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1. Introduction

The goal of this tutorial is to teach the usage of the programming language Python as a
tool for developing and simulating control systems. The following topics are covered:

• Implementation of different trajectory generators in a Python class hierarchy,

• flatness based feedforward control

• flatness based feedback control.

Additionally, some aspects of object-oriented programming are covered as required to
solve the presented problems.

Later in this tutorial the trajectory generators are used to design control strategies for
the car model.

Please refer to the first part of this tutorial series addressing basic concepts for the
simulation of dynamic systems if you are not familiar with this [3]. It is available on
GitHub:

https://github.com/TUD-RST/pytutorials.

The book [1] is also recommended (in German only).

2. Trajectories for smooth point-to-point transitions

In control theory, a common task is to transfer a system quantity from an initial value
yA at time t0 to a new value yB at time tf . The boundary conditions at t0 and tf are
a crucial part in the planning of such transfers. For example, if y denotes a position
coordinate and a simple trapezoidal interpolation in time between the two points yA and
yB is used, the value of the acceleration ÿ at t0 and tf would approach infinity. This
cannot be fulfilled by any real system due to its inertia. That is why, when a point-to-
point transition is planned, the derivative of the planned trajectory has to be smooth
up to a certain degree. Figure 1 shows an example of a ”smooth” trajectory.

Mathematically, the trajectory for a scalar quantity y can be described by a function fy
with fy : R → R. This function maps the domain of definition R onto the co-domain
R. This means that the function fy maps each time point t ∈ R in a certain way to a
value fy(t) ∈ R. Usually this is denoted by t 7→ fy(t). It is quite annoying to denote
trajectories as t 7→ fy(t) accompanied by the formal definition of a function fy. Hence,
as a shortcut, one simply writes y = fy(t) although – literally speaking – this notion
just denotes the value of fy at time t. Especially in engineering science an even shorter
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Figure 1: Smooth state transition of a quantity y from yA to yB on the time interval
tf − t0.

notion is very common: One writes y(t) instead of t 7→ fy(t). This notion will be used
in this tutorial, too.

2.1. Polynomials

A simple way of defining a trajectory which realizes a smooth transfer between two
values on the time interval tf − t0 and which is d times continuously differentiable is the
pieceewise definition of a function yd(t) as follows:

yd(t) =



yA if t < t0

2d+1∑
i=0

ci
ti

i!
if t ∈ [t0, tf ]

yB if t > tf

(2.1)

with a polynomial

yd(t) =
2d+1∑
i=0

ci
ti

i!
= c0 + c1t+

c2
2
t2 +

c3
6
t3 + . . .+

c2d+1

(2d+ 1)!
t2d+1 (2.2)

of degree 2d + 1 which is evaluated on the interval [t0, t1] only. Here, 2d + 2 boundary
conditions for the determination of the coefficients c0, . . . , c2d+1 need to be fulfilled at
t = t0 and t = tf (d+ 1 at each one).

Python Control Tutorial Part 2
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For t ∈ [t0, tf ] yd(t) and its successive derivatives up to order d can be written down in
matrix form:


yd(t)
ẏd(t)

...
y
(d−1)
d (t)

y
(d)
d (t)


︸ ︷︷ ︸
=:Yd(t)∈R(d+1)

=



1 t t2

2!
. . . t2d+1

(2d+1)!

0 1 t . . . t2d

(2d)!

0 0 1 . . . t2d−1

(2d−1)!

... . . . . . . ...

0 . . . . . . 0 1 . . . td

(d)!


︸ ︷︷ ︸

=:T(t) ∈ R(d+1)×(2d+2)



c0
c1
...

c2d−1

c2d
c2d+1


︸ ︷︷ ︸
=:c∈R(2d+2)

. (2.3)

To calculate the parameter vector c, the boundary conditions of the trajectory at t0 and
tf have to be defined up to degree d:

yd(t0)
ẏd(t0)

...
y
(d)
d (t0)


︸ ︷︷ ︸

:=Yd(t0)

!
=


yA

ẏA

...
y(d)A


︸ ︷︷ ︸

:=YA

,


yd(tf )
ẏd(tf )

...
y
(d)
d (tf )


︸ ︷︷ ︸

:=Yd(tf )

!
=


yB

ẏB

...
y(d)B


︸ ︷︷ ︸

:=YB

.

This leads to a linear equation system:[
Yd(t0)
Yd(tf )

]
=

[
YA

YB

]
=

[
T(t0)
T(tf )

]
c.

Because
[
T(t0)
T(tf )

]
is quadratic and not singular for t0 6= tf , this linear equation system

can be solved explicitly:

c =

[
T(t0)
T(tf )

]−1 [
YA

YB

]
. (2.4)

Because the calculation of the inverse matrix is computationally expensive one is strongly
advised to use a more efficient linear equation system solver, like linalg . solve () from
NumPy, to solve for the vector c.

Yd(t) can be calculated in a closed form:

Yd(t) = T(t)c t ∈ [t0, tf ] (2.5)

The full trajectory can be computed by evaluating Equation 2.1.

