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Abstract— Infineon Technologies Dresden has been using a 
long-term simulation model to support production planning for 
a long time. There is a need to reduce efforts to create and 
maintain models. There are two ways of doing this: using 
representative process flows and substituting tool sets for 
constant delays. This paper considers both approaches as well 
as their combination. The main idea is to evaluate them and find 
the appropriate level of model complexity in terms of model 
accuracy. Therefore, a gradual simplification is used. The 
MIMAC dataset 5 was the data source for this study. 
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I. INTRODUCTION 

This paper considers discrete-event simulation and in 
particular the problem of simulation model simplification. The 
simplification of simulation models is still rather a “green 
field” [1]. One of the simplification methods is to apply 
representative process flows. This means that instead of 
modeling all routings, only individual representatives are used 
(the demand of a group of routings is aggregated for one of 
them). Surprisingly, despite its usage in practical work, this 
topic is not well covered in scientific papers. This is probably 
due to the fact that the use of representative process flows 
implies a rather complex simulation model as a research 
object, which is difficult for an academic researcher to work 
with. On the other hand, simulation modeling practitioners are 
usually not interested in carrying out a large number of 
experiments to compare the things that are obvious to them. 
However, even the seeming obvious approaches require 
scientific proof and explanation. In addition, as we have 
learned from our research, the use of representative process 
flows is coupled with model calibration, which is still more an 
art than a science. 

This work is a continuation of our previous studies, in 
which we studied tool set substitutions for constant delays [2] 
and various accuracy measurements [3]. In this paper we 
compare two scenarios: original process flows (γ1) and 
representative process flows (γ2). For both scenarios, we apply 
a simplification by substituting tool sets for constant delays 
according to the sieve functions (ζ1…ζ10). For each of the sieve 
functions 83 simplification experiments were carried out in 
order to assess the degree to which the accuracy of the 
simulation model deteriorated with gradual simplification. We 
consider both scenarios for two cases: steady state and 
transient state. 

The MIMAC 5 data set [4] was chosen as the basis for the 
research, as it includes the largest number of process flows, 
which allowed using 11 of them for the scenario γ1 and 3 for 
γ2. AutoSched AP from Applied Material, version 11.5 was 
used as a simulation tool. 

II. RELATED WORK 

Reference [1] provides a good overview of the simulation 
model simplification with a huge amount of scientific sources. 
The using of representative process flows is mentioned as a 
part of entity aggregation. [5] reflected on the importance of 
having the right level of modeling complexity using the 
examples of an automated material handling system. They 
reviewed several practical cases and came to interesting 
conclusions, one of which was "simpler is not always better". 
In our study, we consider factory simulation and compare 
quantitatively different simplified models. [6] presented the 
routing aggregation using representative flows, but they did 
not compare the results with all process flow scenario. In 
addition, they used t-test as an accuracy measurement, which 
we criticize in [3]. [7] presented abstractions for product 
variants using effective processing time, but they investigated 
mostly transport simulation. [8] discussed the importance of 
simplification for supply chain modeling in the semiconductor 
industry. They built a supply chain simulation model. They 
also introduced an accuracy measurement "similarity between 
two histograms", which is divided by two Summarized 
Absolute Divergence (SAD) we use. Unfortunately, they used 
the MIMAC 1 dataset with only two products and did not 
work with representative process flows. [6] described several 
features of the simplification, one of which used 
representative process flows, but presented the results of the 
working model, rather than comparing different options. [10] 
presented criteria that should be taken into account when 
selecting representative process flows: sufficiency of 
historical data and similarity in terms of the recipe.  However, 
the authors presented only the results of the modeling, not the 
comparisons of the scenarios under consideration. 

As we can see from the overview above, most studies 
focus on comparing an already simplified model using 
representative process flows with reality. Only [6] added to 
the simplification substitution of tool sets for constant delays. 
In this paper, we expand the view of simplification by 
comparing two γ1 and γ2 scenarios, and by using delay 
substitutes. 

