

PD Dr. Julia Walther / PD Dr. Roberta Galli / Dr. Christian Schnabel Arbeitsbereich Medizinische Physik und Biomedizinische Technik

Physikalisch-chemische Grundlagen der Biomedizintechnik

Einführung

Studierende des Studiengangs Biomedizinische Technik – 1. Fachsemester

AB Medizinische Physik und Biomedizinische Technik

https://tu-dresden.de/med/mf/mph

WICHTIGE THEMEN IM ÜBERBLICK

Medizinische Fakultät Carl Gustav Carus 🕤

Physik für Mediziner:innen und Zahnmediziner:innen

Eine wichtige Aufgabe des Arbeitsbereiches ist die Ausbildung im Fach Physik für Mediziner:innen und Zahnmediziner:innen an der Medizinischen Fakultät.

Forschungsschwerpunkte

Abschlussarbeiten

Sie sind auf der Suche nach einem Thema für Ihre Studien- oder Abschlussarbeit? Wir bieten laufend Themen im Bereich der Spektroskopie, optischen Kohärentzbronggräfe und kamerabasierten Bildgebung für ingenieurs- und naturwissenschaftliche Studiengänge an. Kontaktteren Sie uns!

☆
 P
 Pausiert
 Pausiert

AB Medizinische Physik und Biomedizinische Technik

Startseite Arbeitsbereich Medizin X +

https://tu-dresden.de/med/mf/mph

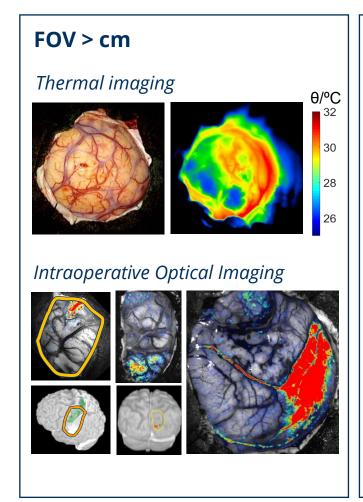
Lehraufträge

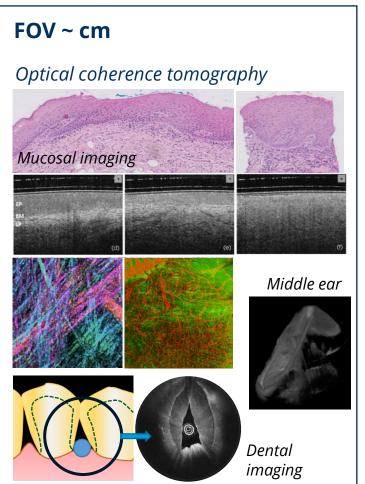
MEDIZINISCHE PHYSIK

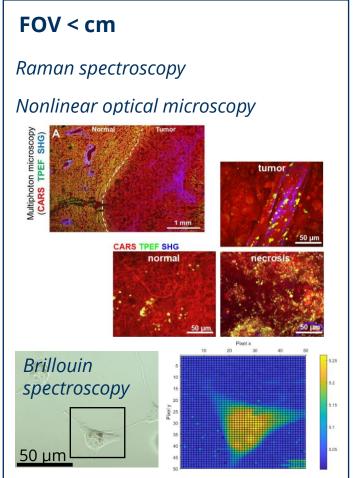
Physik für Mediziner:innen und Zahnmediziner:innen – Studiengänge Human- und Zahnmedizin an der Medizinischen Fakultät der TUD und im Modellstudiengang MediC der TUD

Medizintechnik – Masterstudiengang "Medical Radiation Sciences" des OncoRay, dem Center for Radiation Research in Oncology am Uniklinikum DD

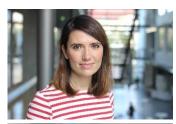
Physikalische und chemische Grundlagen der Biomedizintechnik Diplomstudiengang Biomedizinische Technik an der Fakultät Elektrotechnik der TUD




STUDIUM FORSCHUNG



AB MPH – Forschungsschwerpunkt: Biomedical Imaging and Spectroscopy


Ablauf der Lehrveranstaltung

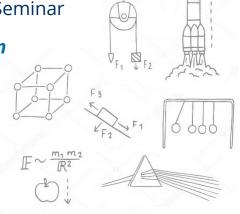
Dozenten

PD Julia Walther (Modulverantwortliche) E-Mail: julia.walther@tu-dresden.de Tel.: 0351 458 6132