Python Control Tutorial Part 2
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Remark: Computational effort can be reduced if all derivates at t0 and tf are zero
(steady state transfer). Then, one can formulate Equation 2.1 as

yd(t) =



yA if t < t0

2d+1∑
i=0

ci
(t− t0)

i

i!
if t ∈ [t0, tf ]

yB if t > tf

(2.6)

Evaluating the boundary conditions at t0 one observes c0 = yd(t0) and c1, . . . , cd+1 = 0.
Then, the remaining coefficients cd+2, . . . , c2d+2 can be computed from cd+2

...
c2d+2

 = T−1
d+1×d+1(tf )Y

B (2.7)

where Td+1×d+1 is the quadratic lower right block matrix of Equation 2.3 evaluated at
t = tf − t0.

2.2. Polynomials using a prototype function

A slightly different approach for a polynomial reference trajectory yd(t) is again a
pieceewise-defined function:

yd(t) =


yA if t < t0

yA + (yB − yA)ϕγ

(
t−t0
tf−t0

)
if t ∈ [t0, tf ]

yB if t > tf

(2.8)

with a prototype function τ → ϕγ(τ). The parameter γ denotes how often ϕγ(τ) is
continuously differentiable. The prototype function meets the following boundary con-
ditions:

ϕγ(0) = 0 ϕ(j)
γ (0) = 0 j = 1, ..., γ, (2.9)

ϕγ(1) = 1 ϕ(j)
γ (1) = 0 j = 1, ..., γ, (2.10)

and is given by

ϕγ(τ) =
(2γ + 1)!

(γ!)2

γ∑
k=0

(
γ

k

)
(−1)kτ γ+k+1

(γ + k + 1)
(2.11)

Python Control Tutorial Part 2
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with its nth derivative as

ϕ(n)
γ (τ) =

(2γ + 1)!

(γ!)2

γ∑
k=0

((
γ

k

)
(−1)kτ γ+k−n+1

(γ + k + 1)

n∏
i=1

(γ + k − i+ 2)

)
. (2.12)

Note that the argument t−t0
tf−t0

in Equation 2.8 runs from 0 to 1 on the definition interval,
indeed!.

The expression for the polynomial prototype is derived in Appendix A.

2.3. Gevrey functions

Gevrey functions can come into play when you need to do trajectory planning for the
control of infinite dimensional systems (e.g. systems with spatially distributed parame-
ters). One type of such a function is provided by the trajectory generator class. Refer
to Appendix B for more details.

3. Implementing trajectory generators in Python

In order to automate the process of trajectory planning at first a trajectory generator
base class is implemented. Then a new subclass for each new planning algorithm is
created.

Python Source code file: TrajGen.py

3.1. The trajectory generator base class

A trajectory generator class realizing the smooth transfer from yA to yB on the interval
[t0, tf ] should have the following attributes:

YA - vector of y and it’s derivatives up to order d at start time t0

YB - vector of y and it’s derivatives up to order d at final time tf

t0 - start time of the point-to-point transition

tf - final time of the point-to-point transition

d - planned trajectory should be smooth up to the d-th derivative

Python Control Tutorial Part 2
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The planned trajectory has to be evaluated at runtime, but the implementation of this
feature should be defined in the specific subclass depending on the algorithm. Therefore,
we define a base class TrajGenBase from which the several types of trajectory generator
implementations need to be derived. By using an abstract base class method, we force a
subclass of TrajGenBase to provide the methods eval() and eval_vec() for evaluation of
the trajectory at a single point or for a series of points stored in an array-like container,
respectively. For this purpose we need to import the abc module and need to derive the
base class from the ABC class:

2 import numpy as np
3 import s c i py . s p e c i a l as sps
4 import abc # abs t rac t base c l a s s
5
6
7 c l a s s TrajGen ( abc .ABC) :
8 ””” Base c l a s s f o r a t r a j e c t o r y generator .
9

10 At t r i bu t e s :
11 y_a ( int , f l o a t , ndarray ) : s t a r t va lue ( s i z e = d+1)
12 y_b ( int , f l o a t , ndarray ) : f i n a l va lue ( s i z e = d+1)
13 t_0 ( int , f l o a t ) : s t a r t time
14 t_f ( int , f l o a t ) : f i n a l time
15 d ( i n t ) : t r a j e c t o r y i s smooth up at l e a s t to the d−th d e r i v a t i v e
16 ”””
17
18 def __init__ ( s e l f , y_a , y_b , t_0 , t_f , d) :
19 s e l f .YA = y_a
20 s e l f .YB = y_b
21 s e l f . t0 = t_0
22 s e l f . t f = t_f
23 s e l f . d = d
24
25 @abc . abstractmethod
26 def eva l ( s e l f , t ) :
27 pass
28
29 @abc . abstractmethod
30 def eval_vec ( s e l f , t ) :
31 pass

Note that any class derived from TrajGenBase needs to implement the methods decorated
by @abstractmethod, otherwise a TypeError exception will be thrown when they are
instantiated.

