
Rajesh Ramaswamy & Ivo F. Sbalzarini

Particle Methods

Computing with Particles

Lecture Notes

TU Dresden, Faculty of Computer Science
Chair of Scientific Computing for Systems Biology

Prof. Dr. Ivo F. Sbalzarini, TUD & MPI-CBG

Dr. Rajesh Ramaswamy, MPI-PKS

June 2021

ii

iii

This page is intentionally left blank

iv

Contents

Contents v

List of Figures ix

Foreword xiii

1 Introduction 1

1.1 What is modeling and simulation? 1

1.2 What are particle methods? . 4

1.2.1 Examples . 5

1.2.2 Generic algorithm . 6

1.2.3 Hybrid particle-mesh methods 7

1.2.4 Discretizing differential operators on particles 8

2 Algorithms and Data Structures for Particle Methods 9

2.1 Cell lists . 10

2.1.1 Short-range interactions with cell list 11

2.1.2 Computational cost . 12

2.2 Verlet list . 12

2.2.1 Short-range interactions with Verlet list 13

2.2.2 Computational cost . 14

2.3 Symmetric interactions . 14

2.3.1 Long-range particle interactions 15

2.3.2 Symmetric short-range interactions using cell list 15

2.4 Symmetric short-range interactions using Verlet list 16

3 Time stepping algorithms 19

3.1 Time stepping for discrete-time models 20

3.2 Time stepping for continuous-time models 21

3.2.1 Explicit schemes for time stepping 21

3.2.2 Implicit scheme . 27

3.2.3 Numerical stability . 29

3.2.4 Consistency and convergence 33

v

vi CONTENTS

4 Particle Methods for Item-based Simulations 35

4.1 Stochastic dynamics . 36

4.1.1 Random number generation 37

4.1.2 Example: Agent-based ecosystem simulation 38

4.1.3 Example: Stochastic chemical kinetics 41

4.2 Deterministic dynamics . 44

4.2.1 The Verlet time-stepping method 45

4.2.2 Leapfrog time-stepping for deterministic item dynamics . 46

4.2.3 The velocity-Verlet time-stepping method 47

4.2.4 Example: discrete element method for granular flows . . . 48

4.2.5 Example: Lennard-Jones molecular dynamics 51

5 Discretizing Linear Differential Operators on Particles 55

5.1 Smooth Particle Hydrodynamics: SPH 56

5.2 Particle Strength Exchange (PSE) 61

5.2.1 Example . 65

5.2.2 PSE for arbitrary differential operators 68

5.3 DC-PSE . 70

5.3.1 Finite-differences are a limit case of DC-PSE (Optional
Material) . 74

6 Eulerian Particle Methods for Field-based Models 77

6.1 Model equation: Advection-diffusion 78

6.2 Only diffusion . 79

6.2.1 Stability . 79

6.3 Only advection . 81

6.3.1 Upwind PSE scheme . 82

7 Lagrangian Particle Methods for Field-based Models 85

7.1 Concept behind Lagrangian particle methods 86

7.2 Advection-diffusion in the Lagrangian frame of reference 87

7.3 Lagrangian particle method for advection-diffusion 87

7.3.1 Stability . 88

7.4 Remeshing . 89

7.4.1 Particle-Mesh Interpolation schemes 89

8 Fast Algorithms for Far-field Interactions 93

8.1 Hybrid Particle-Mesh Methods 93

8.1.1 Lennard-Jones molecular dynamics with electrostatics . . 93

8.2 Fast Multipole Methods . 93

8.3 Inverting the System Matrix . 93

9 Boundary Conditions 95

9.1 Ghost particles: the Method of images 95

9.2 Immersed boundary methods and Penalization 95

CONTENTS vii

10 Particle Methods for Surfaces 97
10.1 Particle Level-Set Surface Representation 97
10.2 Particle Methods for Item-based Models 97
10.3 Particle Methods for Field-based Models 97

10.3.1 Embedding schemes . 97
10.3.2 Moving local frames . 97

11 Adaptive-resolution Particle Methods 99
11.1 Self organization . 99
11.2 Particle-Particle interpolation . 99

12 Particle Methods on Parallel Computers 101
12.1 Abstractions for parallel particle methods 101
12.2 The PPM Library . 101
12.3 The PPML language . 101

Bibliography 103

Index 107

viii CONTENTS

List of Figures

1.1 The four types of models with typical examples. 3

2.1 Cell list interactions in 2D. (a) In the asymmetric case, each
particle interacts with all other particles in the same cell and with
all particles in all adjacent cells. As the cell stencil iterates over
the entire computational sub-domain, boundary layers (boundary
conditions) are needed on all sides. (b) In the symmetric case,
particles interact with particle in the same cell that have a bigger
index, and with all particles in half of the neighboring cells, as
indicated. The change is then simultaneously applied to both
interaction partners. In this case, boundary layers are needed on
all but one face of the sub-domain. 11

3.1 Illustration of the Runge-Kutta-4 scheme corresponding to Eqs. 3.17–
3.21 for the model equation in Eq. 3.16. (Adapted from figure in
wikipedia, CC license) . 26

3.2 The numerical stability boundaries for explicit Euler, leapfrog,
Runge-Kutta 4, and Implicit Euler. The region of stability for
explicit Euler, leapfrog and Runge-Kutta 4 is within the bound-
ary, whereas that of Implicit Euler is outside its boundary. 31

4.1 Visualization of the Box-Muller transform. The colored points
in the unit square are uniformly distributed random numbers
between 0 and 1 (r1, r2), (circles). They are mapped to a 2D
Gaussian (z1, z2), drawn as crosses. The plots at the margins are
the probability distribution functions of z1 and z2. Note that z1

and z2 are unbounded, but appear to be in [−3, 3] due to the
choice of the illustrated points. (Figure source: wikipedia, CC
license) . 38

ix

x LIST OF FIGURES

4.2 Visualization snapshots of the ecosystem simulation as imple-
mented by Hiroki Sayama on Wolfram Demonstrations Project.
Predators are shown in orange, prey in purple. The interaction
cutoff radius rc is shown as the radius of the individual disks.
Top: example with parameters leading to extinction of predators.
Middle: example leading to extinction of prey. Bottom: example
showing traveling waves of predator density chasing prey density.
(Figure source: http://demonstrations.wolfram.com/PredatorPreyEcosystemARealTimeAgentBasedSimulation/) 42

4.3 Plot of the Lennard-Jones potential function. (Figure source:
thesaurus.rusnano.com) . 53

5.1 Comparison of RW (a) and PSE (b) solutions of the benchmark
case. The solutions at time T = 10 are shown (circles) along
with the exact analytic solution (solid line). For both methods
N = 50 particles, a time step of δt = 0.1, and ν = 10−4 are used.
The RW solution is binned in M = 20 intervals of δx = 0.2. For
the PSE a core size of ε = h is used. 67

5.2 Convergence curves for RW and PSE. The L2 error versus the
number of particles for the RW (triangles) and the PSE (circles)
solutions of the benchmark case at time T = 10 are shown. For
both methods a time step of δt = 0.1 and ν = 10−4 are used.
The RW solution is binned in M = 20 intervals of δx = 0.2 and
for the PSE a core size of ε = h is used. The machine epsilon is
O(10−6). 67

Listings

1.1 Particle data structure . 4
1.2 Generic particle algorithm . 6
2.1 Cell list construction . 10
2.2 Short-range interaction particle algorithm with cell list 11
2.3 Verlet list construction . 13
2.4 Short-range interaction particle algorithm with Verlet list 14
2.5 Long-range symmetric interaction particle algorithm 15
2.6 Short-range symmetric interaction with cell list 16
2.7 Constructing symmetric Verlet list 16
2.8 Short-range symmetric interaction with Verlet lists 17
3.1 Method evolve of a particle algorithm for a discrete-time model 20
3.2 Method evolve of a particle algorithm for a continuous-time

model using explicit Euler time-stepping 22
3.3 Method evolve of a particle algorithm for a continuous-time

model using leap-frog time-stepping 24
4.1 Inversion method for RNG . 38
4.2 Particle properties structure of each agent 39
4.3 Predator-prey interaction method 40
4.4 Agent evolution method . 40
4.5 Particle SSA simulation . 44
4.6 Particle SSA interaction . 44
4.7 Particle SSA evolution . 44
4.8 Interaction method for DEM . 50
4.9 Particle evolution for DEM . 51
4.10 Particle interaction for Lennard-Jones MD 53
4.11 Particle evolution for Lennard-Jones MD 54
5.1 1D PSE interaction method . 66
5.2 1D PSE evolution method . 66

xi

xii LISTINGS

Foreword

xiii

xiv FOREWORD

Chapter 1

Introduction

In this chapter:

• What is modeling and simulation?

