Python for simulation, animation and control

Part 1: Introductory tutorial for the
simulation of dynamic systems

Demonstration using the model of a kinematic Vehicle

Max Pritzkoleit* Jan Winkler*

January 7, 2022

Contents
1 Introduction 2
2 Kinematic model of a vehicle 2
3 Libraries and Packages 3
4 Storing parameters 4
5 Simulation with SciPy’s integrate package 5
5.1 Implementation of the model 5
5.2 Solution of the initial value problem using SciPy 6
6 Plotting using Matplotlib 7
7 Animation using Matplotlib 8
8 Time-Events 12

*Institute of Control Theory, Faculty of Electrical and Computer Engineering, Technische Universitét
Dresden, Germany

2 Kinematic model of a vehicle Page 2

1 Introduction

The goal of this tutorial is to teach the usage of the programming language Python as
a tool for developing and simulating control systems represented by nonlinear ordinary
differential equations (ODEs). The following topics are covered:

o Implementation of the model in Python,
o Simulation of the model,
o Presentation of the results.
Source code file: 01_car_example_plotting.py

Later the simulation is extended by a visualization of the moving vehicle and some
advanced methods for numerical integration of ODEs.

Please refer to the Python List-Dictionary-Tuple tutorial’ and the NumPy Array tuto-
rial? if you are not familiar with the handling of containers and arrays in Python. If you
are completely new to Python consult the very basic introduction on tutorialspoint?.
Additionally, the book [1] is recommended (in German only).

2 Kinematic model of a vehicle

Figure 1: Car-like mobile robot

'http://cs231n.github.io/python-numpy-tutorial/#python-containers
Zhttp://cs231n.github.io/python-numpy-tutorial/#numpy
3https://www.tutorialspoint.com/python/index.htm

Python Control Tutorial Part 1

http://cs231n.github.io/python-numpy-tutorial/#python-containers
http://cs231n.github.io/python-numpy-tutorial/#numpy
http://cs231n.github.io/python-numpy-tutorial/#numpy
https://www.tutorialspoint.com/python/index.htm

3 Libraries and Packages Page 3

Given is a nonlinear kinematic model of a car-like mobile robot, cf. Figure 1, with the
following system variables: position (y;,¥2) and orientation 6 in the plane, the steering
angle ¢ and the vehicle’s lateral velocity v = |v|:

y1(t) = vecos(0(t)) y1(0) = y10 (1a)
Y2(t) = vsin(6(t)) y2(0) = Y20 (1b)
B() = o) tan(6(t) 6(0) = o (10)

l

The initial values are denoted by w19, y20, and 6y, respectively, and the length of the
vehicle is given by [. The velocity v and the steering angle ¢ can be considered as an
input acting on the system.

To simulate this system (1) of first order ODEs, one has to introduce a state vector
x = (21,79, 23)T and a control vector u = (u1,us)’ as follows:

T =11 Uy =0 (2a)
To = 1Yo Uy := . (2b)
xg:=10 (2¢)

Now, the initial value problem (IVP) (1) can be expressed in the general form %(t) =
f(x(t),u(t)) with x(0) = xo:

i (t) ua (t) cos(xs(1))
Za(t) | = | w(t)sin(zs(t)) x(0) = Xo. (3)
t

) /
ZL’3(t> R %ul(t) tan(u2())

x(t) £(x(t)u(t))

Usually, this explicit formulation of the IVP is the basis for implementing a system
simulation by numerical integration. In the following a simulation using Python is set
up which shows the dynamic behavior of the vehicle when driving with a continuously
decreasing velocity under a constant steering angle. Of course, in this simple case, the
result is known in advance: The vehicle will drive on a circle until it stops for v = 0. In
the following the Python-script for simulating the system will be derived step by step.

3 Libraries and Packages

Neither the numerical solution of the IVP (1) nor the presentation of the results can
be done comfortably in pure Python. To overcome this limitation separate packages for

Python Control Tutorial Part 1

V)

4 Storing parameters Page 4

array handling, numerical integration, and plotting are provided. Under Python such
packages should be imported at the top of the executed script?.

The most relevant packages for the simulation of control systems are

o NumPy for array handling and mathematical functions,
 SciPy for numerical integration of ODEs (and a lot of other stuff, of course),

o Matplotlib for plotting.