III. DESIGN OF EXPERIMENTS 

In this work, an earlier developed automated experimental 
environment was used. It allowed a significant number of 
experiments to be carried out: 4000 runs of the detailed model 
to calculate the sieve functions and base line data for 
calibrations; 85 and 1700 runs for calibration experiments 
(steady and transient state cases); 16600 runs to evaluate the 
accuracy of model simplification. We used only 5 seeds (runs) 
for each experiment, due to the huge amount of planned 
experiments that are beyond the scope of this paper, and rather 
the exploratory nature of this research.  



We considered two cases: steady state and transient state. 
Each simulation run was 114 weeks. The warm up period was 
determined by the Welch’s procedure [11] and was set at 10 
weeks. Tool set substitution for constant but not random 
delays was considered. For an explanation of this decision, see 
[2]. Furthermore, we chose only process step based delays 
because they showed better accuracy than tool set based [3]. 

A. Demand and representative process flows 

Representative process flows were selected based on their 
structure (similarity of processing steps) and demand for the 
relevant products. The routing that had the highest demand 
was chosen out of all the similar ones. Among 11 process 
flows, we chose 3 as representatives (black, red and green line 
in Fig. 1). Demand for other process flows was summed up 
and assigned to the representatives. Thus, two scenarios were 
obtained: original process flows (γ1) and representative 
process flows (γ2). 

 
Fig. 1. Two scenarios: original process flows – γ1; representative process 
flows – γ2; 

B. Sieve functions ζ 

A sieve function is a mechanism for ordering tool sets to 
substitute them step by step for constant delays (at each step 
one more tool set is replaced). In other words, the sieve 
function is the tool set criticality index. The value of a sieve 
function was calculated based on the following parameters of 
the weekly simulation tool set reports: IDLE%/IDLE# – the 
idle state; PROC% – the processing state; BSAVG – the average 
batch size; BSMAX – the maximum batch size; QTAVG – the 
queue time; QLAVG – the queue length; PTAVG – the processing 
time; CTAVG – the lot cycle time; CTSD – the standard deviation 
of the cycle time; and THAVG – the throughput. The following 
formulas were used: ζ1 = IDLE%; ζ2 = IDLE% + PROC% – 
PROC%(BSAVG / BSMAX); ζ3 = (100 – IDLE%) / IDLE#; ζ4 = 
QTAVG; ζ5 = QTAVG / PTAVG; ζ6 = QLAVG; ζ7 = QLAVG / BSMAX; 
ζ8 = CTSD

total; ζ9 = CTSD
total / CTAVG

total; and ζ10 = THAVG. Each 
of the sieve functions represents one experimental series 
consisting of 83 experiments to substitute tool sets for delays.  

C. Accuracy measurements 

After the study of accuracy measurements [3], the most 
suitable two of them were used for this work: the Summarized 
Absolute Divergence (SAD) and the Kolmogorov-Smirnov 
(KS) test. 

SAD is a very simple measurement based on absolute 
divergence between two probability density functions. The 
value of SAD is the area between two probability density 
functions. It is changed from 0, when two distributions are 
identical, to 2, when two distributions have nothing in 
common [2] (compare with “similarity between two 
histograms” in [8]).  

To calculate SAD, we consider probability density 
function (or frequency distribution) of two variables X1 (base 
case) and X2 (experiment data). We can devide the range of 
the variables into k intervals (bins) and denote nX1

j and nX2
j the 

number X1‘s and X2‘s in the jth interval, then: 

 𝑆𝐴𝐷 = ∑ ห𝑛
ଶ − 𝑛

ଵห
ୀଵ  

To calculate the Kolmogorov-Smirnov test, we use 
cumulative distribution functions: FX1 and FX2 for variables X1 
and X2 respectively: 

 𝐾𝑆 = sup
௫
|𝐹௫ଶ(𝑥) − 𝐹௫ଵ(𝑥)| 

The value of KS is changed from 0 to 1. 0 means the two 
distributions are identical. 1 means two distributions have 
nothing in common. 

IV. EXPERIMENTS AND RESULTS 

The use of representative process flows has caused the 
necessity to calibrate the simulation model for both stationary 
and transitional cases. This is due to the fact that we change 
the model when aggregating demand for representative 
process flows. Below we describe at first a calibration 
procedure, and then the simplification experiment results for 
each case. 