Note the special method factorial defined in the base class:
35 @classmethod
36 def f a c t o r i a l ( c l s , x ) :
37 ””” Ca l cua l t e s the f a c u l t y of x”””
38 r e s u l t = 1
39 f o r i i n range (2 , x + 1) :
40 r e s u l t ∗= i
41 return r e s u l t

It is used for calculation of the factorial x! of an integer x. Since it does not depend
on any member variables it is defined as a class method. Class methods can be called

Python Control Tutorial Part 2
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without instantiation of a class, and they have only access to class attributes (defined
outside __init__)1. It is implemented here for didactic purposes only. Usually you
would use factorial from the math or scipy . special module.

3.2. The PolynomialTrajGen subclass

To implement the planning algorithm that was developed in subsection 2.1, a new class
PolynomialTrajGen is created that inherits from the previously defined class TrajGenBase.
All the attributes and methods of TrajGenBase are now also attributes and methods of
PolynomialTrajGen. We define an additional attribute c holding the vector of coefficients
of Equation 2.1:

46 c l a s s PolynomialTrajGen ( TrajGen ) :
47 ””” TrajGen subc l a s s that uses a polynomia l approach f o r t r a j e c t o r y generat ion
48
49 At t r i bu t e s :
50 c ( ndarray ) : parameter vecto r of polynomia l
51
52 ”””
53 def __init__ ( s e l f , y_a , y_b , t_0 , t_f , d) :
54 super ( ) . __init__ (y_a , y_b , t_0 , t_f , d)
55 s e l f . c = s e l f . c o e f f i c i e n t s ()

The built-in function super() tells the interpreter to call the constructor of the parent
class of PolynomialTrajGen. As the code in __init__ shows the coefficients are calculated.
This is explained in the following.

To solve for the parameter vector c, the matrix T(t) from Equation 2.3 is calculated
and a method t_matrix() is therefore created:

95 def t_matrix ( s e l f , t ) :
96 ”””Computes the T matr ix at time t
97
98 Args :
99 t ( int , f l o a t ) : time

100
101 Returns :
102 t_mat ( ndarray ) : T matr ix
103
104 ”””
105
106 d = s e l f . d
107 n = d+1 # f i r s t dimension of T
108 m = 2∗d+2 # second dimension of T
109
110 t_mat = np . ze ros ( [ n , m] )
111
112 f o r i i n range (0 , m) :
113 t_mat [0 , i ] = t ∗∗ i / s e l f . f a c t o r i a l ( i )
114 f o r j i n range (1 , n) :
115 t_mat [ j , j :m] = t_mat [0 , 0 :m−j ]
116 return t_mat

1In C++ and Java such methods are named static.

Python Control Tutorial Part 2
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Of course, this could be done more efficiently in a recursive way (try it!). Then, a
method, that solves Equation 2.4 and returns the parameter vector c is needed:

120 def c o e f f i c i e n t s ( s e l f ) :
121 ””” Ca l cu l a t i on of the polynomia l parameter vecto r
122
123 Returns :
124 c ( ndarray ) : parameter vecto r of the polynomia l
125
126 ”””
127 t0 = s e l f . t0
128 t f = s e l f . t f
129
130 y = np . append ( s e l f .YA, s e l f .YB)
131
132 t0_mat = s e l f . t_matrix ( t0 )
133 tf_mat = s e l f . t_matrix ( t f )
134
135 t_mat = np . append (t0_mat , tf_mat , a x i s =0)
136
137 # s o l v e the l i n e a r equat ion system f o r c
138 c = np . l i n a l g . s o l v e (t_mat , y )
139
140 return c

Finally a method eval() that implements Equation 2.5 is defined:
59 def eva l ( s e l f , t ) :
60 ””” Eva luates the planned t r a j e c t o r y at time t .
61
62 Args :
63 t ( int , f l o a t ) : time
64
65 Returns :
66 y ( ndarray ) : y and i t s d e r i v a t i v e s at t
67 ”””
68 i f t < s e l f . t0 :
69 y = s e l f .YA
70 e l i f t > s e l f . t f :
71 y = s e l f .YB
72 e l s e :
73 y = np . dot ( s e l f . t_matrix ( t ) , s e l f . c )
74 return y

Furthermore, a second method eval_vec() is implemented, that can handle a time array
as an input:

78 def eval_vec ( s e l f , t t ) :
79 ””” Samples the planned t r a j e c t o r y
80
81 Args :
82 t t ( ndarray ) : time vecto r
83
84 Returns :
85 y ( ndarray ) : y and i t s d e r i v a t i v e s at the sample po in t s
86
87 ”””
88 y = np . ze ros ( [ l en ( t t ) , l en ( s e l f .YA) ] )
89 f o r i i n range (0 , l en ( t t ) ) :
90 y [ i ] = s e l f . eva l ( t t [ i ] )
91 return y

Python Control Tutorial Part 2
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The polynomial trajectory generator is now successfully implemented and can be tested.

Example:

Python source code file: 01_trajectory_planning.py

Suppose a trajectory from y(t0) = 0 to y(tf ) = 1 with t0 = 1s and tf = 2s has to be
planned. The trajectory should be smoothly differentiable twice (d = 2). Therefore, the
boundary conditions for the first and second derivative of y have to be defined:

ẏ(t0) = 0 ẏ(tf ) = 0

ÿ(t0) = 0 ÿ(tf ) = 0

The total time interval for the evaluation of the trajectory is t ∈ [0s, 3s].