• The four kingdoms of models

• Item-based simulations vs. field-based simulations

• What are particle methods?

• Computational cost of particle methods

Learning goals:

• Know the difference between a model and a simulation

• Know the four kingdoms of models and examples of each

• Know the difference between item-based and field-based simulations, and
how they relate to the underlying models

• Be able to explain the concept of discretization

• Know by heart the definition of particle methods and their basic structure

• Be able to analyze the computational cost of a particle method

• Be able to name two examples of near- and far-field interactions and mo-
tivate the need to hybrid particle-mesh methods

1.1 What is modeling and simulation?

Models are hypotheses about a process or a system. Any mental image about
how we think or believe a system looks or works is a model of that system.
Using the model to answer a specific question about the system is called a

1

2 CHAPTER 1. INTRODUCTION

simulation. Simulations are hence more akin to experiments than to theory.
A simulation will tell how the model behaves in a specific situation (e.g., for
specific values of its parameters) or reacts to a specific, given perturbation.
Theory, however, would predict how it behaves for any parameter for every
possible perturbation. Simulations are especially useful or necessary in cases
that evade theoretical treatment or where the corresponding perturbation could
not be applied experimentally to the modeled system. This is often the case
for non-linear models or when a parameter is not controllable in the system
(e.g., we cannot change the diffusion constant of a molecule at will since it is a
physical given) or the system reaction is not observable.
Models need not be mathematical, and simulations need not be computational.
Using, e.g., a cardboard model of the planned building to predict how light
penetrates into the rooms, the architect performs a simulation. Using a model
organism like mouse to learn something about cancer in humans, the biologist
performs a simulation.
Every model is valid only in a limited and well-defined set of cases, called the
model’s experimental frame. Using a model outside its experimental frame pro-
duces incorrect predictions or results. While the bespoke cardboard model of a
house can be used to simulate light and shadow, it could not be used to simu-
late earthquake or fire safety. While mice can be used to learn something about
cancer, they could not simulate how newborns learn language.
Models can be qualitative or quantitative, physical or phenomenological, dis-
crete or continuous, stochastic or deterministic. Qualitative models do not
predict actual values (of, e.g., chemical concentrations), but only qualitative
outcomes like whether something is increasing or decreasing (without telling
by how much). Physical models are formulated or derived from physical laws
and principles, such as conservation of mass or energy. This is in contrast to
phenomenological models, which describe mechanisms that do not necessarily
adhere to physics. In discrete models, individual real-world entities are directly
represented as discrete items in the model, like the colorful plastic balls in high-
school molecule models represent individual atoms. In a continuous model, the
entities are not explicitly represented, but only their continuous distribution
field. For example, describing the population distribution over Germany as a
population density field, rather than by representing every individual separately,
is a continuous model. The reaction or evolution of a deterministic model is com-
pletely determined by the present and previous state of the model, whereas in
stochastic models, the output contains a random element. This means that one
cannot predict the reaction, but only a probability distribution of it. These dif-
ferent classes of models are summarized in Fig. 1.1, along with typical examples
of each class.
If the model is given by mathematical equations, e.g., partial differential equa-
tions, a simulation computes a correct numerical solution of these equations.
This amounts to in-silico reconstitution of the system described by the model.
Simulations are hence not “made to fit expectations”, but provide a powerful
tool to predict system behavior. A simulation can, e.g., be used to check whether
the mechanisms included in the model are sufficient to produce a certain be-

1.1. WHAT IS MODELING AND SIMULATION? 3

continuous discrete

d
et
er
m
in
is
ti
c

st
o
ch
a
st
ic

PDEs

SDEs

interacting
particles

random events

diffusion

reaction-diffusion
with low molecule

numbers

molecular
dynamics

population
dynamics

Figure 1.1: The four types of models with typical examples.

havior. This would be hard to do experimentally, because one could never be
sure that the mechanisms in question are really the only ones in the system. In
a model, however, one has full control over what is included and what not. The
fact that not everything is included in the model is hence the strength of the
model, and not a weakness. This fact is famously known as “Ockham’s razor”
[1] stating that the simplest possible models are the most useful ones, since
they tell that this simplicity is a sufficient explanation of reality. Whether it
is also necessary then remains to be proven experimentally by perturbing these
mechanisms in the system and checking if then it stops working.

Discrete models (space and/or time) can directly be simulated in a (digital)
computer, whereas continuous ones first need to be discretized since computers
have finite memory and can only deal with finite sets. Discretization means
that we do not store and compute the value of the field everywhere (because
that would make infinitely many points), but only at selected, representative
discretization points. This is very much like using a finite set of weather stations
scattered across the country to monitor the continuous temperature field. Ob-
viously, the weather stations need to be “dense enough” to capture temperature
variations. Having them too dense, however, makes no sense (the recorded dif-
ferences would mostly be noise and measurement errors) and would be wasteful.
In discretization theory, “dense enough” means well sampled, and the condition
is given by the length scale of the field variations. This is the length scale over
which the field changes, i.e., over which gradients in the field exist. In parti-
cle methods, the discretization points can be distributed arbitrarily, which may
help track field variations. In other methods, their spatial arrangement needs
to satisfy certain conditions. In finite-difference methods, e.g., the points need
to lie on a grid.

4 CHAPTER 1. INTRODUCTION

1.2 What are particle methods?

Particle methods are numerical schemes that can be used to computation-
ally simulate both discrete and continuous models, either deterministically or
stochastically. The simulations are formulated in terms of interacting particles,
possibly combined with meshes. When simulating a discrete model, we call
the simulation item-based simulation. When simulating a discretized continu-
ous model, we call the simulation field-based simulation. We use these terms in
order to make clear whether the underlying model was discrete or continuous,
whereas any simulation is always discrete. For item-based simulations, the case
is clear: each item is represented by a particle. For field-based simulations, we
need mathematical tools to discretize fields using particles.

In all cases, particles are point-like objects (i.e., zero-dimensional) that are
characterized by a position and certain properties. The position can be in any
space, and the property list can be arbitrarily long and contain different data
types. For example, a car in the street could be described as a particle whose
position corresponds to the GPS coordinates on the map and properties could be
the velocity, age of the driver, color of the car, etc. While particles always must
have a position, the property list can also be empty. A particle hence is a zero-
dimensional data-structure with a position and certain properties. The position
is a vector of any data type, depending on the space in which the particles live,
and its length is given by the dimension of that space. For example, if the
particle is to mark a pixel in an image, then the position is a vector of integers.
Thus, the space is discrete. If the particle represents a molecule, the position is
a vector of real numbers and the space is continuous.

Particles can do two things: interact with other particles and evolve. Evolving
means that the particle’s position and/or properties change. Interaction is a
pair-wise interaction of the particle with another particle and yields a contri-
bution to the change of properties and positions as a result. These are the two
operations defined for each particle. In pseudo-code1, a particle hence is:

class PARTICLE {

vector(space -dimension) :: position ,positionChange

struct :: properties ,propertiesChange

method [Kx,Kw] = interact(PARTICLE)

method evolve ()

}

Listing 1.1: Particle data structure

An interaction between two particles can at most depend on the positions and
properties of the two particles. In particle methods, we assume that the inter-
actions are pair-wise and additive, i.e., that the result of interaction(p,q,r) is
identical to interaction(p,q)+interaction(p,r). This assumption is limiting, but
part of the definition of particle methods. The dynamic equations governing

1We use a loose pseudo-code notation in these lecture notes, which is a mixture of C++
and Fortran, and should be intuitively understandable to the programming-savvy.

1.2. WHAT ARE PARTICLE METHODS? 5

any particle method can hence be written as:[
∆~xp
∆~ωp

]
=

N∑
q=1

[
~Kx

~Kω

]
=

N∑
q=1

~Kp(~xp, ~xq, ~ωp, ~ωq) (1.1)

Here, the interaction kernel ~Kp encapsulates the model and is the mathematical
representation of the interact method. It is indexed by p, as different particles
can have different interaction kernels. In most cases, however, the same ker-
nel is used across particles, which is why we often omit the index p for clarity.
Everything else is generic. This is very nice from an algorithmic point of view,
since the same algorithms and software can be used to simulate any particle
method. All that algorithm need to be able to do is to compute interactions
between pairs of particles and sum the contributions over all particles. This pro-
vides the rates of changes or increments (per unit time) in the particle position,
∆~x (positionChange) and properties ∆~ω (propertiesChange). In a concrete

software, ~K can for example be a function pointer to an implementation of the
interact method.

