojekt Elektrotechnik
- Dokumente im Downloadbereich

Bringen Sie die Aufgabenstellung ausgedruckt oder in elektronischer Form mit!

AQUA

Allgemeine (und ingenieurspezifische) Qualifikation

Zwei AQUA-Module im Hauptstudium

- AQUA 1: Allgemeine Qualifikation
- AQUA 2: Allgemeine und ingenieurspezifische Qualifikation

AQUA 1 und 2 inhaltlich unterschiedlich

AQUA 1

- inhaltlich unter anderem Fremdsprachenausbildung
- bereits im Grundstudium möglich

tu-dresden.de/et → Studium → Lehrveranstaltungen → AQUA

Katalog erweiterbar

AQUA-Katalog

Veranstaltung	AQUA 1	AQUA 2	Bemerkungen	Prüfer	LP
Einführung in die Mediengestaltung	Х		Angebot der Professur für Mediengestaltung	Groh	3
Interplanetare Raumfahrtmissionen	X		Angebot der Professur für Raumfahrtsysteme	Tajmar	3
Raketentechnik	X		Angebot der Professur für Raumfahrtsysteme	Tajmar	3
Das politische System der BRD	X		Angebot des Instituts für Politikwissenschaften	Patzelt	3
Gründungsorientierte Einführung in die BWL für Natur- u. Ingenieurwissenschaftler	X	X	Angebot von dresdenexists	Schefzcyk	3
Rechtsaspekte junger Unternehmen – Einführung in das Recht (RAJU)	X	X	Angebot des Instituts für Geistiges Eigentum, Wettbewerbs- und Medienrecht	Lauber- Rönsberg	3
Urheber-, Design- und Markenrecht (UDeM)	Х	Х	Angebot des Instituts für Geistiges Eigentum, Wettbewerbs- und Medienrecht (www.igewem.tu- dresden.de)	Götting	4
Grundlagen der Gebäudeenergietechnik	Х	Х	nicht für RES Angebot der Professur für	Felsmann	2

März 2020 → http://tu-dresden.de/deinstudienerfolg/ofp/beinginside


AQUA: Interdisziplinäre Ingenieurspraxis "BeING inside" = Eine Woche ET-Ingenieur sein…

Problem

Aufgabe

Idee

Lösung

BEING INSIDE 2017 (mit BASF, Professur für Prozessleittechnik und Fachbereich Chemie)

Die 10.000 Stunden-Regel

"Ten thousand hours of practice is required to achieve the level of mastery associated with being a world-class expert." Daniel Levitin, McGill Universität, Montreal

Aber:

10 Semester x 30 LP/Semester x 30 h/LP = 9.000 h

Informationsquellen

Schaukästen im Dekanatsgang

- Prüfungstermine

 vorläufige Termine ab Nov./Dez.
- Vorlesungsankündigungen
- Praktikumsangebote und Jobangebote
- Aushänge des Fachschaftsrates
- Informationen zum Auslandsstudium oder –praktikum

→ Info-Veranstaltung jährlich (9. Dez. 19)

Informationsquellen

Webseite der Fakultät

- → Studium → Studienbeginn
- → Studium → Informationen für Studierende
- → Studium → Informationen für Studierende → Prüfungen
 - → Prüfungsordnungen (Studien-/Prüfungsordnungen)

Fachschaftsrat

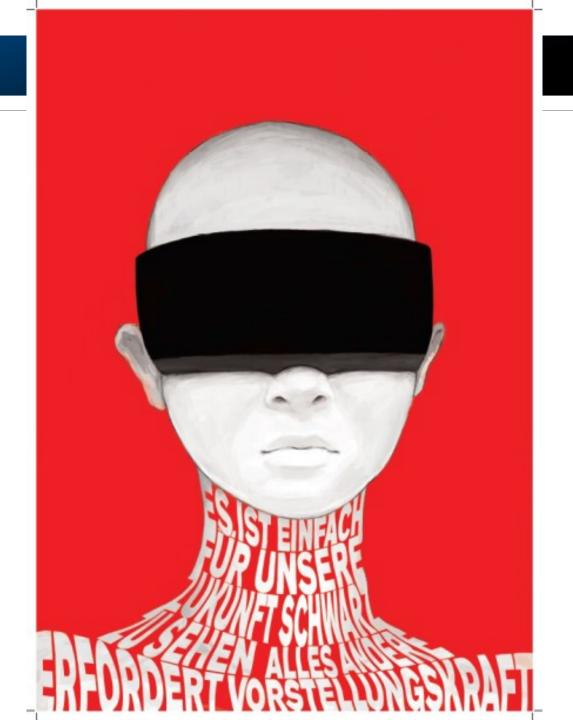
- https://www.fsret.de/
- Broschüren: BARNews, SonderBAR, FaltBAR