At first the boundary conditions for t = t0 and t = tf are set:
8 YA = np . a r ray ( [ 0 , 0 , 0 ] ) # t = t0
9 YB = np . a r ray ( [ 1 , 0 , 0 ] ) # t = t f

After that the start and final time of the transition and the total time interval:
13 t0 = 0 # s t a r t time of t r a n s i t i o n
14 t f = 1 # f i n a l time of t r a n s i t i o n
15 t t = np . l i n s p a c e ( t0 , t f , 100) # −1 to 4 in 500 s teps

Then d is set and a PolynomialTrajGen instance yd with the defined parameters is cre-
ated.

19 d = 2 # smooth d e r i v a t i v e up to order d
20 yd = PolynomialTrajGen (YA, YB, t0 , t f , d)

The calculated parameters can be displayed
24 p r i n t ( ”c = ” , yd . c )

and the generated trajectory at the defined total time interval can be evaluated
28 Y = yd . eval_vec ( t t )

At last, the results are plotted.
28 Y = yd . eval_vec ( t t )
29
30 # plo t the t r a j e c t o r y
31 p l t . f i g u r e (1)
32 p l t . p l o t ( tt , Y)
33 p l t . t i t l e ( ’ Planned t r a j e c t o r y ’ )
34 p l t . legend ( [ r ’$y_d( t )$ ’ , r ’ $\dot{y}_d( t )$ ’ , r ’ $\ddot{y}_d( t )$ ’ ] )
35 p l t . x l a b e l ( r ’ t i n s ’ )
36 p l t . g r i d ( True )

Python Control Tutorial Part 2
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0.0 0.5 1.0 1.5 2.0 2.5 3.0
t in s

6

4

2

0

2

4

6

y(
t)

Planned trajectory
yd(t)
yd(t)
yd(t)

3.3. The PrototypeTrajGen subclass

Python Source code file: TrajGen.py

The implementation can be found in the source code file. It is not detailed here since it
is similar to the PolynomialTrajGen.

4. Feedforward control design

Python Source code file: 02_car_feedforward_control.py

Recapture the model of the car from tutorial 1 [3], parameterized in time t:

ẏ1 = v cos(θ) (4.1a)
ẏ2 = v sin(θ) (4.1b)

θ̇ =
v

l
tan(ϕ). (4.1c)

4.1. Re-parameterization of the model

The model of the car has to be parameterized in arc length s to take care of singularities
that would appear in steady-state (v = 0).

Python Control Tutorial Part 2



4. Feedforward control design Page 13

The following can be assumed:

d

dt
=

d

dt

ds

ds
=

d

ds

ds

dt
=

d

ds
ṡ.

Replacing d
dt

in the model equations leads to:

d

ds
ṡy1 = v cos(θ) (4.2a)

d

ds
ṡy2 = v sin(θ) (4.2b)

d

ds
ṡθ =

v

l
tan(ϕ) (4.2c)

v = |ẏ| =
√

ẏ21 + ẏ22. (4.3)

This equation is parameterized in s:2

v =

√
(
d

ds
ṡy1)2 + (

d

ds
ṡy2)2 = ṡ

√
(y′1)

2 + (y′2)
2. (4.4)

If s is the arc length, the Pythagorean theorem ds2 = dy21 + dy22 leads to:

1 =

(
dy1
ds

)2

+

(
dy2
ds

)2

(4.5a)

⇔ 1 =
√
(y′1)

2 + (y′2)
2. (4.5b)

Therefore, v = ṡ. The system parameterized in s is given by:

y′1 = cos(θ) (4.6a)
y′2 = sin(θ) (4.6b)

θ′ =
1

l
tan(ϕ). (4.6c)

4.2. Deriving feedforward control laws

Goal: Drive the car in the y1-y2-plane from a point (y1A, y2A) to a point (y1B, y2B) in
time T = tf − t0. The car should be in rest at the beginning and at the end of the
process and the trajectory is defined by a sufficiently smooth function f : R → R with
y2 = f(y1). Note that (y1, y2) is a flat output of the system.

2Assuming ṡ > 0
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Step 1: Calculate the dependency of the remaining system variables θ and ϕ of the
length parameterized system on (y1, y2):

tan(θ) =
y′2
y′1

=
dy2
dy1

= f ′(y1) (4.7)

(1 + tan2(θ))
dθ
dy1

= f ′′(y1)

⇔ dθ
dy1

=
f ′′(y1)

1 + (f ′(y1))2
=

θ′

y′1
.