It is good practice to connect the imported packages with a namespace, so it can be
easily seen in the code which function comes from where. For example, in case of NumPy
the following statement imports the package NumPy and ensures that every function
from NumPy is addressed by the prefix np.:

import numpy as np

For frequently used functions like cos(...), sin(...), and tan(...) it is annoying to
prefix them like np.cos(...) each time. To avoid this one can directly import them
as

from numpy import cos, sin, tan

To solve the IVP (2) the library SciPy with its sub-package integrate offers different
solvers:

import scipy.integrate as sci

For plotting the output of the simulation results the library Matplotlib with its sub-
package pyplot introduces a user experience similar to MATLAB into Python:

import matplotlib.pyplot as plt

4 Storing parameters

In simulations usually a lot of parameters describing the system or the simulation setup
have to be handled. It is a good idea to store these parameters as attributes in a
structure, so it is not necessary to deal with several individual variables holding the
values of the parameters. In Python, such a structure can be a so-called dataclass
class, a Python class with the decorator @dataclass. Data classes are available after
putting

from dataclasses import dataclass

4Tt is also possible to import them elsewhere in the code but following the official style guide PEPS
“imports are always put at the top of the file, just after any comments and docstrings, and before
globals and constants”.

Python Control Tutorial Part 1

http://www.numpy.org/
https://docs.scipy.org/doc/scipy/reference/
https://matplotlib.org/

11
12
13
14

15

NN

o N

N

N
(ST VR R

30

16

5 Simulation with SciPy’s integrate package Page 5

at the beginning of the file. Then the structures holding the required data can be defined
as follows (with type annotations for the members):

Physical parameter

@dataclass

class Para:
I: float
w: float

0.3 # define car length
1%0.3 # define car width

Similarly this can be done with the simulation parameters:

Simulation parameter
@dataclass
class SimPara:

t0: float =0 # start time
tf: float = 10 # final time
dt: float = 0.04 # step—size

Alternatively, one could use the datatype dictionary. However, the resulting keyword
notation (e.g., Para["1"] instead of Para.l) in the code using the parameters is quite
annoying. Furthermore, an IDE providing static code analysis or IntelliSense features
might warn you about missing attributes if you use data classes.

5 Simulation with SciPy’s integrate package

5.1 Implementation of the model

In order to simulate the IVP (3) using the numerical integrators offered by SciPy’s
integrate package a function returning the right-hand side of (3) evaluated for given
values of x, u and the parameters has to implemented:

def ode(t, x, p: Type[Para]):
"""Function of the robots kinematics

Args:
. state
: time
p(object): parameter container class

Returns:
dxdt: state derivative

x1, x2, x3 = x # state vector
ul, u2 = control(t) # control vector

dxdt = f(x, u):
dxdt = np.array ([ul * cos(x3),
ul * sin(x3),
1/ p.l % ul * tan(u2)])

return state derivative
return dxdt

Python Control Tutorial Part 1

5 Simulation with SciPy’s integrate package Page 6

Note that we added a type annotation here for the parameter argument p. This is not
necessary for the code to execute. It just tells the static code analysis/ IntelliSense
mechanism of your IDE which type the argument has, so it can correctly identify any
errors in the code. This approach is recommended in order to speed up code developing
and to avoid errors. You need to import the typing package for this to work:

from typing import Type

The ode functions calls the control law function control calculating values for v and ¢
depending on the time t. As a first heuristic approach, the vehicle is driven with a con-
stant steering angle while continuously reducing the speed from 0.5ms~! to zero. Later,
an arbitrary function, for example a feedback law u = k(x), can be implemented.

def control(t):

"""Function of the control law

Args:
t: time

Returns:
u: control vector

ul = np.maximum(0, 1.0 — 0.1 * t)
u2 = np. full (ul.shape, 0.25)
return np.array ([ul, u2]).T

It is important that the function needs to handle also time arrays as input in order to
calculate the control for a bunch of values at once (not during the numerical integration
but later for analysis purposes). That’s why NumPy’s array capable maximum function
is used here with appropriately adjusted shape of u2.