A. Steady state case 

After the demand was aggregated for the three selected 
representative process flows (see Fig. 1), it turned out that the 
model was no longer stable: bottlenecks were produced in the 
system (see step 1 in Fig. 2). Therefore, it was necessary to 
reduce the load on the bottlenecks (in our case these are 
workcenters w14 and w2).  

 
Fig. 2. Steady state case calibration: step 1 and step 17: black – base line 
(detailed model data, γ1), red – detailed model data, γ2.  



The load reduction was done by using the processing 
efficiency factor. The factor is a parameter by which the 
processing time for a given tool set is divided. First 11 
calibration steps were necessary to compensate for the 
increased load for bottlenecks. Further steps (12-17) were 
intended to bring the lot cycle time Probability Density 
Function (PDF) of γ2 closer to the baseline (γ1). To do this, it 
was necessary to increase the load on some other tool sets 
(table I). It should be noted that as a result of calibration, we 
can not get a PDF that is fully consistent with the base line, 
because we are dealing with a modified production system. 
Therefore, we used the minimization of SAD as a calibration 
criterion. Another important point is the desire to make 
changes to the model as little as possible. Therefore, we 
limited ourselves to only 7 machines. 

TABLE I.  STEADY STATE CASE. CALIBRATION PARAMETERS. 

Calib. 
Steps: 

Processing efficiency factor for tool sets 
w14 w2 w18 w4 w46 w32 w34 

1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
2 1.03 1.0 1.0 1.0 1.0 1.0 1.0 
3 1.04 1.0 1.0 1.0 1.0 1.0 1.0 
4 1.04 1.02 1.0 1.0 1.0 1.0 1.0 
5 1.04 1.03 1.0 1.0 1.0 1.0 1.0 
6 1.05 1.03 1.0 1.0 1.0 1.0 1.0 
7 1.05 1.04 1.0 1.0 1.0 1.0 1.0 
8 1.05 1.05 1.0 1.0 1.0 1.0 1.0 
9 1.06 1.05 1.0 1.0 1.0 1.0 1.0 
10 1.06 1.06 1.0 1.0 1.0 1.0 1.0 
11 1.06 1.07 1.0 1.0 1.0 1.0 1.0 
12 1.06 1.07 0.70 1.0 1.0 1.0 1.0 
13 1.06 1.08 0.70 1.0 1.0 1.0 1.0 
14 1.06 1.08 0.70 0.80 1.0 1.0 1.0 
15 1.06 1.08 0.70 0.80 0.80 1.0 1.0 
16 1.06 1.08 0.70 0.80 0.80 0.75 1.0 
17 1.06 1.08 0.70 0.80 0.80 0.75 0.9 

 

After the calibration was completed, we started the 
simplification experiments. The essence of the experiments is 
to estimate the accuracy of the simplified model for two 
scenarios of γ1 and γ2. As a result of each experimental series 
we obtain 83 SAD and KS values, which can be represented 
as a line on the diagram: x axis - experiment number, y axis - 
accuracy measurement value (see Fig. 3).   

 
Fig. 3. Steady state case. SAD and KS for experiment series ζ1. 

Fig. 3 shows that the accuracy measurement value for γ2 is 
considerably higher than that for γ1. The higher the value of 
SAD and KS, the worse the accuracy of the simplified model. 
For example, a significant simplification of γ1 (experiment 
#55) leads to the same accuracy as γ2 without simplification. 
On the other hand, it should be noted that the overall accuracy 
measurement curves increase insignificantly for the first 40 
experiments. This means that substitution of even 40 tool sets 
for delays does not result in a significant loss of model 
accuracy. 