1.2.1 Examples

For illustration, we provide here a few examples of particle methods along with
their classification:

• Agent-based simulations are particle methods for item-based models where
each particle represents an item or agent. The interaction kernel ~K rep-
resents the function or method according to which two agents interact.

• Molecular-dynamics simulations [2] are a particle method for an item-
based model where particles represent atoms (or groups of atoms in coarse-
grained molecular dynamics). The interaction kernel in this case is the
atomic or molecular force field or potential.

• Smooth particle hydrodynamics (SPH) [3] is a particle method to simulate
the field-based model of continuum fluid flow. The interaction kernel in
this case results from discretizing the differential operators in the govern-
ing physical equations.

• Evolution strategies are particle methods to solve optimization problems
in an item-based model, where each particle represents a sample point and
the interaction kernel ~K contains the mutation and evaluation operators.

• Region competition [4] is a particle methods to solve image-segmentation
problems over field-based models where particles mark boundary pixels
between image regions and the kernels ~Kx and ~Kω are the propagator and
imaging model, respectively.

• The discrete element method (DEM) is a particle method to simulate the
item-based model for granular flows, where the kernel K is Newton’s law
of mechanics and the contact deformation model [5] (see Section 4.2.4) .

6 CHAPTER 1. INTRODUCTION

1.2.2 Generic algorithm

Due to the generic formulation in Eq. 1.1, all particle methods can be encapsu-
lated in a generic algorithm, which amounts to implementing the interact and
evolve methods. The generic algorithm then is:

foreach particle p do

p.positionChange = 0

p.propertiesChange = 0

foreach particle q do

[p.positionChange ,p.propertiesChange] += p.interact(q)

end

end

foreach particle p do

p.evolve ()

end

Listing 1.2: Generic particle algorithm

Note that the particles first all interact, in order for each particle to compute
its final ∆x and ∆ω. Only then, they all evolve using these rates of change.
Evolving particles directly in the first loop would lead to non-deterministic be-
havior, as the result will depend on the ordering (indexing) of the particles.
This algorithm has a runtime complexity in O(N2) for N particles. This can
be significantly reduced if the interaction kernel is local, i.e., decays to zero for
particle further apart than a certain cutoff radius. In theory, if every particle
only interacts with an O(1) set of “neighbors”, the overall algorithm reduces to
O(N). This is frequently the case. Examples include discrete element methods
(see Section 4.2.4), where particles can only collide with nearby partners, and
field-based simulations of diffusion, which is a local physical phenomenon. Fast
neighbor search algorithms are available for each particle to find its nearby in-
teraction partners in O(1) time (see Chapter 2). This is not trivial, since the
particles move all the time and the set of neighbors constantly changes in a
potentially unpredictable way (e.g., in stochastic simulations).
In the case there the interaction kernel is not local, all particles contribute to
all other particles. This is called a long-range interaction. The simulation is
then truly O(N2) per time step. However, efficient approximation algorithms
exist also for this case. The seminal Barnes-Hut algorithm can be used to
reduce the complexity to O(N logN) in the average case of uniformly distributed
particles [6]. The idea behind this algorithm is that a group of particle far away
can be approximated as a single “cluster particle” and one interaction is then
sufficient to consider the whole group. This is like looking at a galaxy in the
sky at night. Since the galaxy is far away, you do not see all the individual
stars in it, but you perceive the whole galaxy as one “particle”. For uniformly
distributed particles, the cluster tree has a depth of O(logN), which explains
the runtime bound. The bound can be further reduced to O(N) using Fast
Multipole Methods (FMM) [7, 8], where the action of each cluster of particles
onto the other particles is further expanded into a series of spherical harmonics.
This allows clusters to directly interact with other clusters, hence the runtime
bound. The concept is akin to how international politics work. If the United

1.2. WHAT ARE PARTICLE METHODS? 7

States want to negotiate a treaty with the European Union, it is not that every
citizen of the US talks to every citizen of the EU (O(N2), where N is about 450
million). It is also not that every citizen of the US talks to the EU government
(i.e., the Barnes-Hut way where the EU government is the cluster representing
all people in the EU). Instead, the two governments negotiate (this is O(1))
and then, the results are propagated “down” to the individual states, cities,
and people within each cluster (which is O(N)). While these algorithms are
efficient, they are approximate, with the approximation error depending non-
trivially on the cluster granularity and the number of expansion coefficients
used.

1.2.3 Hybrid particle-mesh methods

An alternative way of evaluating long-range particle interactions is by using a
mesh. This defines hybrid particle-mesh methods, where particles are combined
with an overlaid grid. The grid is usually Cartesian and uniform (i.e., all grid
cells are rectangles or boxes of same size). This is because the focus is on com-
putational efficiency, and potential non-uniform or sub-grid-scale phenomena
can still be represented directly on the particles. The grid is only thought to
provide the “background far field”.
The famous historic example for which this framework has originally been devel-
oped are plasma physics simulations [9]. In these simulations, individual charge
carriers (e.g., electrons) are represented as particles. This is the item-based
part of the model. Collectively, all charge carriers induce an electric field, which
depends on the spatial distribution of charge carriers. This continuous electric
field then defines the force each particle feels, and hence the motion acceleration
of it. This is the field-based part of the model.
In a pure particle method, each charge carrier is represented by a particle with
position ~xp and scalar charge ωp. The charges never change, hence Kω = 0.
The positions of the particles evolve according to the mechanical forces they
feel in the induced electric field. These forces are given by the Coulomb law of
electrostatics:

~Fp =

N∑
q=1

ωpωq
4πε

~rpq
|~rpq|2

, (1.2)

where ~rpq is the vector pointing from particle p to particle q, and ε is a physical
constant called the permittivity of the material. Evaluating the force for all
particles requires O(N2) operations.
In the hybrid particle-mesh formulation, the charges of the particle are interpo-
lated to a regular Cartesian grid. Dividing then the charge of each grid node
with the volume of a grid cell (hd for a grid resolution h in d-dimensional space),
one obtains the charge density ρ at each mesh node. The induced electric field
can then be computed by solving the partial differential equation

∇ · ~E(~x) =
ρ(~x)

ε
(1.3)

8 CHAPTER 1. INTRODUCTION

for the electric field ~E, where ∇· is the divergence operator from vector calculus.
This field is then interpolated back to the particles in order to obtain the force
acting on each particle as:

~Fp = ωp ~E(~xp) (1.4)

The last step is O(1). Particle-mesh and mesh-particle interpolation are O(N)
each, as discussed in detail in Section 7.4. Solving Eq. 1.3 on a regular Carte-
sian mesh can be done in O(M) using finite differences (multi-grid methods [10])
or in O(M logM) using fast Fourier transforms, where M is the total number
of mesh nodes. The overall hybrid particle-mesh method is hence O(N) when
using multi-grid methods, and O(N logN) when using fast Fourier transforms.
The solution computed using multi-grid methods is approximate with an ap-
proximation error that converges with some power of h. The solution computed
using Fourier transforms is accurate to machine precision on periodic domains.
On unbounded domains it also converges with some power of h [11].
More on efficient long-rage interactions and field solvers in Chapter 8.

1.2.4 Discretizing differential operators on particles

Alternatively to discretizing differential operators and partial differential equa-
tions on a mesh, they can also be directly discretized on the particles. Thus,
pure particle methods can also be used to solve differential equations. In the
most general form, this amounts to an operator involving the properties and
positions of all involved particles as a pairwise interaction:

Dβω(~xp) ≈
∑

q∈N (p)

(~ωq ± α~ωp)ηβε (~xq − ~xp). (1.5)

Here, N (p) is the neighborhood of particle p, i.e., all other particles that are
interaction partners for this operator. The binary number α is 0 for asymmetric
operators and 1 for symmetric ones. The sign in the first parenthesis depends
on the differential operator Dβ to be discretized. The operator kernel ηβ is
scaled to width ε as: ηβε = ε−dηβ(~x/ε), defining the spatial resolution of the
discretization. The specific form of the kernel ηβ depends on the differential
operator Dβ that is to be discretized, and on its order β. More on this topic in
Chapter 5.
The operator symmetry deserves special attention. If α = 1, then the above
expression is symmetric in the sense that the contribution of particle q to particle
p is the same (maybe with sign change, depending on ±) as the contribution of
p to q. This can be exploited to reduce the computational cost of the method
by another factor of two by considering every unique interaction pair only once.
Symmetric neighbor-search algorithms are available for this, as described in
Chapter 2. If ω corresponds to a conserved physical quantity, like mass, then
this also guarantees that the method is conservative, i.e., that the mass received
by q is exactly the mass sent by p and nothing is lost or created underway.