With (y′1)
2 + (y′2)

2 = 1 ⇔ y′1 = 1/
√

1 + (f ′(y1))2 one obtains:

⇔ θ′ =
f ′′(y1)

(1 + (f ′(y1))2)
3/2

(4.8)

tan(ϕ) = lθ′ =
lf ′′(y1)

(1 + (f ′(y1))2)
3/2

. (4.9)

Result: Depending on the planning y2 = f(y1) the required steering angle can be calcu-
lated solely from y1 and derivatives of f w.r.t. y1 up to order 2. The planned trajectory
has to fulfill the following boundary conditions:

f(y1A) = y2A f(y1B) = y2B

f ′(y1A) = tan(θA) f ′(y1B) = tan(θB)

f ′′(y1A) = (1 + tan2(θA))

( 1
l
tan(ϕA)

cos(θA)

)
f ′′(y1B) = (1 + tan2(θB))

( 1
l
tan(ϕB)

cos(θB)

)
.

By always setting ϕA = ϕB = 0, these conditions simplify to:

f ′′(y1A) = 0 f ′′(y1B) = 0

Step 2: Calculation of the required velocity v. Another function g : R → R is defined,
with y1 = g(t) and g(t0) = y1A, ġ(t0) = 0, g(tf ) = y1B, ġ(tf ) = 0.

v =
√

ẏ21 + ẏ22 = ẏ1
√

1 + (f ′(y1))2 = ġ(t)
√

1 + (f ′(g(t)))2 (4.10)

Hence, the overall, time parameterized feedforward control reads:

v(t) = ġ(t)
√
1 + (f ′(g(t)))2 (4.11a)

ϕ(t) = arctan

(
lf ′′(g(t))

(1 + (f ′(g(t)))2)3/2

)
(4.11b)
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Or expressed in s:

v(s) = ṡ
√

y′22 + y′21 (4.12a)

ϕ(s) = arctan

(
l
y′′2y

′
1 − y′′1y

′
2

(y′21 + y′22 )
3
2

)
= arctan (l(y′′2y

′
1 − y′′1y

′
2)) (4.12b)

If polynomials are chosen for the two functions f and g it has to be ensured that f is of
order 3 and g of order 2 to make sure the control law is smooth. The resulting f(g) is
of order 5.

4.3. Implementation

For the implementation of the controller, the polynomial trajectory generator from sub-
section 3.2 is used. At first all necessary simulation parameters are defined:

30 @datac lass
31 c l a s s SimPara :
32 t0 : f l o a t = 0 # s t a r t time
33 t f : f l o a t = 10 # f i n a l time
34 dt : f l o a t = 0.04 # step−s i z e
35 t t = np . arange (0 , t f + dt , dt ) # time vecto r
36 x0 = [0 , 0 , 0 ] # i n i t a l s t a t e at t0
37 x f = [5 , 5 , 0 ] # f i n a l s t a t e at t f

We define a function which sets up the trajectory generator objects for trajectory gen-
eration:

42 def s e t u p _ t r a j e c t o r i e s ( sp : Type [ SimPara ] ) −> L i s t [ PolynomialTrajGen ] :
43 ””” Setup the t r a j e c t o r y ob j e c t s
44
45 Args :
46 sp : Object of the SimPara
47
48 Returns :
49 A l i s t ho ld ing two ob j e c t s of type PolynomialTrajGen . The f i r s t
50 one i s f , the second g .
51
52 ”””
53
54 # Star t and f i n a l time of t r a n s i s t i o n
55 t0 : f l o a t = sp . t0 + 1
56 t f : f l o a t = sp . t f − 1
57
58 # boundary cond i t i on s f o r y1
59 y1_a = np . a r ray ( [ sp . x0 [ 0 ] , 0 ] )
60 y1_b = np . a r ray ( [ sp . x f [ 0 ] , 0 ] )
61
62 # boundary cond i t i on s f o r y2
63 y2_a = np . a r ray ( [ sp . x0 [ 1 ] , tan ( sp . x0 [ 2 ] ) , 0 ] )
64 y2_b = np . a r ray ( [ sp . x f [ 1 ] , tan ( sp . x f [ 2 ] ) , 0 ] )
65
66 # From Y2A to Y2B on the i n t e r v a l [Y1A[ 0 ] , Y1B [ 0 ] ]
67 f _ t r a j = PolynomialTrajGen (y2_a , y2_b , y1_a [ 0 ] , y1_b [ 0 ] , 2)
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68
69 # from Y1A to Y1B on the i n t e r v a l [ t0 , t f ]
70 g_tra j = PolynomialTrajGen (y1_a , y1_b , t0 , t f , 1)
71
72 return [ f_t ra j , g_tra j ]

Note, that we added type annotations here for the argument sp and the return value.
This is optional. However, it is recommended since it improves static code analysis and
IntelliSense features in your IDE. You need to import the typing module to use it for
user defined types, lists and other complex data types. More information about type
hints...