Let us consider the difference in accuracy on the example 
of one experiment #60. Fig. 4 illustrates the γ1 and γ2 PDFs for 
the experimental series ζ1. It can be seen that the peaks of the 
γ2 curve are higher, and the peak width are narrower. This is a 
consequence of using representative process flows, because 
we reduce the variability of the model. This can be especially 
seen in the left side of the PDFs. For γ1 (blue line) we see two 
peaks (one big and one small), which corresponds to different 
process flows. For γ2 (green line), we see only one peak, as 
this part of the PDF is related to only one representative 
process flow. From this we can conclude that γ2 will always 
be worse matched with the base line than γ1 for this part of the 
PDF. This is what we see in Fig. 3, where the γ2 curve is higher 
than the γ1 curve, i.e. the accuracy of γ2 is worse than the 
accuracy of γ1. 

 
Fig. 4. Steady state case, ζ1. Comparison γ1 and γ2 (exp #60). 

Unfortunately, in this paper it is not possible to provide 
diagrams of all performed experiments because of the large 
amount of data. Therefore, to present the whole set of 10 
experimental series and to estimate which of the sieve 
functions allows to get the best accuracy value, the SAD and 
KS values for 83 experiments were summed up and 
summarized in the table II. Bold font in this table indicates the 
minimum values for the column.  

TABLE II.  STEADY STATE EXPERIMENT RESULTS 

Sieve 
functions 

Sum of accuracy measurements 
SAD γ1 SAD γ2 KS γ1 KS γ2 

ζ1 22.70 50.75 5.59 14.35 
ζ2 18.77 49.15 4.97 13.38 
ζ3 22.99 49.98 4.90 13.19 
ζ4 17.65 46.86 4.04 12.60 
ζ5 15.96 42.60 4.18 11.95 
ζ6 15.87 39.28 4.06 11.45 
ζ7 15.93 39.22 4.27 11.68 
ζ8 19.15 47.76 5.42 11.83 
ζ9 23.90 51.72 4.79 11.28 

ζ10 41.03 70.53 8.93 15.70 
 

It can be seen that the minimum values correspond to 
different sieve functions. However, in practice it is preferable 
to use one approach. Such approach could be the use of ζ6 
(marked in yellow background); because it gives values of 



accuracy criteria close to the minimum ones. It should also be 
noted that the criterion most often used in practice (utilization 
– ζ2) gives values worse than those of ζ6. 

B. Transient state case 

For the transient case (changing demand), calibration is a 
very complex task. In reality, calibration is mostly based on 
the gut feeling of the expert and his or her ability to evaluate 
the future. In our case, it was facilitated by the presence of a 
simulation model as a baseline, i.e. we knew exactly the future 
for the model being calibrated. On the other hand, we 
intentionally chose a sufficiently variable demand to highlight 
the difficulties faced by the simulation modeling expert in 
calibrating the model. 

 
Fig. 5. Transient state case. Additional calibration step 1. 

For the transient state case, we used a model already 
calibrated for the steady state case. Fig. 5 shows the 
dependence of the mean cycle time for representative process 
flows on the week number. The first 14 weeks the values are 
close enough. Then one can see a significant difference. This 
means that additional model calibration is required for the 
transient case. 

By coincidence, we also needed 17 steps to calibrate the 
γ2. Although we also wanted to minimize the number of tool 
sets to be calibrated, we had to adjust the processing efficiency 
factor values for 23 of them. In addition, it was not possible to 
set these values constant, but it was necessary to make them 
time dependent. Another challenge was the fact that a large 
number of runs were required to assess the accuracy of a single 
calibration step. Since the production plan in some weeks on 
certain items contains only one lot, it was decided to carry out 
100 runs to get for such a situation at least 100 values of the 
cycle time. For comparison, 5 runs were enough in a steady 
state case. In addition to the diagrams presented here, we used 
time-dependent WIP graphics for each of the tool sets to 
visualize the calibration process more accurately. However, 
the calibration criterion was the matching of PDFs. 

During the calibration process, the interdependencies of 
different representative process flows were discovered. For 
example, the mean cycle time of the representative process 
flows 14 and 21 in the period 35-60 weeks depend on the same 
tool sets. However, a more accurate calibration for 14 results 
in an overestimated mean cycle time for 21. It was decided to 
consider this offset for representative process flow 21 as 
acceptable, since up to 95 weeks it is limited to one lot per 
week. Thus, the result shown in Fig. 6 was obtained at step 17 
of calibration. In Fig. 6, it can be seen that the lines do not 
fully match. Nevertheless, we considered this calibration 
acceptable. In order to understand the reason for this decision, 
we should consider it in detail at the PDF level for one week. 