Dr. Christian Schnabel E-Mail: christian.schnabel@tu-dresden.de Tel.: 0351 458 6133

Seminar

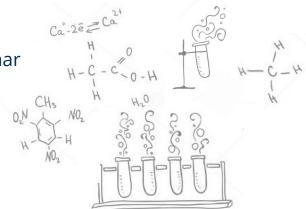
Dr. Jan Rix (Seminarleitung) E-Mail: jan.rix@tu-dresden.de Tel.: 0351 458 6134



Ablauf der Lehrveranstaltung

1. Semester

2 SWS Vorlesung, 2 SWS Seminar


Physikalische Grundlagen

2. Semester

2 SWS Vorlesung, 1 SWS Seminar

Chemische Grundlagen

Σ 7 Leistungspunkte

Prüfungsleistung: Physikalische und chemische Grundlagen

Zugelassen: Taschenrechner (GTR ohne CAS)

1 Blatt DIN A4 handgeschrieben

Übersicht Module durch und mit AB MPH im Studiengang Biomedizinische Technik

Grundstudium:

1. S	emester:	BMT-22-G-10	Physikalisch-chemische Grundlagen der Biomedizintechnik (Teil 1)	(7 LP)
2. S	emester:	BMT-22-G-10	Physikalisch-chemische Grundlagen der Biomedizintechnik (Teil 2)	(7 L1)
3. S	emester:	BMT-22-G-15	Biomedizinische Technik im Klinikeinsatz	(4 LP)
Haup	otstudium:			
8. Ser	mester:	BMT-22-V-11-G	Medizinische Sensorik und Aktorik – Grundlagen ¹⁾ : Biomedizinische Optik (PD Walther/PD Galli)	(11 LP)
9. Ser	mester	BMT-22-V-11-V	Medizinische Sensorik und Aktorik – Vertiefung ¹⁾ : Oberseminar Med. Sensorik und Aktorik (PD Walther/Dr. Schnabel)	(11 LP)

¹⁾ Katalog, nach Wahl der Studierenden

1. Semester

2 SWS Vorlesung, 2 SWS Seminar

Ablauf der Lehrveranstaltung

Physikalische Grundlagen

Mo 2. DS Seminar (Rix, Reinhold) Regulär:

Do 3. DS Vorlesung (Schnabel, Walther, Galli)