Chapter 2

Algorithms and Data
Structures for Particle
Methods

In this chapter:

• Efficient short-range interactions with cell lists?

• Verlet lists

• Exploiting symmetry in interactions

Learning goals:

• Be able to implement and use cell lists and Verlet lists for symmetric and
asymmetric short-range interactions

• Know the computational complexity of building and using cell lists and
verlet lists

• Be able to quantitatively compare cell and Verlet lists in terms of the cost
pre-factor

Evolving particles, in general, requires that particles interact. In order to update
the position and properties of particles, each particle needs to interact with
other particles in the system. If the number of particles is N , the number of
computations to perform to compute the rate of change of position ∆~xp and the
rate of change of the properties ∆~ωp is O(N2). This can, however, be improved
if the computation of ∆~xp and ∆~ωp only requires a particle to interact with
other particles within a local neighborhood. For example, assume that you
want to write an algorithm for a video game that requires you to evolve the
position of a car traveling with a given speed on a street with other cars. In
order to determine the required change of position of the car, one needs to find

9

10 CHAPTER 2. ALGORITHMS AND DATA STRUCTURES

other cars in the neighborhood. Knowing the positions of all other cars is not
necessary. Assuming that you want to control all Nc cars, an efficient algorithm
to determine the subsequent position of all cars is O(Nc) and not O(N2

c). In
such cases, we say that computation of ∆~xp for moving particles (and, in general
computation of ∆~ωp for evolving properties) depend on short-range interactions
where particles only need to interact with other particles within a small (small
compared to the size of the system) fixed, local neighborhood defined by a
cut-off radius or distance rc. In such cases where each particle only needs to
interact with other particles with a distance of rc from itself, the number of
computational operations for computing ∆~xp and ∆~ωp can be reduced to O(N)
by using fast neighbor lists. Fast neighbor lists are data structures providing a
list of other particles that a given particle needs to interact with. There are two
principal types of fast neighbor lists: cell list and Verlet list .

2.1 Cell lists

Cell lists are fast neighbour lists in which the computational domain is parti-
tioned into Cartesian cells of length rc in each dimension. The cell-list data
structure stores particle indices that reside in each of these cells. For the sake
of simplicity, we introduce cell lists for two-dimensional computational domains
and the extension to three-dimensions is straightforward.
Assume a two-dimensional space of length Lx in the x-direction and length
Ly in the y-direction. Assume that we have N particles residing in this two-
dimensional space. We divide the two-dimensional space into squares of size rc.
The number of squares (or cells) of size rc required to tile the two-dimensional

space in the x-direction is
⌈
Lx

rc

⌉
and in the y-direction is

⌈
Ly

rc

⌉
. The total number

of such squares is therefore
⌈
Lx

rc

⌉ ⌈
Ly

rc

⌉
and each square is indexed by two indices

(i, j) in two-dimensions where i = 0, . . . ,
⌈
Lx

rc

⌉
− 1 and j = 0, . . . ,

⌈
Ly

rc

⌉
− 1.

Cell list is a data structure that gives the index p of particles and the number
of particles in each cell i, j. A simple recipe to build cell list in two-dimensions
is as follows:
For each particle p = 0, . . . , N − 1, with positions ~xp = (xp, yp) (in 2D):

1. Compute the cell index (i, j) as i =
⌊
xp
rc

⌋
and j =

⌊
yp
rc

⌋
.

2. Add particle p to the cell (i, j).

The algorithm for constructing cell list in two-dimensions is as follows:

foreach particle p do

cellIndex = floor(p.position / rc)

cell(cellIndex).add(p)

end

Listing 2.1: Cell list construction

2.1. CELL LISTS 11

���
���
���
���
���
���

���
���
���
���
���
���

�
�
�
�

1

2 3 4

(a)

−1

−4 −3 −2

0

sub−domain

���
���
���
���
���
���

���
���
���
���
���
���

�
�
�
�

0 1

2 3 4

(b)sub−domain

Figure 2.1: Cell list interactions in 2D. (a) In the asymmetric case, each
particle interacts with all other particles in the same cell and with all particles
in all adjacent cells. As the cell stencil iterates over the entire computational
sub-domain, boundary layers (boundary conditions) are needed on all sides.

(b) In the symmetric case, particles interact with particle in the same cell that
have a bigger index, and with all particles in half of the neighboring cells, as

indicated. The change is then simultaneously applied to both interaction
partners. In this case, boundary layers are needed on all but one face of the

sub-domain.

2.1.1 Short-range interactions with cell list

Once the cell list has been constructed, every particle p has to interact with all
other particles in its cell and all adjacent cells. The number of adjacent cell is 8
in two dimensions and 26 in three dimensions. Figure 2.1(a) shows the adjacent
cells of a cell (i, j) in 2D.
The generic particle algorithm presented in Chapter 1 can now be made more
efficient for computing ∆~xp and ∆~ωp in case of short-range interactions by
incorporating cell lists. The algorithm for such a particle algorithm is as follows:

foreach particle p do

p.positionChange = 0

p.propertiesChange = 0

cellIndex = floor(p.position / rc)

foreach particle q in cell(cellIndex) do

[p.positionChange ,p.propertiesChange] += p.interact(q)

end

foreach adjacentCellIndex do

foreach particle q in cell(adjacentCellIndex) do

[p.positionChange ,p.propertiesChange] += p.interact(q)

end

end

end

foreach particle p do

p.evolve ()

end

Listing 2.2: Short-range interaction particle algorithm with cell list

12 CHAPTER 2. ALGORITHMS AND DATA STRUCTURES

2.1.2 Computational cost

Cost of constructing cell list. The computational cost of constructing is
solely dependent on the number of particle N within the computational domain.
In addition, the cost is linear in N and is therefore O(N).

Cost of particle algorithm with short-range interactions using cell list.
Assume a three-dimensional computational domain of size L in each direction
so that the volume is L3. Given N particles in the computational domain that
are distributed homogeneously (or uniformly at random) across the domain, the
average number of particles per unit volume is N

L3 . Given a cut-off radius rc for
particle interactions, the number of particles per cell is N(rcL)3. The number of

particles that each particle p needs to interact with is therefore (Na +1)N
(
rc
L

)3
where Na = 26 is the number of adjacent cells in 3D to the cell in which particle
p resides. Doing this not only for one particle, but for all N particles, the total

number of kernel interaction evaluations to compute 27N2
(
rc
L

)3
and is therefore

O(N2).
In 3D (L3), the computational cost of any particle algorithm with short range

interactions is therefore proportional to 27N2
(
rc
L

)3
which is C · O(N2) where

the pre-factor of the computational cost C = 27
(
rc
L

)3
. However, since rc << L

by definition of short-range interactions, the pre-factor C is very small and
therefore a particle algorithm with cell list is fast. In practical cases, rc is
about 1000-times smaller than L, rendering the cell-list algorithm 109 times
faster than the direct all-against-all interaction. In addition, if the number of

particle N is increased while keeping the average number of particles per cell
Nr3c
L3

constant, the computational cost can be written as 27 N
L3 r

3
c N which is C ·O(N)

where C = 27 N
L3 r

3
c is a constant pre-factor owing to constant average number of

particles per cell. This is usually the case in field-based simulations, where the
cutoff radius rc ∝ h with h being the distance between particles. This means
that having neighbors more nearby implies reducing the interaction cutoff in
order to keep the number of interaction partners constant. In this case, the
average complexity of cell lists is O(N).
It is also worth noting that the computational cost increases if the particle are
inhomogeneously distributed within the computational domain. In the worst
case, if all particle are within a distance of rc from each other, then each particle
needs to interact with all other particles rendering the computational costO(N2)
again.