Informationsquellen

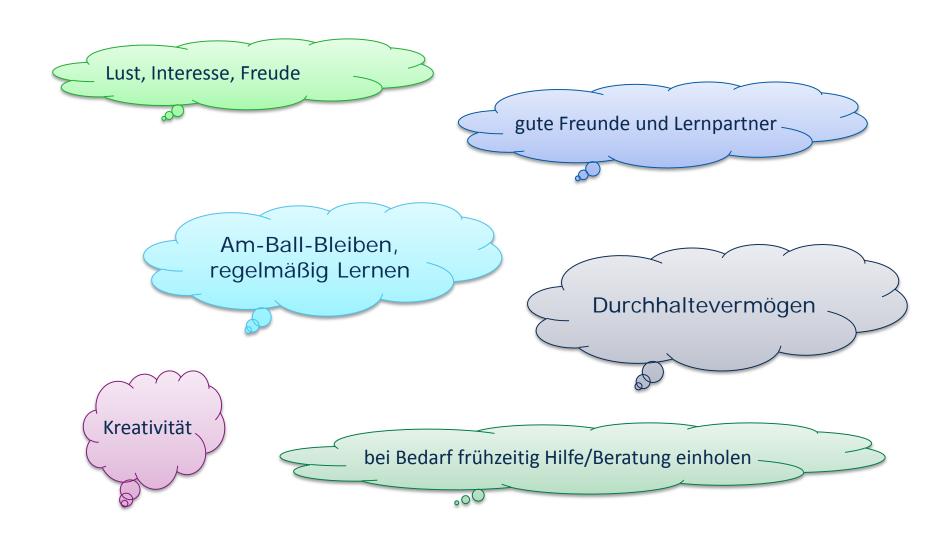
Nutzen Sie Ihre TU-E-Mail-Adresse!

Vorname.Nachname@mailbox.tu-dresden.de

- → aktuelle Informationen und Änderungen zu Räumen/Zeiten werden nur an diese TU-E-Mail-Adresse versendet!
- → regelmäßig abrufen


AUSSICHT?

#nextgeneration: Studium der Zukunft


33. Plakatwettbewerb des Studentenwerks (2019)

1. Preis: Schwarzmalerei

[Bild: Valentin Schlitt / Deutsches Studentenwerk 25. Juni 2019, 05:19 © SZ.de/berk/lho]

WIR WÜNSCHEN IHNEN ...

Nächstes Austausch-Treffen mit Studienfachberatung: Nov. 2019 (Einladung per E-Mail)

Kontaktpersonen

Studiendekan ET

Prof. Gerlach

Vorsitzender des Prüfungsausschuss

Prof. Bernet

Prüfungsamt

- Frau Töpfer (Leiterin, Praktika)
- Frau Dehne (Prüfungen)

• Frau Dr. Kuß studienfachberatung.et @tu-dresden.de

Lernmanagement

Herr Knöfel daniel.knoefel
 @tu-dresden.de

Erasmus-Koordinator

Frau Winkler erasmus.et
 @tu-dresden.de

TESTKLAUSUR MATHEMATIK IN ESE-WOCHE

Wann: Dienstag, 8. Oktober 2019 von 10:15 – 11:45 Uhr

nach den Einführungsvorträgen der Studiengänge

Wo: Barkhausen-Bau, Heinz-Schönfeld-Hörsaal / I90 (<u>BAR/SCHÖ/E</u>)

Wer: Alle Studienanfänger ET, IST, MT und RES

Wie: Ohne Taschenrechner, gern mit Tafelwerk

Warum: Was gelingt mir, wo sind Baustellen?

- Auswertung: Freitag, 11. Oktober 2019 von 09:20 12:40 Uhr
- Themenbezogene Workshops in kleineren Gruppen
- Aktive Mitarbeit **EINSCHREIBUNG über OPAL** (Orientierungsklausur)
- Begleitung durch studentische Tutoren

»Wissen schafft Brücken.«