Zeit	Montag	Dienstag	Mittwoch	Donnerstag	Freitag
1.DS 1.WO	Prof. Troost/PD Ling V Med. GL für Ingenieure H91/HS1 (07:30-09:00)	_	>>	>>	STO-Doz/Tutor U Math/1 BAR/0E85/U
1.DS 2.WO	Prof. Troost/PD Ling V Med. GL für Ingenieure H91/HS1 (07:30-09:00)	>	»	>>	STO-Doz/Tutor U Math/1 BAR/0E85/U
2.DS 1.WO	PD Walther S Phys-chem GL BMT 1 191/SR3 (Gruppe 1) 09.15 bis 10.45 Uhr	Kuß, Julia Ü Studienkompetenz ET GER/0052/U >>	Keller-Ressel V Math/1 BAR/SCHÖ/E	>>	>>
2.DS 2.WO	PD Walther S Phys-chem GL BMT 1 191/SR3 (Gruppe 1) 09:15 bis 10:45 Uhr	Kuß, Julia Ü Studienkompetenz ET GER/0052/U >>	Keller-Ressel V Math/1 BAR/SCHÖ/E	>>	>>
3.DS 1.WO	>	Max, Benjamin U Grdl. der ET (BMT1) BAR/0188/U	Müller, Jens V Grdl, der ET BAR/SCHÖ/E	PD Waither V Phys-chem GL BMT 1 H29/HSO (11:00-12:30)	>>
3.DS 2.WO	*	Max, Benjamin U Grdl. der ET (BMT1) BAR/0188/U	Müller, Jens V Grdl, der ET BAR/SCHÖ/E	PD Waither V Phys-chem GL BMT 1 H29/HSO (11:00-12:30)	>>
4.DS 1.WO	Baumgarth Ü Math/1 (Helpdesk) GER/0052/U	>	Malberg, Hagen V Biomed.Techn. GOR/0226/H	>>	Baumgarth Ü Math/1 (Zentralübung) BAR/SCHO/E
	N.N. Ü Lemraum Eul (fakultativ, ohne Betreuung) GÖR/0229/U	>			
4.DS 2.WO	Baumgarth U Math/1 (Helpdesk) GER/0052/U	Malberg, Hagen U Biomed.Techn. ZEU/0250/Z	Malberg, Hagen V Biomed.Techn. GOR/0226/H	>>	Baumgarth Ü Math/1 (Zentralübung) BAR/SCHO/E
	N.N. Ü Lemraum Eul (fakultativ, ohne Betreuung) GÖR/0229/U	>			
5.DS 1.WO	Keller-Ressel V Math/1 BAR/SCHÖ/E	Keller-Ressel V Math/4 BAR/SCHO/E	»	>>	>>
5.DS 2.WO	Keller-Ressel V Math/1 BAR/SCHÖ/E	Keller-Ressel V Math'1 BAR/SCHO/E	>>	>>	>>
6.DS 1.WO	Knôfel, Daniel Ü Lemraum ET BAR/089/U	ET-Tutor1 U Math/1 HSZ/0E01/U	»	Knôfel, Daniel Ü Lemraum ET GOR:0229/U	>>
6.DS 2.WO	Knöfel, Daniel Ü Lemraum ET BAR/0189/U	ET-Tutor1 U Math/1 HSZ/0E01/U	>>	Knöfel, Daniel Ü Lemraum ET GÖR.0229/U	>>

Inhalte der Vorlesung – Physikalische Grundlagen (1. Semester)

Mechanik Grundbegriffe, Erhaltungsgrößen, Statik starrer Körper, Mechanik fester Körper, Statik und

Strömung von Fluiden, Schwingungsfähige Systeme

Optik Eigenschaften von Licht, Klassische geometrische Optik, Wellenoptik, Photometrie

Akustik Schallwellen, Sonografie

Thermodynamik Hauptsätze der Thermodynamik, Phasenumwandlungen

Grundlagen der Statistik und Biometrie

Inhalte der Vorlesung – Physikalische Grundlagen (1. Semester)

Übersicht Vorlesungen Physikalisch-chemische Grundlagen der Biomedizintechnik

Termin (Datum, Uhrzeit)	Ort	Thema	Dozent:in
16.10.2025, 11:00 Uhr	H91 HS2	VL 1 - Mechanik	Dr. Christian Schnabel
23.10.2025, 11:00 Uhr	H91 HS2	VL 2 - Mechanik	Dr. Christian Schnabel
30.10.2025, 11:00 Uhr	H29 HSO	VL 3 - Mechanik	Dr. Christian Schnabel
06.11.2025, 11:00 Uhr	H91 HS1	VL 4 - Mechanik	Dr. Christian Schnabel
13.11.2025, 11:00 Uhr	H91 HS1	VL 5 - Mechanik	Dr. Christian Schnabel
20.11.2025, 11:00 Uhr	Vorlesung	entfällt wegen	Einführungsprojekt
27.11.2025, 11:00 Uhr	H91 HS1	VL 6 - Mechanik	Dr. Christian Schnabel
04.12.2025, 11:00 Uhr	H91 HS1	VL 7 – Akustik	PD Julia Walther
11.12.2025, 11:00 Uhr	H91 HS1	VL 8 – Optik	Dr. Jan Rix
18.12.2025, 11:00 Uhr	H91 HS1	VL 9 – Optik	Dr. Jan Rix
08.01.2026, 11:00 Uhr	H29 HSO	VL 10 – Optik	PD Roberta Galli
15.01.2026, 11:00 Uhr	H91 HS1	VL 11 – Thermodynamik	PD Julia Walther
22.01.2026, 11:00 Uhr	H91 HS1	VL 12 – Thermodynamik	Dr. Christian Schnabel
29.01.2026, 11:00 Uhr	H91 HS1	VL 13 – Statistik	PD Roberta Galli
05.02.2026, 11:00 Uhr	H29 HSO	VL 14 - Reserve	