2.2 Verlet list

The Verlet list [12] is a fast neighbor list, where interaction partners of each
particle are explicitly stored. In other words, the particle lists are not associated
with cells, but directly with the particles themselves. A Verlet list hence is a
data structure that stores the indices q of all particles that interact with each

2.2. VERLET LIST 13

particle p. Efficient construction of Verlet lists utilizes an intermediate cell-list
data structure in order to not search over all particles.
Verlet lists are smaller than cell lists since they only contain exactly those par-
ticles p needs to interact with. Cell lists are conservative and contain more par-
ticles than necessary. The difference is about a factor of 6 in 3D, as discussed
below. However, particles constantly move, which also changes the neighbor set
of each particle at every time step. Verlet lists would hence have to be updated
or recomputed at each time step, which, since they are using an intermediate
cell list, renders them less efficient than cell lists. The common remedy to this
is to extend the Verlet interaction sphere by a “safety margin” called the skin.
Then, all particles closer than rc + skin are added to the Verlet list. This gives
up a part of the factor of 6 by including more particles than actually required.
However, the lists now only need to be updated once any particles has moved
further than the skin thickness. A conservative estimate is to update when-
ever 2~vmaxδt > skin, where ~vmax = maxp ~vp is the largest velocity occurring in
the system. The factor of 2 accounts for the worst case that two particles of
maximum velocity are approaching each other head-on.
Verlet lists are particularly beneficial in simulations where the particles do not
perform large net movements, but rather jiggle or oscillate around a fixed loca-
tion. In this case, like molecular dynamics, the Verlet lists almost never need to
be updated. The skin thickness used in practice is 10% to 20% of rc. In some
applications, like molecular liquid dynamics, the optimal skin thickness can be
predicted from the parameters of the system [13]. This, however, is not possible
in general and is up to manual tuning.
The algorithm for constructing Verlet list is as follows:

foreach particle p do

cellIndex = floor(p.position / (rc+skin))

foreach particle q in cell(cellIndex) do

! compute the distance between particles p and q

if |p.position -q.position| <= (rc+skin)

verlet(p).add(q)

end

end

foreach particle q in cell(adjacentCellIndex) do

if |p.position -q.position| <= (rc+skin)

verlet(p).add(q)

end

end

end

Listing 2.3: Verlet list construction

In principle, the two inner loops could be fused if a cell is also considered a
neighbor of itself. The code would be equivalent. Why we prefer writing the
loops separately is for reasons of symmetry, as will be discussed below.

2.2.1 Short-range interactions with Verlet list

Once the Verlet list is constructed, an efficient particle algorithm for short-range
interactions is:

14 CHAPTER 2. ALGORITHMS AND DATA STRUCTURES

foreach particle p do

p.positionChange = 0

p.propertiesChange = 0

foreach particle q in verlet(p) do

[p.positionChange ,p.propertiesChange] += p.interact(q)

end

end

foreach particle p do

p.evolve ()

end

Listing 2.4: Short-range interaction particle algorithm with Verlet list

2.2.2 Computational cost

Cost of constructing Verlet list. If the particle are distributed homoge-
neously in a 3D computational domain of volume L3, the cost of constructing

Verlet list is proportional to 27N2
(
rc
L

)3
and is O(N2) following similar argu-

ments used in Sec. 2.1.2. If the average number of particles per unit volume is
kept constant even when N increases, the computational cost is O(N).
The computational cost of constructing Verlet list increases with inhomogeneity
in particle distribution over the computational domain. In the worst case, if all
particles are within a distance of rc, the computational cost of constructing
Verlet list is O(N2).

Cost of particle algorithm with short-range interactions using Verlet
list. Assume that N particles are homogeneously (or uniformly random) dis-
tributed across a 3D computational domain of volume L3. The average number
of particles within a distance of rc from each particle then is N

L3
4
3πr

3
c where

4
3πr

3
c is the volume of the interaction sphere. The total number of interaction

kernel evaluations for computing the interactions for all of the N particles is

thus N2

L3
4
3πr

3
c , which is O(N2). This cost is a factor of 81

4π ≈ 6 times smaller
than the computational cost using cell list, at the expense of the additional
memory requirement of Verlet lists.
If the number of particles N increases while keeping the average particle density
N
L3 constant, the computational cost of computing particle interactions using

Verlet list is C ·O(N) where the constant pre-factor C = 4π
3
N
L3 r

3
c .

It is also worth noting that the computational cost increases if the particle are
inhomogeneously distributed within the computational domain. In the worst
case, if all particle are within a distance of rc from each other, then the com-
putational cost is O(N2) making Verlet lists worse than cell list given that the
cost of constructing Verlet list if also O(N2) for this case.

2.3 Symmetric interactions

The efficiency of the particle algorithms can be further improved if the interac-
tion kernel ~K is symmetric, that is, if Kp(~xp, ~xq, ~ωp, ~ωq) = ±Kq(~xq, ~xp, ~ωq, ~ωp).

2.3. SYMMETRIC INTERACTIONS 15

Most physics-based interaction kernels are symmetric, i.e., they only depend on
the differences of properties and position, but not their absolute values. This
symmetry can be exploited to compute every interaction only once, hence re-
ducing the computational cost by a factor of two.
If the change in properties of particle p due to particle q is ∆p←q = Kp(~xp, ~xq, ~ωp, ~ωq),
the change of particle q due to particle p is also known as ∆q←p = ±∆p←q. The
sign can be either positive or negative, depending on whether it is a conserved
quantity (e.g., money transferred between the particles) or a replicating quantity
(e.g., knowledge shared between agents).

It is also possible that only certain components of ~K are symmetric, and others
not. In this case, the symmetric interaction algorithms below can also be used
component-wise.

2.3.1 Long-range particle interactions

For long-range particle interactions, the particle algorithm presented in Chap-
ter 1 can be made more efficient by exploiting symmetry as follows:

foreach particle p do

p.positionChange = 0

p.propertiesChange = 0

end

foreach particle p do

foreach particle q>=p do

[kx ,kw] = p.interact(q)

p.positionChange += kx

p.propertiesChange += kw

if p 6= q

q.positionChange ±= kx

q.propertiesChange ±= kw

end

end

p.evolve ()

end

Listing 2.5: Long-range symmetric interaction particle algorithm

Notice that p.evolve() can now be called inside the loop, since the particle p
will not participate in any other interaction after it has been visited. This is in
contrast to the asymmetric interactions where first all particles need to interact
before all of them can be evolved.

2.3.2 Symmetric short-range interactions using cell list

If the interaction kernels are symmetric and short-range with a cut-off radius
rc that is smaller than the span of the computational domain, we can addi-
tionally incorporate cell list. In this scenario, only one half of the adjacent
cells need to be looped over in order to exploit symmetry in a consistent fash-
ion. Figure 2.1(b) shows the adjacent cells that need to be looped over for a
two-dimensional computational domain. The particle algorithm for symmetric
short-range interactions using cell list is:

16 CHAPTER 2. ALGORITHMS AND DATA STRUCTURES

foreach particle p do

p.positionChange = 0

p.propertiesChange = 0

end

foreach particle p do

cellIndex = floor(p.position / rc)

foreach particle q>=p in cell(cellIndex) do

[kx ,kw] = p.interact(q)

p.positionChange += kx

p.propertiesChange += kw

if p 6= q

q.positionChange ±= kx

q.propertiesChange ±= kw

end

end

foreach symmetricAdjacentCellIndex do

foreach particle q in cell(symmetricAdjacentCellIndex) do

[kx ,kw] = p.interact(q)

p.positionChange += kx

p.propertiesChange += kw

q.positionChange ±= kx

q.propertiesChange ±= kw

end

end

end

foreach particle p do

p.evolve ()

end

Listing 2.6: Short-range symmetric interaction with cell list

Now, the evolve loop has to be outside again, because p can still be altered by
another interaction partner than q if the cell stencil moves over the grid in the
corresponding direction.