Furthermore, attention has to be paid how the two functions above are documented.
The text within the """ is called docstring. Tools like Sphinx are able to convert these
into well formatted documentations. Docstrings can be written in several ways. Here
the so-called Google Style is used.

5.2 Solution of the initial value problem using SciPy

Having implemented the system dynamics the numerical integration of system (3) can
be performed. At first, a vector tt specifying the time values at which one would
like to obtain the computed values of x has to be defined. Then the initial vector xq is
defined and the solve ivp function of the SciPy integrate package is called to perform the
simulation. The function solve_ivp takes a function of the type func(t, x) calculating
the value of the right-hand side of (3). Further parameters are not allowed. In order
to be able to use the previously defined ode-function ode(t, x, p) which additionally
takes the parameter structure p, a so-called lambda-function is used. The solver is called
as follows:

Python Control Tutorial Part 1

https://docs.python.org/3/library/typing.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.maximum.html
http://www.sphinx-doc.org/en/stable/
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html

6 Plotting using Matplotlib Page 7

sol = solve_ivp(lambda t, x: ode(x, t, para),
(t0, tf), x0, method= ,t_eval=tt)

This way the ode function is encapsulated in an anonymous function, that has just
(t, x) as arguments (as required by solve_ivp) but evaluates as ode(t, x, para)
°. Additionally, the following arguments are passed to solve_ivp: A tuple (t0, tf)
which defines the simulation interval and the initial value x0. Furthermore, the optional
arguments’ method (the integration method used, default: Runge-Kutta 45), and t_eval
(defining the values at which the solution should be sampled) can be passed.

The return value sol is a Bunch object. To extract the simulated state trajectory, one
has to execute:

x_traj = sol.y.T # size=len(x)*len(tt) (.T —> transpose)

Finally, the control input values are calculated from the obtained trajectory of x (the
values for u in the ode function cannot be directly saved because the function is also
repeatedly called between the specified time steps by the solver).

time vector
tt = np.arange(SimPara.t0, SimPara.tf 4+ SimPara.dt, SimPara.dt)

initial state
x0 = [0, 0, 0]

simulation

sol = sci.solve_ivp(lambda t, x: ode(t, x, Para), (SimPara.t0, SimPara.tf), x0, t_eval=tt)
x_traj = sol.y.T

u_traj = control (tt)

Note that the interval specified by np.arange is open on the right-hand side. Hence, dt
is added to obtain also values for x at tf.

6 Plotting using Matplotlib

Usually one wants to publish the results with descriptive illustrations. For this purpose
the required plotting instructions are encapsulated in a function. This way, one can
easily modify parameters of the plot, for example figure width, or if the figure should be
saved on the hard drive.

def plot_data(x, u, t, fig_width, fig_height, save=False):

"""Plotting function of simulated state and actions

Args:

x(ndarray) : state—vector trajectory
u(ndarray) : control vector trajectory
t(ndarray) : time vector

fig_width : figure width in cm

5The lambda function corresponds to @ in MATLAB

Python Control Tutorial Part 1

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

141

6 Plotting using Matplotlib

Page 8

fig_height : figure height in cm

save (bool): save figu
Returns: None

man

re (default: False)

creating a figure with 3 subplots, that share the x—axis

figl, (axl, ax2, ax3) = pl

set figure size to desir

t.subplots(3)

ed values

figl.set_size_inches(fig_width / 2.54, fig_height / 2.54)

plot y_1 in subplot 1
axl.plot(t, x[:, 0], label

plot y_2 in subplot 1
axl.plot(t, x[:, 1], label

plot theta in subplot 2
ax2.plot(t, np.rad2deg(x][:

plot control in subplot
ax3.plot(t, np.rad2deg(u(:
ax3.tick_params(axis="y ',
ax33 = ax3.twinx()

ax33.plot(t, np.rad2deg(uf:

='%y_1(t)$", Iw=1, color="r")

="%y_2(t)$", lw=1, color="b")

, 2]), label=r'$\theta(t)$", lw=1, color="g")