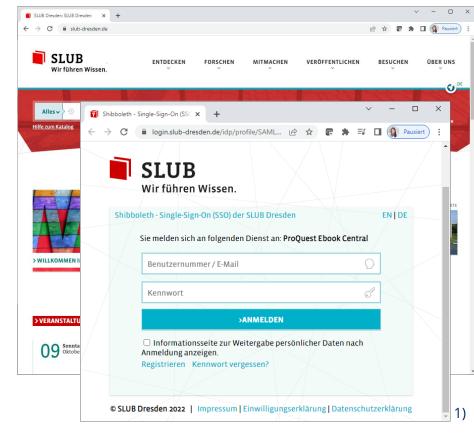
Übersicht Seminare Physikalisch-chemische Grundlagen der Biomedizintechnik

Termin (Datum, Uhrzeit)	Ort	Thema	Dozent:in
13.10.2025, 09:15 Uhr	H19 HS DINZ	Einführung	Johannes Reinhold M.Sc.
20.10.2025, 09:15 Uhr	H19 HS DINZ	Mechanik	Johannes Reinhold M.Sc.
27.10.2025, 09:15 Uhr	H19 HS DINZ	Mechanik	Johannes Reinhold M.Sc.
03.11.2025, 09:15 Uhr	H19 HS DINZ	Mechanik	Johannes Reinhold M.Sc.
10.11.2025, 09:15 Uhr	MTZ SR 4 + 5	Mechanik	Dr. Jan Rix / Johannes Reinhold M.Sc.
17.11.2025, 09:15 Uhr	Seminar	entfällt	wegen Einführungsprojekt
24.11.2025, 09:15 Uhr	MTZ SR 4 + 5	Mechanik	Dr. Jan Rix / Johannes Reinhold M.Sc.
01.12.2025, 09:15 Uhr	MTZ SR 4 + 5	Mechanik	Dr. Jan Rix / Johannes Reinhold M.Sc.
08.12.2025, 09:15 Uhr	MTZ SR 4 + 5	Mechanik	Dr. Jan Rix / Johannes Reinhold M.Sc.
15.12.2025, 09:15 Uhr	MTZ SR 4 + 5	Akustik	Dr. Jan Rix / Johannes Reinhold M.Sc.
05.01.2026, 09:15 Uhr	MTZ SR 3 + 4	Optik	Dr. Jan Rix / Johannes Reinhold M.Sc.
12.01.2026, 09:15 Uhr	MTZ SR 3 + 4	Optik	Dr. Jan Rix / Johannes Reinhold M.Sc.
19.01.2026, 09:15 Uhr	MTZ SR 3 + 4	Optik	Dr. Jan Rix / Johannes Reinhold M.Sc.
26.01.2026, 09:15 Uhr	MTZ SR 3 + 4	Thermodynamik	Dr. Jan Rix / Johannes Reinhold M.Sc.
02.02.2026, 09:15 Uhr	MTZ SR 3 + 4	Thermodynamik	Dr. Jan Rix / Johannes Reinhold M.Sc.

Literatur – Physikalische Grundlagen (1. Semester)

E. Hering, R. Martin; M. Stohrer: *Physik für Ingenieure*, 13. Auflage 2021 Springer Verlag
Online Zugang: https://link.springer.com/book/10.1007/978-3-662-63177-5

F. Kuypers: *Physik für Ingenieure und Naturwissenschaftler*Band 1 Mechanik und Thermodynamik, 3 überarbeitete Auflage 2012 Wiley-VCH
Zugang: Physisch (2 Exemplare) via SLUB; Digital via ProQuest Ebook Central¹⁾


P.A. Tipler, G. Mosca: *Physik für Studierende der Naturwissenschaften und Technik*8. Auflage 2019 Springer Verlag