2.4 Symmetric short-range interactions using Ver-
let list

Symmetric Verlet lists contain only half the entries of a non-symmetric Verlet
list. Every particle-particle interaction is stored only once. The construction
of symmetric Verlet lists makes use of only one half of the adjacent cells of
the intermediate cell list (see Fig. 2.1(b)) in the cell list, akin to the particle
algorithm for symmetric short-range interactions using cell list (Sec. 2.3.2). The
construction of symmetric Verlet lists is as follows:

foreach particle p do

cellIndex = floor(p.position / rc)

foreach particle q>=p in cell(cellIndex) do

! compute distance between p and q

if |p.position -q.position| <= rc

verlet(p).add(q)

end

end

foreach symmetricAdjacentCellIndex do

2.4. SYMMETRIC SHORT-RANGE INTERACTIONS USING VERLET LIST17

foreach particle q in cell(symmetricAdjacentCellIndex) do

if |p.position -q.position| <= rc

verlet(p).add(q)

end

end

end

end

Listing 2.7: Constructing symmetric Verlet list

The particle algorithm using symmetric Verlet list for short-range interactions
is as follows:

foreach particle p do

p.positionChange = 0

p.propertiesChange = 0

end

foreach particle p do

foreach particle q in verlet(p) do

[kx ,kw] = p.interact(q)

p.positionChange += kx

p.propertiesChange += kw

if p 6= q

q.positionChange ±= kx

q.propertiesChange ±= kw

end

end

end

foreach particle p do

p.evolve ()

end

Listing 2.8: Short-range symmetric interaction with Verlet lists

18 CHAPTER 2. ALGORITHMS AND DATA STRUCTURES

Chapter 3

Time stepping algorithms

In this chapter:

• Discrete-time and continuous-time models

• Time stepping schemes for continuous time models

• Discretization error in time stepping schemes

• Numerical stability of time stepping schemes

• Notion of consistency and convergence

Learning goals:

• Know the basic explicit and implicit time stepping schemes

• Be able to define and explain discretization errors and their source

• Define numerical stability and requirements

• Know the difference between explicit and implicit schemes regarding nu-
merical stability

• Be able to choose time stepping schemes based on discretization error and
numerical stability

This chapter focusses on the algorithms for the evolve method in the particle
class introduced in Chapter 1 (see Listing. 1.1). The method evolve uses the
p.positionChange and p.propertiesChange variables, which are the rate of
position change and rate of property change ∆~xp and ∆~ωp in Eq. 1.1 summed
over all particle interactions. Using these, it updates the position ~xp and prop-
erties ~ωp of particle p. For long-range interactions ∆~xp and ∆~ωp are computed
according to the particle algorithm in Listing 1.2. In the case of short-range in-
teractions, fast neighbor lists like cell lists and Verlet lists are used to compute
∆~xp and ∆~ωp efficiently as presented in Chapter 2.

19

20 CHAPTER 3. TIME STEPPING ALGORITHMS

The implementation of evolve depends on whether the model is a discrete-
time model or a continuous-time model. We first present the algorithms for
discrete-time models before proceeding to those for continuous-time models.
In discrete-time models, the equation for particle p in every particle method is

~xp(n+ 1) = ~xp(n) + ∆~xp(n, ~x(n), ~ω(n))

~ωp(n+ 1) = ~ωp(n) + ∆~ωp(n, ~x(n), ~ω(n)) (3.1)

where n ∈ Z is an integer denoting the discrete time point. The rate of change
of position ∆~xp and properties ∆~ωp (see Eq. 1.1) in a discrete-time model is
the same as the change of position and properties respectively, since time is
unity in a discrete-time model. In addition, ∆~xp and ∆~ωp are functions of
positions ~x and properties ~ω of all particles at the n-th time point, and the
particle simulation evolves according to the above difference equations.
In continuous-time models, the equations of evolution for particle p are

d~xp(t)

dt
= ∆~xp = ~vp(t, ~x(t), ~ω(t))

d~ωp(t)

dt
= ∆~ωp = ~gp(t, ~x(t), ~ω(t)) (3.2)

where t ∈ R is a real number denoting continuous time. Here ∆~xp = ~vp and
∆~ωp = ~gp are the rates of change of the position and the properties of particle p,
respectively. For convenience, we refer to ~vp as the velocity of particle p and ~gp
as the property rate of particle p. In general, the velocity ~vp and property rate
~gp are defined as functions of positions ~x and properties ~ω of all particles at time
t. The velocity ~vp and property rate ~gp are computed as a sum of interactions
between all pairs of particles as given by Eq. 1.1. Therefore, the particle interac-
tion algorithms are the same as in the discrete-time case, albeit with a different
interaction kernel ~K, and the particle simulation evolves according to the above
differential equations. In order to numerically approximate the solution of a
continuous differential equation in the computer, it needs to be discretized (see
Section 1.1).

3.1 Time stepping for discrete-time models

In a discrete-time model, the position of particle p is simply incremented by
∆~xp, and the properties are incremented by ∆~ωp according to Eq. 3.1.
The pseudocode for evolve is:

method evolve ():

"this" refers to the particle of which the method is a member

this.position += this.positionChange

this.properties += this.propertiesChange

Listing 3.1: Method evolve of a particle algorithm for a discrete-time model

Hence, the simulation jumps from time point to time point.

3.2. TIME STEPPING FOR CONTINUOUS-TIME MODELS 21

3.2 Time stepping for continuous-time models

For continuous-time models (Eq. 5.1), the continuous-time derivatives
d~xp
dt and

d~ωp
dt need to be discretized. Discretization refers to the process of converting

these continuous time derivatives into discrete counterparts so that derivatives
can be evaluated on a computer. The conversion enables evaluation of time
derivatives at discrete times tn where n = 0, . . . , N ; tn is the time stamp at
the n-th time step. The size of the time step (i.e., how much time advanced
since the last discretization point) is δt = tn − tn−1. Since time is continuous,
the time-step size δt may be different between any two consecutive time steps.
For simplicity in the notation, however, we here assume that all time points are
equally spaced so that δt is a constant.

3.2.1 Explicit schemes for time stepping

Time discretization schemes are referred to as explicit if the values of the quan-
tities of interest (~xp and ~ωp for particles algorithms) at time tn can be computed
using the values of these quantities at times tk such that k < n. In other words,
time discretization scheme are referred to as explicit if future states of the system
can be computed using only the current and past states of the system.

3.2.1.1 Explicit Euler scheme

The “explicit Euler” time discretization scheme (also referred to as “forward
Euler” scheme) is the one of the simplest ways to discretize time derivatives. In
this scheme, time derivative of a quantity y at time tn is approximated as

dy

dt
(tn) ≈ y(tn+1)− y(tn)

tn+1 − tn
=
y(tn+1)− y(tn)

δt
. (3.3)

Therefore, a differential equation of the form dy
dt (t) = f(y(t)) is discretized as

y(tn+1)− y(tn)

δt
≈ f(y(tn))

i.e., y(tn+1) ≈ y(tn) + δt f(y(tn)), n = 0, 1,

This scheme is explicit since y(tn+1) can be computed with the knowledge of
y(tn).

Let’s now assume one particle residing in a one-dimensional computational do-
main. The particle moves according to a velocity, and the velocity changes
according to an acceleration. That is,

dx(t)

dt
= v(t)

dv(t)

dt
= a(t), (3.4)

22 CHAPTER 3. TIME STEPPING ALGORITHMS

where x is the particle position, v the velocity and a the acceleration. The index
p is omitted since there is only one particle. Using the explicit Euler scheme,
these equation are approximated as

x(tn+1) = x(tn) + δt v(tn),

v(tn+1) = v(tn) + δt a(tn), n = 0, 1,

Therefore, given the initial position x(0), initial velocity v(0), and the acceler-
ation a(t) at all times, we can march forward in time to obtain the position of
the particle at all times.

Similarly, we generalize the explicit Euler scheme for the general equations of
continuous-time particle methods (Eq. 5.1). Discretizing at time tn results in

~xp(tn+1)− ~xp(tn)

δt
≈ ~vp(tn, ~x(tn), ~ω(tn))

~ωp(tn+1)− ~ωp(tn)

δt
≈ ~gp(tn, ~x(tn), ~ω(tn)). (3.5)

Therefore,

~xp(tn+1) ≈ ~xp(tn) + ~vp(tn, ~x(tn), ~ω(tn)) δt

~ωp(tn+1) ≈ ~ωp(tn) + ~gp(tn, ~x(tn), ~ω(tn)) δt, n = 0, 1, (3.6)

This scheme is explicit since the next state (~xp(tn+1) and ~ωp(tn+1)) of particle
p can be evaluated using the current state (~xp(tn) and ~ωp(tn)) of particle p.
The method evolve is therefore given by

method evolve ():

! Time step size dt is a parameter

this.position += this.positionChange * dt

this.properties += this.propertiesChange * dt

Listing 3.2: Method evolve of a particle algorithm for a continuous-time
model using explicit Euler time-stepping

Discretization error. In this section, we analyze the error made in discretiz-
ing the continuous time derivative using the above discretization schemes. Using
the notation for the state of the system ~s = [~x1, . . . , ~xp, . . . , ~xN , ~ω1, . . . , ~ωp, . . . , ~ωN]T

and the rate vector of the system ~r(t, ~s) = [~v1, . . . , ~vp, . . . , ~vN ~g1, . . . , ~g2, . . . , ~gN]T,
the equation for a system of particles is

d~s

dt
= ~r(t, ~s). (3.7)

We now analyze the error and the approximation order of discretizing the contin-
uous time derivative using the discretization schemes presented in this chapter.
Using the explicit Euler scheme,

~s(tn+1) ≈ ~s(tn) + δt~r(tn, ~s(tn)). (3.8)

3.2. TIME STEPPING FOR CONTINUOUS-TIME MODELS 23

Equivalently,

~s(tn + δt) ≈ ~s(tn) + δt~r(tn, ~s(tn)). (3.9)

Expanding ~s(tn + δt) around δt using a Taylor series expansion, assuming that
δt is small and ~s(t) is a perfectly smooth function in t, we observe that:

~s(tn + δt) = ~s(tn) +
δt

1!

d~s

dt
(tn) +

δt2

2!

d2~s

dt2
(tn) +

δt3

3!

d3~s

dt3
(tn) + . . .