3, left axis red, right blue

, 0]), label=r"$v(t)$’", lw=1, color="r")

colors="r")

ax33.spines["left"].set_color('r")
ax33.spines ["right”].set_color('b")

ax33.tick_params(axis="y ',

Grids

ax1l.grid(True)
ax2.grid(True)
ax3.grid (True)

set the labels on the x

colors="b")

and y axis and the titles

axl.set_title(' Position coordinates’)

axl.set_ylabel(r'm")
axl.set_xlabel(r't in s')
ax2.set_title(' Orientation
ax2.set_ylabel (r'deg’)
ax2.set_xlabel(r't in s')
ax3.set_title('Velocity
ax3.set_ylabel(r 'm/s")
ax33.set_ylabel(r'deg’)
ax3.set_xlabel(r't in s')

put a legend in the plot
axl.legend ()
ax2.legend ()
ax3.legend ()

)

steering angle')

i3, lab3 = ax3.get_legend_handles_labels ()
1i33, lab33 = ax33.get_legend_handles_labels()

ax3.legend (1i3 + 1i33, lab

3 + lab33, loc=0)

automatically adjusts subplot to fit in figure window

plt.tight_layout()

save the figure in the working directory

if save:

plt.savefig('state_trajectory.pdf’) # save output as pdf
plt.savefig('state_trajectory.pgf’)

extra packages
return None

Python Control Tutorial Part 1

. 1]), label=r'$\phi(t)$", lw=1, color="b")

for easy export to LaTeX,

lot of

159
160
161

7 Animation using Matplotlib Page 9

Having defined the plotting function, one can execute it passing the calculated trajecto-
ries.

plot
plot_data(x_traj, u_traj, tt, 12, 16, save=True)
plt .show()

The result can be found in Figure 6. Other properties of the plot, like line width or line
color and many others, can be easily changed. One may refer to the documentation of
Matplotlib or consult the exhaustive Matplotlib example gallery.

Position coordinates

2 -
14 — yalt)
E —
0 -
_1 L T T T T T T
0 2 4 6 8 10
tins
Orientation
2004 —— 8
(@)
(]
T 100
0 L T T T T
0 2 4 6 8 10
tins
Velocity / steering angle
60 -15.0
— v(t) '
40 | — o)
® ¢ -14.5 2
1S
20 - ©
-14.0
O L T
0 2 4 6 8 10

Figure 2: State and control trajectory plot created with Matplotlib.

7 Animation using Matplotlib

Source code file: 02_car_example_animation.py

Python Control Tutorial Part 1

https://matplotlib.org/api/pyplot_summary.html
https://matplotlib.org/api/pyplot_summary.html
https://matplotlib.org/gallery/index.html

146
147

148

7 Animation using Matplotlib Page 10

Plotting the state trajectory is often sufficient, but sometimes it can be helpful to have
a visual representation of the system dynamics in order to get a better understanding of
what is actually happening. This applies especially for mechanical systems. Matplotlib
provides the sub-package animation, which can be used for such a purpose. One has to
add

import matplotlib.animation as mpla

at the top of the code used in the previous sections. You need to install the ffmpeg library.
For Windows it can be downloaded from https://www.ffmpeg.org/download.html.
On Ubuntu based Linux systems it might be installed via sudo apt install ffmpeg.

Under Windows, it might be additionally necessary to explicitly specify the path to the
FEMPG library, e.g.:

plt.rcParams]| =

The Matplotlib animation package provides the class FuncAnimation. Objects of this
class can be used to realize an animation. Three items need to be handed over to an
object of this class when it is instantiated:

1. A handle to a figure into which the animation is rendered,

2. an animation function responsible for drawing a single frame of the animation.
It must have the signature def animate(i) where i denotes the ith frame to be
drawn,

3. an initialization function which is called before the animation starts. It cleans up
the content of the figure.