Online Zugang: https://link.springer.com/book/10.1007/978-3-662-58281-7

H. Stroppe: *Physik für Studenten der Natur- und Ingenieurwissenschaften*

13. Auflage 2005 Fachbuchverlag Leipzig

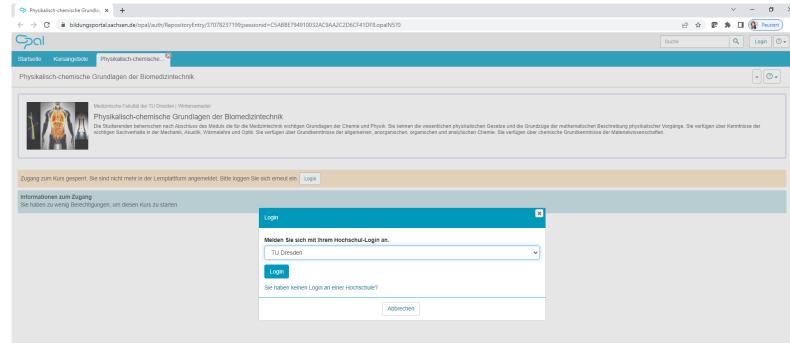

Zugang: Physisch (5 Exemplare) via SLUB

Link:

https://bildungsportal.sachsen.de/opal/auth/RepositoryEntry/37078237199

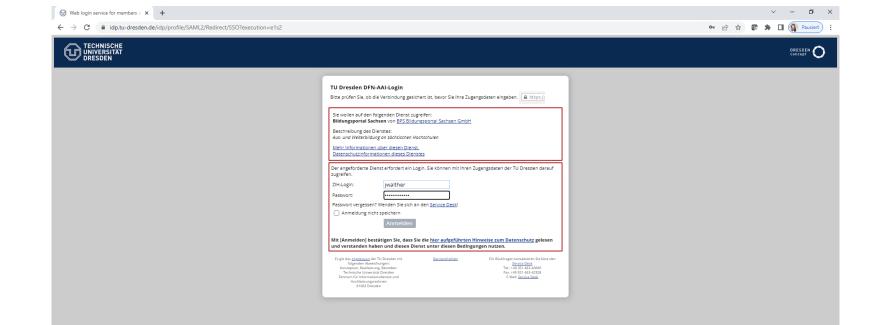
Die Studierenden beherrschen nach Abschluss des Moduls die für die Medizintechnik wichtigen Grundlagen der Chemie und Physik. Sie kennen die wesentlichen physikalischen Gesetze und die Grundzüge der mathematischen Beschreibung physikalischer Vorgänge. Sie verfügen über Kenntnisse der wichtigen Sachverhalte in der Mechanik, Akustik, Wärmelehre und Optik. Sie verfügen über Grundkenntnisse der allgemeinen, anorganischen, organischen und analytischen Chemie. Sie verfügen über chemische Grundkenntnisse der Materialwissenschaften.

Datenschutz Nutzungsbedingungen Impressum Betriebsstatus Über OPAL 13.5.12.1 | N5 Powered by BPS



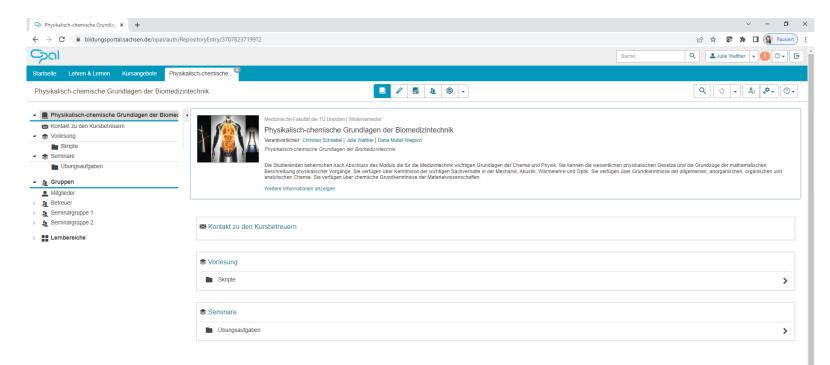
Link:

Die Studierenden beherrschen nach Abschluss des Moduls die für die Medizintechnik wichtigen Grundlagen der Chemie und Physik. Sie kennen die wesentlichen physikalischen Gesetze und die Grundzüge der mathematischen Beschreibung physikalischer Vorgänge. Sie verfügen über Kenntnisse der wichtigen Sachverhalte in der Mechanik, Akustik, Wärmelehre und Optik. Sie verfügen über Grundkenntnisse der allgemeinen, anorganischen, organischen und analytischen Chemie. Sie verfügen über chemische Grundkenntnisse der Materialwissenschaften.