Within the right-hand side of the system differential equation the feedforward control
law (4.11) needs to be evaluated. Hence, it needs to be implemented:

100 def con t ro l ( t , p : Type [ Para ] ) :
101 ””” Function of the con t ro l law
102
103 Args :
104 t ( i n t ) : time
105 p ( ob jec t ) : parameter conta ine r c l a s s
106
107 Returns :
108 u ( ndarry ) : con t ro l vec to r
109
110 ”””
111
112 # eva luate the planned t r a j e c t o r i e s at time t
113 g_t = g_traj_gen . eva l ( t ) # y1 = g( t )
114 f_y1 = f_traj_gen . eva l (g_t [ 0 ] ) # y2 = f ( y1 ) = f (g( t ) )
115
116 # s e t t i n g con t ro l laws
117 u1 = g_t [ 1 ] ∗ np . sq r t (1 + f_y1 [1 ]∗∗2)
118 u2 = arctan2 (p . l ∗f_y1 [ 2 ] , (1 + f_y1 [1 ]∗∗2) ∗∗(3/2) )
119
120 return np . a r ray ( [ u1 , u2 ] ) .T

Now, the global trajectory objects can be instantiated and simulation can be executed
as usual:

326 # Setup the t r a j e c t o r i e s , we hold i t as g l oba l ob j e c t s here
327 [ f_traj_gen , g_traj_gen ] = s e t u p _ t r a j e c t o r i e s ( SimPara )
328
329 # simu la t i on
330 s o l = s c i . so lve_ivp ( lambda t , x : ode (x , t , Para ) , ( SimPara . t0 , SimPara . t f ) , SimPara . x0 ,
331 method=’RK45 ’ , t_eval=SimPara . t t )

The results can be extracted by:
333 x_tra j = s o l . y .T # s i z e ( s o l . y ) = len ( x )∗ l en ( t t ) ( .T −> transpose )

To get the control vector one has to evaluate control () with the simulated trajectory
again:

336 u_tra j = np . ze ros ( [ l en ( SimPara . t t ) , 2 ] )
337 f o r i i n range (0 , l en ( SimPara . t t ) ) :
338 u_tra j [ i ] = con t ro l ( SimPara . t t [ i ] , Para )
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Because control () works only for scalar time values, this has to be done in a for-loop.
This is a bit annoying, but there is no alternative. It is impossible to store the control
values when they are calculated within the right-hand side of the differential equation.
The reason is that it is usually called by a variable step solver which evaluates it multiple
times between the required time steps.

Plotting the simulation results and the reference trajectories:
343 y1D = g_traj_gen . eval_vec ( SimPara . t t )
344 y2D = f_traj_gen . eval_vec (y1D [ : , 0 ] )
345
346 x_ref = np . z e r o s _ l i k e ( x_tra j )
347 x_ref [ : , 0 ] = y1D [ : , 0 ]
348 x_ref [ : , 1 ] = y2D [ : , 0 ]
349 x_ref [ : , 2 ] = arctan (y2D [ : , 1 ] )
350
351 # Plot r e s u l t s
352 plot_data ( x_traj , x_ref , u_traj , SimPara . tt , 12 , 16 , save=True )
353
354 # animation
355 car_animation ( x_traj , u_traj , SimPara . tt , Para )
356
357 p l t . show ()

Compared to the previous example plot_data() was adopted to also plot x_ref.

Exercise: Modify the parameter l in the control function, e.g. to 80 % of its real value.
You will see that the feedforward control will drive the car to the wrong final position –
as expected, since no information about the real behavior of the car is fed back.

4.3.1. Result

As an example, the transition from (0, 0, 0) to (5, 5, 0), starting at t = 1s ending at
t = 9s is shown in Figure 3. The whole simulation time interval goes from t = 0s to
t = 10s. The animation shows the behavior of the car in the plane:
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Figure 2: Smooth state transition from yA to yB in the plane
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Figure 3: Feedforward control without model errors
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5. Feedback control design

Source code file: 03_car_feedback_control.py

In section 4 the controller acts on the exact same system as it was designed for, but in
the real world, model errors are inevitable, and a feedforward control is not sufficient.
Assuming the length of the car in the controller l̃ differs from the real car length l by
a factor of 0.9, the feedforward control of subsubsection 4.3.1 will show a bad perfor-
mance.

5.1. Deriving feedback control laws

To account for model errors, a feedback controller has to be designed to fulfill the objec-
tive. This is done by a feedback linearization. The linearization is done by introducing
new inputs w1 and w2:

w1 = y′1 w2 = y′′2 . (5.1)

This leads the linear system shown in Figure 4. The tracking error e is defined as:

Figure 4: Block diagram of the linearized system

ei = yi − yi,d i = 1, 2. (5.2)

A differential equation for the error term can be defined:

0 = e′′i + k1ie
′
i + k0iei i = 1, 2 k0i, k1i ∈ R+. (5.3)

Substituting Equation 5.1 and Equation 5.2 in Equation 5.3 leads to:

w1 = y′1,d − k01(y1 − y1,d) (5.4a)
w2 = y′′2,d − k02(y

′
2 − y′2,d)− k02(y2 − y2,d). (5.4b)

These equations are substituted into Equation 4.12 to obtain the feedback control law:
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Figure 5: Block diagram of the feedback system

v(s) = ṡd

√
w2

1 + y′22 (5.5a)

ϕ(s) = arctan (l(w2w1 − y′′1y
′
2)) (5.5b)

where ṡd is the desired velocity and y′′1 = 0. To re-parametrize these control laws in
time, the desired trajectories are expressed in f and g:

y1,d = g(t) y2,d = f(g(t))

y′1,d =
1√

1 + (f ′(g(t)))2
y′2,d =

f ′(g(t))√
1 + (f ′(g(t)))2

ṡd = vd(t) = ġ(t)
√

1 + (f ′(g(t)))2 y′′2,d =
f ′′(g(t))

1 + (f ′(g(t)))2
.