In this tutorial all this is encapsulated in a function called car_animation().

def car_animation(x, t, p: Type[Para]):
""" Animation function of the car—like mobile robot

Args:
x(ndarray): state—vector trajectory
t(ndarray): time vector
p(object): parameters

Returns: None

This function provides the init and animate functions required by the FuncAnimation
object as sub-functions. A third sub-function draw_the_car is used to draw the car
in a certain state. This is done by plotting lines. All lines that represent the vehicle
are defined by points, which depend on the current state x and the control input u.
Hence, one needs a function inside car_animation() that maps from x and u to a set
of points in the (Y, Y2)-plane using geometric relations and passes these to the plot
instance h_car:

Python Control Tutorial Part 1

https://www.ffmpeg.org/download.html

7 Animation using Matplotlib Page 11

160 def draw_the_car(cur_x, cur_y):

161 """ Mapping from state x and action cur_y to the position of the car elements
162

163 Args:

164 cur_x: The current state vector

165 cur_y: The current action vector

166

167 Returns:

168

169

170 wheel_length = 0.1 % p.|

171 yl, y2, theta = cur_x
v, phi = cur_y

define chassis lines
chassis_yl = [yl, yl + p.| * cos(theta)]
chassis_y2 = [y2, y2 + p.| x sin(theta)]

N N
[SIETNEENN

~

o e e e
I = |

®

define lines for the front and rear axle
rear_ax_yl = [yl + p.w * sin(theta), yl — p.w * sin(theta)

179 |
y2 + p.w * cos(theta)]

180 rear_ax_y2 = [y2 — p.w % cos(theta),

181 front_ax_yl = [chassis_yl1[1] + p.w * sin(theta + phi),

182 chassis_yl1[1] — p.w * sin(theta + phi)]

183 front_ax_y2 = [chassis_y2[1] — p.w * cos(theta + phi),

184 chassis_y2[1] + p.w % cos(theta + phi)]

185

186 # define wheel lines

187 rear_|_wl_yl = [rear_ax_yl[1] + wheel_length * cos(theta),

188 rear_ax_yl[1l] — wheel_length * cos(theta)]

189 rear_|_wl_y2 = [rear_ax_y2[1] + wheel_length * sin(theta),

190 rear_ax_y2[1] — wheel_length * sin(theta)]

191 rear_r_wl_yl = [rear_ax_yl[0] + wheel_length * cos(theta),

192 rear_ax_yl[0] — wheel_length * cos(theta)]

193 rear_r_wl_y2 = [rear_ax_y2[0] + wheel_length * sin(theta),

194 rear_ax_y2[0] — wheel_length * sin(theta)]

195 front_I_wl_yl = [front_ax_yl[1] + wheel_length * cos(theta + phi),
196 front_ax_yl[1] — wheel_length * cos(theta + phi)]
197 front_I|_wl_y2 = [front_ax_y2[1] + wheel_length * sin(theta + phi),
198 front_ax_y2[1] — wheel_length * sin(theta + phi)]
199 front_r_wl_yl = [front_ax_y1[0] + wheel_length x cos(theta + phi),
200 front_ax_yl[0] — wheel_length * cos(theta + phi)]
201 front_r_wl_y2 = [front_ax_y2[0] + wheel_length * sin(theta + phi),
202 front_ax_y2[0] — wheel_length * sin(theta + phi)]
203

204 # empty value (to disconnect points, define where no line should be plotted)
205 empty = [np.nan, np.nan]

206

207 # concatenate set of coordinates

208 data_yl = [rear_ax_yl, empty, front_ax_yl, empty, chassis_yl,

209 empty, rear_|_wl_yl, empty, rear_r_wl_yl,

210 empty, front_I|_wl_yl, empty, front_r_wl_yl]

211 data_y2 = [rear_ax_y2, empty, front_ax_y2, empty, chassis_y2,

212 empty, rear_|l_wl_y2, empty, rear_r_wl_y2,

213 empty, front_Il_wl_y2, empty, front_r_wl_y2]

214

215 # set data

216 h_car.set_data(data_yl, data_y2)

Note that draw_the_car is in the scope of the car_animation function and, hence, has
full access to the handle h_car defined there.

The init ()-function defines which objects change during the animation, in this case the

Python Control Tutorial Part 1

NN N

NN NN NN
STV R

NONNN NN N
O N N
w0

»

oo
[SLETNVC R RN

SIS

NONONN NN N NN
Ul Ol gl Ot Ot Ot Ot C
0w N O

7 Animation using Matplotlib Page 12

two axes the handles of which are returned:
def init():
"""|Initialize plot objects that change during animation.
Only required for blitting to give a clean slate.