= ~s(tn) +
δt

1!
~r(tn, ~s(tn)) +

δt2

2!

d~r

dt
(tn, ~s(tn))

+
δt3

3!

d2~r

dt2
(tn, ~s(tn)) +

As terms get successively smaller, the term 1
2!

d~r
dt (tn, ~s(tn))O(δt2) dominates the

error as δt approaches 0. Therefore,

~s(tn + δt) = ~s(tn) + δt~r(tn, ~s(tn)) +
1

2!

d~r

dt
(tn, ~s(tn))O(δt2). (3.10)

Comparing Eqs. 3.9 and 3.10, we see that the discretization error per time-
step using the explicit Euler scheme is O(δt2). Therefore, the local order of
approximation in an explicit Euler scheme is 2 (the exponent of δt in the leading
error term). To compute the state of the system at time t = T , we need
to perform Nt = T

δt time steps. The overall discretization error is therefore

NtO(δt2) = T
δtO(δt2) = TO(δt) = O(δt). The global order of approximation

of the explicit Euler scheme is thus 1. The explicit Euler method is therefore
said to be first-order accurate. This means that as we half the time-step δt,
the error decreases by a factor of 2. This may require very small δt to achieve
a prescribed error. Therefore, it may be beneficial to have schemes that are of
higher order.

3.2.1.2 Leapfrog scheme

The Euler scheme is not the only way of discretizing time. In fact, there are
infinitely many time-stepping algorithms that differ with respect to their compu-
tational cost and accuracy. Another popular example is the “Leapfrog scheme”.
In a leapfrog scheme, time derivative of a quantity y at time tn is approximated
as

dy

dt
(tn) ≈ y(tn+1)− y(tn−1)

tn+1 − tn−1
=
y(tn+1)− y(tn−1)

2 δt
.

A differential equation of the form dy
dt (t) = f(y(t)) is approximated as

y(tn+1)− y(tn−1)

2δt
≈ f(y(tn)) (3.11)

i.e., y(tn+1) ≈ y(tn−1) + 2δt f(y(tn)), n = 0, 1,

24 CHAPTER 3. TIME STEPPING ALGORITHMS

The leapfrog scheme is therefore explicit but apart from the knowledge of the y
at tn, it also requires the knowledge of y at tn−1.

For a single particle moving according to a velocity field v and acceleration
a (Eq. 3.4), the leapfrog scheme results in

x(tn+1) = x(tn−1) + 2δt v(tn),

v(tn+1) = v(tn−1) + 2δt a(tn), n = 0, 1,

To march in time, the leapfrog scheme not only requires the initial position x(0),
initial velocity v(0), and the function a(t), but also the position x and velocity
v at time point t−1 = −δt. In comparison to explicit Euler, the leapfrog scheme
therefore takes into account more information about the past state of the system.

Generalizing the leapfrog scheme for the equations of continuous-time particle
methods p (Eq. 5.1), the discretized equations at time tn are

~xp(tn+1)− ~xp(tn−1)

2 δt
≈ ~vp(tn, ~x(tn), ~ω(tn))

~ωp(tn+1)− ~ωp(tn−1)

2 δt
≈ ~gp(tn, ~x(tn), ~ω(tn)). (3.12)

Therefore,

~xp(tn+1) ≈ ~xp(tn−1) + 2~vp(tn, ~x(tn), ~ω(tn)) δt

~ωp(tn+1) ≈ ~ωp(tn−1) + 2~gp(tn, ~x(tn), ~ω(tn)) δt, n = 0, 1,(3.13)

This scheme is explicit since the next state (~xp(tn+1) and ~ωp(tn+1)) of particle
p can be evaluated using the current state (~xp(tn) and ~ωp(tn)) of particle p and
the previous state (~xp(tn−1) and ~ωp(tn−1)) of particle p. The leap frog scheme
therefore requires storing of the old state of the system in memory.
The method evolve using the leap-frog scheme is

method evolve ():

! the time -step size dt is a parameter

this.position = this.position_old + this.positionChange * dt * 2

this.properties = this.properties_old + this.propertiesChange * dt * 2

Listing 3.3: Method evolve of a particle algorithm for a continuous-time
model using leap-frog time-stepping

Discretization error. The leapfrog scheme for Eq. 3.7 is given by

~s(tn + δt) ≈ ~s(tn − δt) + 2δt~r(tn, ~s(tn)). (3.14)

Expanding ~s(tn + δt) around δt:

~s(tn + δt) = ~s(tn) +
δt

1!
~r(tn, ~s(tn)) +

δt2

2!

d~r

dt
(tn, ~s(tn))

+
δt3

3!

d2~r

dt2
(tn, ~s(tn)) +

δt4

4!

d4~r

dt4
(tn, ~s(tn)) +

3.2. TIME STEPPING FOR CONTINUOUS-TIME MODELS 25

Similarly, expanding ~s(tn − δt) around δt:

~s(tn − δt) = ~s(tn)− δt

1!
~r(tn, ~s(tn)) +

δt2

2!

d~r

dt
(tn, ~s(tn))

−δt
3

3!

d2~r

dt2
(tn, ~s(tn)) +

δt4

4!

d4~r

dt4
(tn, ~s(tn)) +

Therefore,

~s(tn + δt)− ~s(tn − δt) = 2
δt

1!
~r(tn, ~s(tn)) + 2

δt3

3!

d2~r

dt2
(tn, ~s(tn)) + . . .

= 2δt~r(tn, ~s(tn)) +O(δt3).

Equivalently,

~s(tn + δt) = ~s(tn − δt) + 2δt~r(tn, ~s(tn)) +O(δt3). (3.15)

Comparing Eqs. 3.14 and 3.15, we see that the local discretization error of the
leapfrog scheme is O(δt3) and therefore the local order of approximation is 3.
This means that the global discretization error is O(δt2) and therefore the global
order of approximation is 2. Leapfrog time-stepping is therefore a second-order
accurate. This means that as we half the time step δt, the error decreases by a
factor of 4.

3.2.1.3 Runge-Kutta-4 scheme

So far, time stepping was always done in a single forward operation. This can
be generalized to multi-stage schemes where the accuracy can be arbitrarily
increased. Runge-Kutta schemes are a particularly popular family of explicit
multi-stage time-stepping schemes. In multi-stage time-stepping schemes, eval-
uation of the future state at tn+1 given the current state at tn requires evaluating
~vp and ~gp at intermediate times between tn and tn+1. Among multi-stage Runge-
Kutta schemes, Runge-Kutta-4 (RK4) or the four-stage Runge-Kutta scheme is
the most popular.
The RK4 time-stepping scheme for an equation

dy

dt
(t) = f(t, y(t)) (3.16)

is

y(tn+1) ≈ y(tn) +
δt

6
(k1 + 2k2 + 2k3 + k4)

where (3.17)

k1 = f(tn, y(tn)) (3.18)

k2 = f(tn+ 1
2
, y(tn) +

δt

2
k1) (3.19)

k3 = f(tn+ 1
2
, y(tn) +

δt

2
k2) (3.20)

k4 = f(tn+1, y(tn) + δt k3). (3.21)

26 CHAPTER 3. TIME STEPPING ALGORITHMS

Figure 3.1: Illustration of the Runge-Kutta-4 scheme corresponding to
Eqs. 3.17–3.21 for the model equation in Eq. 3.16. (Adapted from figure in

wikipedia, CC license)

This is illustrated in Fig. 3.1 and can be understood as a sequence of three
intermediate Euler steps.
Applying the RK4 scheme to the general equations of continuous-time particle
methods, ~xp(tn+1) and ~ωp(tn+1) are is written as

~xp(tn+1) ≈ ~xp(tn) +
δt

6
(~a1p + 2~a2p + 2~a3p + ~a4p)