 
Fig. 6. Transient state case. Additional calibration step 17. 

Fig. 7 shows the PDF for week #50. Here we can see more 
clearly, what happens to the model in a specific period. In step 
1, a red line shows the model calibrated for a steady state case. 
If comparing Fig. 2 (Step 17) and Fig. 7 (Step 1), one can see 
that the γ2 model does not respond to changing demand. 

There is another important fact when calibrating: how to 
evaluate PDF coincidence. We have indicated above that it is 
preferable to use SAD for this purpose. It should be noted that 
a simple comparison of cycle times means is not valid. For 
example, if we look at the mean curves in Fig. 6 for the 
representative flow 14 for week #50, we see that the red line 
is slightly above the black line. However, it doesn't make 
sense to calibrate the process flow 14 downwards as this will 
only lead to an even bigger divergence in the PDF, as we can 
see in Fig. 7 for step 17 (300 – 400 hours). 

It is necessary to recall that during the calibration process 
when using representative process flows it is not possible to 
obtain fully coincident PDFs. In addition, for the transient 
state case, this fact is even more obvious. For step 17 in Fig.7, 
one can see a good match on the right side of the PDF. 
However, for the middle part, the baseline is represented by a 
two-peak distribution (black line, 300-400 hours), which 
cannot be achieved using only one-peak distribution (red line, 



300-400 hours). Therefore, the SAD value, which was 
achieved during the calibration process, is rather high (0.417). 
However, compared to the initial value (1.327), we were able 
to achieve a certain level of success. 

 
Fig. 7. Transient state case. Calibration step1. 

Fig. 8 shows the initial (step 1) and final (step 17) SAD 
values of γ2 for the different weeks. It can be seen that it varies 
considerably from week to week. However, because of 
situations similar to Fig. 7, these values are difficult to make 
better. The nonlinear dependence of the cycle time on the 
processing efficiency factor causes additional complexity. As 
soon as we approach the limit load for a given tool set, the 
cycle time starts to grow exponentially (operative curve). 

 
Fig. 8. Transient state case. Comparison step 1 and step 17. 

After the calibration was completed, simulation 
experiments similar to those performed for the steady state 
case were carried out. The same accuracy measurements 
(SAD and KS) were estimated. The same accuracy 
measurements (SAD and KS) were estimated. However, in the 
case of the transient case, the values for each week were first 
calculated, and then the mean value for all weeks (104) was 
derived to evaluate the accuracy of this experiment. 
Eventually the sum for each experiment series was calculated 
and the results are summarized in table III. In this table, the 
minimum values are in bold. We suggest using ζ6 as a sieve 
function similar to the steady state case (marked in yellow 
background). This means using queue length as a criterion for 
ordering machines to substitute for constant delays. It should 
be noted that queue length as a criterion works better than 
utilization (ζ2), as in the case of the steady state (see table II). 
It should be noted that queue length works better than 
utilization as a criterion (ζ6). This result shows that only a 

detailed study of simulation model simplification contributes 
to finding the best sieve functions. 

TABLE III.  TRANSIENT STATE EXPERIMENT RESULTS 

Sieve 
functions 

Sum of accuracy measurements 
SAD γ1 SAD γ2 KS γ1 KS γ2 

ζ1 65.20 87.89 17.80 25.50 
ζ2 66.53 90.44 18.58 26.40 
ζ3 67.20 89.59 18.56 25.92 
ζ4 65.48 90.37 17.62 25.90 
ζ5 64.34 88.82 17.04 25.06 
ζ6 63.64 85.58 17.25 25.10 
ζ7 65.50 85.64 18.00 25.44 
ζ8 64.83 89.55 17.47 25.57 
ζ9 67.03 89.90 17.82 25.33 

ζ10 71.41 96.48 18.83 26.62 
 

The accuracy measurements values in table III deserves 
special attention. Comparing the accuracy measurement 
values in table II and table III, it can be seen that the values in 
table III are more than twice as big as in table II. The main 
reason for this is a small number of model runs (5), which 
resulted in a small number of variables used to build 
distribution functions. Fig. 9 illustrates this by the example of 
week number 50.  