5.2. Implementation

To implement the controller, at first the controller parameters are defined:
29 @datac lass
30 c l a s s Cont ro l l e rPara :
31 k01 : f l o a t = 3
32 k02 : f l o a t = 2
33 k12 : f l o a t = 10
34 l : f l o a t = 0.5 ∗ PhysPara . l

Python Control Tutorial Part 2



5. Feedback control design Page 22

The controller parameters have to be hand tuned and must be at least > 0 for the
system to be stable. In order to test the performance of the controller with respect to
parameter uncertainties the real car length can be scaled, so a disturbed value is used
in the control law.

The simulation parameter data class is extended by an attribute defining the real initial
state of the car which might be different from what is planned:

40 @datac lass
41 c l a s s SimPara :
42 t0 : f l o a t = 0 # s t a r t time
43 t f : f l o a t = 10 # f i n a l time
44 dt : f l o a t = 0.04 # step−s i z e
45 t t = np . arange (0 , t f + dt , dt ) # time vecto r
46 x0d = [0 , 0 , 0 ] # r e f e r e n c e i n i t a l s t a t e at t0
47 xfd = [5 , 5 , 0 ] # r e f e r e n c e f i n a l s t a t e at t f
48 x0 r ea l = [0 .25 , 0 .5 , 0 .25 ] # r e a l i n i t a l s t a t e at t0

Within the control law
110 def con t ro l (x , t , p : Type [ Cont ro l l e rPara ] ) :
111 ””” Function of the con t ro l law
112
113 Args :
114 x ( ndarray , i n t ) : s t a t e vecto r
115 t ( i n t ) : time
116 p ( Cont ro l l e rPara ) : Parameter
117
118 Returns :
119 u ( ndarry ) : con t ro l vec to r
120
121 ”””

the desired trajectories f and g are given in the objects f_traj_gen and g_traj_gen which
are evaluated at the given time t and then further processed:

132 # r e f e r e n c e t r a j e c t o r i e s yd , yd ’ , yd ’ ’
133 # eva luate the planned t r a j e c t o r i e s at time t
134 g_t = g_traj_gen . eva l ( t ) # y1 = g( t )
135 f_y1 = f_traj_gen . eva l (g_t [ 0 ] ) # y2 = f ( y1 ) = f (g( t ) )
136
137 y1d = g_t [ 0 ]
138 dy1d = 1/(np . sq r t (1 + f_y1 [ 1 ] ∗∗ 2) )
139
140 y2d = f_y1 [ 0 ]
141 dy2d = f_y1 [ 1 ] / ( np . sq r t (1 + f_y1 [ 1 ] ∗∗ 2) )
142 ddy2d = f_y1 [2 ] / (1 + f_y1 [ 1 ] ∗∗ 2)

Afterwards w1 and w2 are set:
146 # s t a b i l i z i n g input s
147 w1 = dy1d − p . k01 ∗ ( y1 − y1d )
148 w2 = ddy2d − p . k12 ∗ ( dy2 − dy2d ) − p . k02 ∗ ( y2 − y2d )

In the final step, the control laws are calculated and returned from the function:
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152 # cont ro l laws
153 ds = g_t [ 1 ] ∗ np . sq r t (1 + ( f_y1 [ 1 ] ) ∗∗ 2) # d e s i r e d v e l o c i t y
154 u1 = ds∗np . sq r t (w1∗∗2+dy2∗∗2)
155 u2 = arctan2 (p . l ∗ (w2 ∗ w1) , 1)
156
157 return np . a r ray ( [ u1 , u2 ] ) .T

5.2.1. Result

The exercise from subsubsection 4.3.1 is repeated, but now using the feedback controller
instead. As it can be seen in Figure 7 the control objective of following the planned
trajectory succeeded, even with model errors.
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Figure 6: Feedforward control for l̃ = 0.9l. The car does not end up in the correct
position.
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Figure 7: Feedback control for l̃ = 0.9l. The car successfully reaches the planned final
position.
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Appendices

A. The prototype polynomial

ϕγ(0) = 0 ϕ(j)
γ (0) = 0 j = 1, ..., γ (A.1a)

ϕγ(1) = 1 ϕ(j)
γ (1) = 0 j = 1, ..., γ (A.1b)

An approach for the derivative of ϕγ(τ), which meets the conditions Equation A.1 is:

dϕγ(τ)

dτ
= α

τ γ

γ!

(1− τ)γ

γ!
(A.2)

Integration leads to:

ϕγ(τ) = α

∫ τ

0

τ̃ γ

γ!

(1− τ̃)γ

γ!
dτ̃ (A.3)

After γ partial integrations we get:

ϕγ(τ) =
α

(γ!)2

γ∑
k=0

(
γ

k

)
(−1)kτ γ+k+1

(γ + k + 1)

To solve for the unknown α, the condition ϕγ(1)
!
= 1 is used:

ϕγ(1) =
α

(γ!)2

γ∑
k=0

(
γ

k

)
(−1)k

(γ + k + 1)
!
= 1

⇔ α = (2γ + 1)!