Datenschutz Nutzungsbedingungen Impressum Betriebsstatus Über OPAL 13.5.12.1 | N5 Powered by BPS

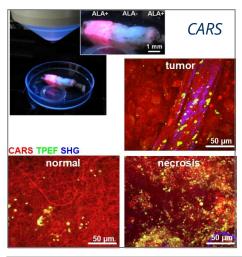
Link:

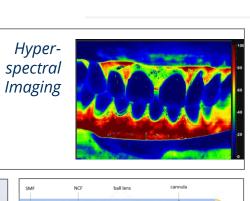

https://bildungsportal.sachsen.de/opal/auth/RepositoryEntry/37078237199

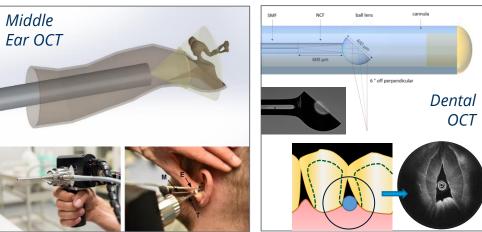
Die Studierenden beherrschen nach Abschluss des Moduls die für die Medizintechnik wichtigen Grundlagen der Chemie und Physik. Sie kennen die wesentlichen physikalischen Gesetze und die Grundzüge der mathematischen Beschreibung physikalischer Vorgänge. Sie verfügen über Kenntnisse der wichtigen Sachverhalte in der Mechanik, Akustik, Wärmelehre und Optik. Sie verfügen über Grundkenntnisse der allgemeinen, anorganischen, organischen und analytischen Chemie. Sie verfügen über chemische Grundkenntnisse der Materialwissenschaften.

Link:

https://bildungsportal.sachsen.de/opal/auth/RepositoryEntry/37078237199


Die Studierenden beherrschen nach Abschluss des Moduls die für die Medizintechnik wichtigen Grundlagen der Chemie und Physik. Sie kennen die wesentlichen physikalischen Gesetze und die Grundzüge der mathematischen Beschreibung physikalischer Vorgänge. Sie verfügen über Kenntnisse der wichtigen Sachverhalte in der Mechanik, Akustik, Wärmelehre und Optik. Sie verfügen über Grundkenntnisse der allgemeinen, anorganischen, organischen und analytischen Chemie. Sie verfügen über chemische Grundkenntnisse der Materialwissenschaften.


Datenschutz Nutzungsbedingungen Impressum Barrierefreiheit Betriebsstatus Über OPAL 13.5.12.1 | N5 Powered by BPS



Studentische Arbeiten (Studien-, Praktikums-, Diplomarbeiten)

ABSCHLUSSARBEITEN

Sie sind auf der Suche nach einem Thema für ihre Studien- oder Abschlussarbeit? Wir bieten laufend Themen im Bereich der Spektroskopie, optischen Kohärenztomografie und kamerabasierten Bildgebung für ingenieurs- und naturwissenschaftliche Studiengange an. Kontaktieren Sie uns!

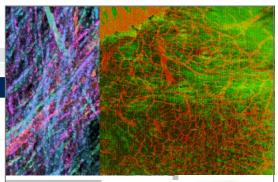
Aktuell suchen wir Studierende zur Bearbeitung folgender Abschlussarbeitsthemen:

Design einer rotierenden Miniatureinheit für die Optische Kohärenztomografie (OCT)

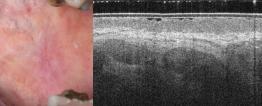
Design eines Grundkörpers für die 3D Optische Kohärenztomografie (OCT) mit einem Hopkins-Endoskops

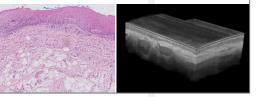
Pimplementierung der funktionalen Bildgebung mit dynamischem Kontrast für die Optische Kohärenztomografie (OCT)

Kontakt



Frau PD Dr. rer. medic. habil. Julia Walther


ommissarische Leitung


E-MAIL SENDEN
 ☐

Arbeitsbereich Medizinische Physik und

Vielen Dank für Ihre Aufmerksamkeit!