 
Fig. 9. Transient state case, ζ1. Comparison γ1 and γ2 (exp #60, week #50). 

Comparing Fig. 7 and 9 we can see a significant difference 
in the smoothness of PDF curves. This is due to the fact that 
100 model runs were carried out for Fig. 7 and only 5 for Fig. 
9. The reason for this is the time of model run together with 
postprocessing (about 2 minutes) and the number of necessary 
experiments (83 only for one series). If we perform 5 runs for 
one experiment, then we get 83*5*2 = 830 minutes (half a 
day) for one series, and if 100 runs, then 16600 minutes (11.5 
days). We had to make 40 series of experiments for this study. 
On the other hand, we could allow 100 runs for calibration 
experiments (transient state), since only 17 steps were 
performed. This study is more of an exploratory activity with 
the purpose of technology testing and cutting off the known 
poor sieve functions. We plan to carry out more detailed 
research in the future. 

V. DISCUSSION 

Obviously, the most debatable issue in this paper is the 
quality of our calibration. We considered only the least time-
consuming method of calibration – calibration with the help 
of process efficiency factor. Another more accurate method is 
calibration of processing time for each individual processing 
step. In practice, both approaches are used. 

However, our task was to show how representative process 
flows are used to simplify the simulation model and to 
highlight the need for calibration itself, as the section II papers 



overlook this fact. Since usually the reasons for calibration are 
referred to as inaccurate source data and modeling itself. 

A further controversial issue may be the choice of criteria 
for assessing the accuracy of simplification. Here we refer to 
our paper [3] where we discussed this problem in detail. 

Regarding the assessment of accuracy of measurements 
for a transient case, we consider it quite acceptable for our task 
– exploration study. However, for more accurate conclusions 
it is certainly necessary to perform more runs. We suppose that 
100 runs should be enough. In particular, the calibration of the 
transient case confirmed this assumption. 

We also would like to emphasize that according to the 
results of our study, it is more appropriate to choose the sieve 
function ζ6 (queue length) rather than ζ1 or ζ2 (utilization). This 
fact allows us to look at the bottlenecks and simplification 
from a different perspective. Most papers on this issue argue 
that utilization is the criterion for assessing the bottleneck. On 
the other hand, some simulation experts suggest using queue 
length. However, since many papers have already established 
an understanding of the bottleneck as a tool set with the 
highest utilization, as well as other papers linking the 
simplification of simulation models to the bottlenecks, we 
propose to avoid the term "bottleneck" and instead use, for 
example, "tool importance" when considering the 
simplification of simulation models. This will allow 
researchers to look at the problem more comprehensively and 
perform more diverse experiments. We have considered ten 
different sieve functions in this paper based on these 
considerations. 

VI. CONCLUSIONS 

In this paper, we considered using representative process 
flows and constant delays to simplify the simulation model. 
The following conclusions can be drawn. 

 When using representative process flows it is 
necessary to calibrate the simulation model. For a 
highly variable demand (transitional case), the 
calibration task is very difficult. 

 Calibration using the process efficiency factor only is 
simple and suitable for exploration studies. However, 
for deeper investigations it is necessary to use 
additional calibration based on processing steps. 

 Using representative process flows leads to less 
accuracy than using constant delays only.  

 Substituting more than half of the tool sets for constant 
delays does not lead to significant deterioration of the 
simulation model accuracy. 

In future research we plan to add processing time in 
addition to the process efficiency factor when calibrating the 
simulation model and to consider other dispatching rules 
(Critical Ratio, Earliest Due Date, Operation Due Date). We 
will expand our approach by using a forecasting procedure to 
evaluate sieve functions in near-reality conditions where there 
is no knowledge of the future. Eventually, these approaches 
will be implemented in a real Infineon simulation model. 
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