Finally the prototype function is defined as:

ϕγ(τ) =
(2γ + 1)!

(γ!)2

γ∑
k=0

(
γ

k

)
(−1)kτ γ+k+1

(γ + k + 1)
(A.4)

and it’s n-th derivative:

ϕ(n)
γ (τ) =

(2γ + 1)!

(γ!)2

γ∑
k=0

((
γ

k

)
(−1)kτ γ+k−n+1

(γ + k + 1)

n∏
i=1

(γ + k − i+ 2)

)
(A.5)

In the last step the n-th derivative of Equation 2.8 (n = 1, ..., γ) is derived.

y
(n)
d (t) =


0 if t < t0
(yB−yA)
(tf−t0)n

ϕ
(n)
γ

(
t−t0
tf−t0

)
if t ∈ [t0, tf ]

0 if t > tf

(A.6)
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B. Trajectory generator based on a Gevrey function

It is sometimes necessary, that a planned trajectory is infinitely differentiable3. A poly-
nomial approach cannot be used in this case, because an infinite number of parameters
is needed to construct such a polynomial. One approach to deal with this problem is to
use Gevrey functions instead [2].

yd(t) =


yA if t < t0

yA + (yB − yA)ϕσ

(
t−t0
tf−t0

)
if t ∈ [t0, tf ]

yB if t > tf

B.1. Definition

A function ϕ : [0, T ] → R the derivatives of which are bounded on the interval [0, T ]
by

sup
t∈[0,T ]

∣∣ϕ(k)(t)
∣∣ ≤ m

(k!)α

γk
, with α, γ,m, t ∈ R, k ≥ 0 (B.1)

is called a Gevrey function of order α on [0, T ]. Here we deal with the Gevrey function
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, T(t)

= 1.1
= 1.9

Figure 8: Plot of function ϕσ,T and its first derivative for different parameters.

ϕσ (τ) =
1

2

(
1 + tanh

(
2(2τ − 1)

(4τ(1− τ))σ

))
(B.2)

3For example in infinite dimensional systems control.
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which is based on the hyperbolic tangent. Some example plots of this function and
its derivatives are given in Figure 8. The parameter σ influences the steepness of the
transition, for τ = t

T
, T defines the length of the interval where the transition takes

place. The order α is given by α = 1 + 1/σ.

The function is not analytic in t = 0(τ = 0) and t = T (τ = 1), all of its derivatives are
zero in these points.

B.2. Efficient calculation of derivatives

Problem: Find an algorithm which calculates all derivatives of

y := tanh

(
2(2τ − 1)

(4τ(1− τ))σ

)
(B.3)

efficiently.

Equation B.3 can be written as

y = tanh(ȧ), a =
(4τ(1− τ))1−σ

2(σ − 1)
. (B.4)

At first, we assume that all derivatives a(n), n ≥ 0 are known, and we show that an
iteration formula can be given for y(n).

Differentiating Equation B.4 leads to

ẏ = ä(1− tanh2(ȧ)) = ä(1− y2). (B.5)

Introducing the new variable
z := (1− y2), (B.6)

and differentiating Equation B.5 (n− 1) times gives

y(n) =
n−1∑
k=0

(
n−1
k

)
a(k+2)z(n−1−k). (B.7)

Problem: In Equation B.7 derivatives of z up to order (n− 1) are needed. These can
be obtained by differentiating Equation B.6 (n− 1) times:

z(n−1) = −
n−1∑
k=0

(
n−1
k

)
y(k)y(n−1−k).
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Inspecting Equation B.7 one finds that an iteration formula for the derivatives of a is
missing. Using Equation B.4 one gets

ȧ =
2(2τ − 1)

(4τ(1− τ))−σ
=

(2τ − 1)(σ − 1)

τ(1− τ)
a.

Multiply this with τ(1− τ) and differentiate it (n− 1) times:
n−1∑
k=0

(
n−1
k

)
a(n−k) d

k

dtk
(τ(1− τ)) = (σ − 1)

n−1∑
k=0

(
n−1
k

)
a(n−k−1) d

k

dtk
(2τ − 1).

Solving for a(n) one gets

a(n) =
1

τ(1− τ)

(
(σ − 1)

n−1∑
k=0

(
n−1
k

)
a(n−k−1) d

k

dtk
(2τ − 1) +

n−2∑
k=0

(
n−1
k+1

)
a(n−k−1) d

k

dtk
(2τ − 1)

)
.

Note: The sums in the preceding equation have to be evaluated up to the second order
only because higher derivatives of (2τ − 1) vanish. The result reads

a(n) =
1

τ(1− τ)

(
(σ − 2 + n)(2τ − 1)a(n−1) + (n− 1)(2σ − 4 + n)a(n−2)

)
, n ≥ 2.

B.3. The GevreyTrajGen subclass

The implementation can be found in the Python source code file: TrajGen.py.
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