Returns:

[IRIRT}

h_x_traj_plot.set_data([], [])
h_car.set_data ([]., [])
return h_x_traj_plot, h_car

The animate (i)-function assigns data to the changing objects (the car) trajectory plots
and the simulation time (as part of the axis):

def animate(i):
"""Defines what should be animated

Args:
i: frame number

Returns:

[IRTRT}

k=i % Ien(t)

ax.set_title(+ % t[k], loc=)
h_x_traj_plot.set_xdata(x[0:k, 0])
h_x_traj_plot.set_ydata(x[0:k, 1])

draw_the_car(x[k, :], control(t[k]))

return h_x_traj_plot, h_car

The main function creates a figure with two empty plots into which the car and the curve
of the trajectory depending on the state x, the control input u and the parameters are
plotted later:

Setup two empty axes with enough space around the trajectory so the car
can always be completely plotted. One plot holds the sketch of the car,
the other the curve

dx = 1.5 % p.|

dy = 1.5 % p.|

fig2, ax = plt.subplots()

ax.set_xlim ([min(min(x_traj[:, 0] — dx), —dx),
max(max(x_traj[:, 0] + dx), dx)])
ax.set_ylim ([min(min(x_traj[:, 1] — dy), —dy),
max(max(x_traj[:, 1] + dy), dy)])
ax.set_aspect()
ax.set_xlabel()
ax.set_ylabel()
Axis handles
h_x_traj_plot, = ax.plot ([]. [],) # state trajectory in the yl—y2—plane
h_car, = ax.plot([]., []. . lw=2) # car

The handles h_x_traj_plot and h_car are used to draw onto the axes.

Finally, an object of type FuncAnimation is instantiated. It takes the animate() and
init () functions as well as the figure handle as arguments in the constructor:

Python Control Tutorial Part 1

283
284
285
286

287

289
290
291
292
293
294
295
296
297
298
299

300

7 Animation using Matplotlib Page 13
ani = mpla.FuncAnimation(fig2, animate, init_func=init, frames=len(t) + 1,
interval=(t[1] — t[0]) = 1000,
blit=False)
ani.save(, writer= , fps=1 / (t[1] — t[0]))
Now the system can be simulated with animated results.
time vector
tt = np.arange(SimPara.t0, SimPara.tf + SimPara.dt, SimPara.dt)
initial state
x0 = [0, 0, 0]
simulation
sol = sci.solve_ivp(lambda t, x: ode(t, x, Para), (SimPara.t0, SimPara.tf), x0, t_eval=tt)

x_traj = sol.y.T
u_traj = control (tt)

plot
plot_data(x_traj, u_traj, tt, 12, 16, save=True)

animation
car_animation(x_traj, tt, Para)

plt.show()

Time (s): 4.0

2.5 4

2.0

1.5+

¥z

1.0 1

0.5

0.0 A

T T T T
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
Y1

Figure 3: Car animation

Python Control Tutorial Part 1

References Page 14

8 Time-Events

Source code file: 03_events.py

It is sometimes necessary to cancel the simulation, for example if the system is unstable
and the state gets very large in a short period of time. A function event (t,x) is defined,
that returns 0, if a certain condition is met. This is called a zero-crossing detection. The
solver detects the sign switch of event (t,x) while calculating the solution of the ODE.
def event(t, x):

""" Returns 0, if simulation should be terminated”"”

x_max = 5 # bound of the state variable x
return np.abs(x)—x_max

set the attribute 'terminal' of event, to stop the simulation, when zero—crossing is
detected .
event.terminal = True

simulate the system with event detection
sol = solve_ivp(lambda t, x: ode(x, t, para),
(t0, tf), x0, method= , t_eval=tt, events=event)

Glossary

IVP initial value problem. 3-5

ODE ordinary differential equation. 2-4, 12

References

[1] Carsten Knoll and Robert Heedt. Python fir Ingenieure fir Dummies: Mit vielen
Programmbeispielen zu Numpy, Matplotlib und mehr. Weinheim: Wiley-VCH, 2021.

Python Control Tutorial Part 1

	Introduction
	Kinematic model of a vehicle
	Libraries and Packages
	Storing parameters
	Simulation with SciPy's integrate package
	Implementation of the model
	Solution of the initial value problem using SciPy

	Plotting using Matplotlib
	Animation using Matplotlib
	Time-Events