~ωp(tn+1) ≈ ~ωp(tn) +
δt

6
(~b1p + 2~b2p + 2~b3p +~b4p), (3.22)

where

~a1p = ~vp(tn, ~x(tn), ~ω(tn)) (3.23)

~a2p = ~vp(tn+ 1
2
, ~x(tn) +

δt

2
~a1, ~ω(tn) +

δt

2
~b1) (3.24)

~a3p = ~vp(tn+ 1
2
, ~x(tn) +

δt

2
~a2, ~ω(tn) +

δt

2
~b2) (3.25)

~a4p = ~vp(tn+1, ~x(tn) + δt~a3, ~ω(tn) + δt~b3) (3.26)

~b1p = ~gp(tn, ~x(tn), ~ω(tn)) (3.27)

~b2p = ~gp(tn+ 1
2
, ~x(tn) +

δt

2
~a1, ~ω(tn) +

δt

2
~b1) (3.28)

~b3p = ~gp(tn+ 1
2
, ~x(tn) +

δt

2
~a2, ~ω(tn) +

δt

2
~b2) (3.29)

~b4p = ~gp(tn+1, ~x(tn) + δt~a3, ~ω(tn) + δt~b3), (3.30)

3.2. TIME STEPPING FOR CONTINUOUS-TIME MODELS 27

with

~ai = [~ai1, . . . ,~aip, . . . ,~aiN]T, i = 1, . . . , 4

~bi = [~bi1, . . . ,~bip, . . . ,~biN]T, i = 1, . . . , 4.

Denoting the state of the system as ~s = [~x1, . . . , ~xp, . . . , ~xN , ~ω1, . . . , ~ωp, . . . , ~ωN]T

and the rate vector of the system ~r(t, ~s) = [~v1, . . . , ~vp, . . . , ~vN ~g1, . . . , ~gp, . . . , ~gN]T,
the equation of for a system of particles can be written as

d~s

dt
= ~r(t, ~s). (3.31)

In this formulation, the above Runge-Kutta scheme can be written in a concise
way:

~s(tn+1) ≈ ~s(tn) +
δt

6
(~k1 + 2~k2 + 2~k3 + ~k4) (3.32)

where

~k1 = ~r(tn, ~s(tn)) (3.33)

~k2 = ~r(tn+ 1
2
, ~s(tn) +

δt

2
~k1) (3.34)

~k3 = ~r(tn+ 1
2
, ~s(tn) +

δt

2
~k2) (3.35)

~k4 = ~r(tn+1, ~s(tn) + δt~k3). (3.36)

Discretization error. Following similar derivation as for the previous meth-
ods, we can see that the local discretization error and the global discretization
error for RK4 is O(δt5) and O(δt4) respectively. The RK4 scheme is therefore
fourth-order accurate.

3.2.2 Implicit scheme

Time discretization schemes are referred to as implicit if the values of dynamical
quantities of interest (~xp and ~ωp for particles algorithms) at time tn is computed
using the values of these quantities at times tk such that at least one k ≥ n. In
other words, time discretization scheme are referred to as implicit if at least the
present or one future state of the system is used to compute the present state.
This hence leads to an implicit equation that needs to be solved.

3.2.2.1 Implicit Euler scheme

The simplest implicit scheme is the implicit variant of the Euler scheme, the
“Implicit Euler” time discretization scheme (also referred to as “backward Eu-
ler” scheme). Therein, the time derivative of a quantity y at time tn+1 is

28 CHAPTER 3. TIME STEPPING ALGORITHMS

approximated as

dy

dt
(tn+1) ≈ y(tn+1)− y(tn)

tn+1 − tn
=
y(tn+1)− y(tn)

δt
. (3.37)

Applying this scheme the general equations of continuous-time particle methods,
the equation for particle p at time tn+1 is approximated as

~xp(tn+1)− ~xp(tn)

δt
≈ ~vp(tn+1, ~x(tn+1), ~ω(tn+1))

~ωp(tn+1)− ~ωp(tn)

δt
≈ ~gp(tn+1, ~x(tn+1), ~ω(tn+1)). (3.38)

It is evident from the above equation, that the next state of the system is
dependent on ~vp and ~gp evaluated at the next state, a typical consequence
if implicit schemes. Therefore, implicit schemes always result in a system of
equations that needs to be numerically solved to obtain ~xp(tn+1) and ~ωp(tn+1).
Here, we provide a complete example of a implicit scheme using the notation
~s = [~x1, . . . , ~xp, . . . , ~xN , ~ω1, . . . , ~ωp, . . . , ~ωN]T and the rate vector of the system
~r(t, ~s) = [~v1, . . . , ~vp, . . . , ~vN ~g1, . . . , ~gp, . . . , ~gN]T. We further assume that the
interaction kernelK(~xp, ~xq, ~ωp, ~ωq) = ap,p~xp+ap,q~xq+ap,N+p~ωp+ap,N+q~ωq, that
is, the interaction kernel in linear in particle position and particle properties.
In this case, ~r = A~s, where the elements ai,j of the matrix are given by the
coefficients defining the interaction kernels. In addition, we impose that the
coefficients of A are independent of time t. In this case, the equation for the
system of particles using implicit Euler is approximated as

~s(tn+1)− ~s(tn)

δt
≈ A~s(tn+1). (3.39)

Therefore,

(I− δtA)~s(tn+1) ≈ ~s(tn), (3.40)

where I is the identity matrix. This equation is a system of linear equations
that needs to be solved to obtain ~s(tn+1) by computing the inverse of matrix
(I− δtA):

~s(tn+1) ≈ (I− δtA)−1 ~s(tn), (3.41)

where (I− δtA)−1 is the inverse of matrix (I− δtA).
It is worth noting that matrix (I − δtA) is a 2N × 2N matrix and the com-
putational complexity of inverting a dense matrix of size 2N × 2N is O(N3)
using Gaussian elimination. Using state-of-the-art algorithms, this complexity
can be reduced to O(N2.373). In contrast, all the explicit scheme presented in
this chapter have a computational complexity of O(N). Even if the matrix is
sparse (typically for short-range interactions), the computational complexity is

3.2. TIME STEPPING FOR CONTINUOUS-TIME MODELS 29

O(Na) where 1 ≤ a ≤ 2. Therefore, the computational complexity using an im-
plicit scheme is Ω(N) and O(N3) as opposed to all explicit schemes presented
in this chapter for which the computational complexity is Θ(N). As we will see
next, implicit schemes however have advantageous stability properties, which
may amortize the increased computational cost.

Discretization error. The local discretization error and the global discretiza-
tion error for the implicit Euler scheme are O(δt2) and O(δt), respectively. This
follows from the same derivation as for the explicit Euler scheme.

3.2.3 Numerical stability

In the previous section, we have learned about different time-stepping schemes
and their discretization errors. Here, we analyze the numerical stability of
these schemes. Numerical stability is a property required for all time-stepping
schemes. This property requires that when the exact solution of the equation
that is discretized is bounded for all times, then the discretization also remains
bounded at all times. In other words, if we are simulating stable dynamics,
the simulation should also be stable, i.e., not diverge to infinity. Numerical
stability is usually analyzed in the linear case (“linear stability”) using the
linear differential equation:

dx

dt
(t) = λx(t), (3.42)

where λ = λR + i λI is in general complex with λR being the real part and λI

the imaginary part. The solution of this equation is

x(t) = x(0) eλt

= x(0) eλRt ei λIt

= x(0) eλRt (cosλIt+ i sinλIt).

This solution is bounded for all times t if λR ≤ 0 and λI ∈ R. If λ is purely real,
x(t) merely decays to 0 as t becomes large. If λ is purely imaginary x(t) shows
oscillatory behavior as a function of t.

An important theorem (Strang Theorem) states that if a time-stepping scheme
is stable for this simple linear test problem, then it is also stable for all other
problems. It is hence sufficient (but not necessary) for stability, to ensure that
the discretized version of the above model problem remains bounded for all
times.

Note that linear stability is a conservative requirement. If the time-stepping is
linearly stable, it is also stable for all other cases. However, it can be that it
is stable for non-linear cases without being stable in the linear case (Lyapunov
stability). Linear stability therefore implies Lyapunov stability, but not vice
versa.

30 CHAPTER 3. TIME STEPPING ALGORITHMS

3.2.3.1 Explicit Euler

The explicit Euler scheme for Eq. 3.42 gives

x(tn+1) = x(tn) + δt λ x(tn) = (1 + δtλ)x(tn).

This means that the solution is multiplied by the number (1 + δtλ) at each time
step. After (n+ 1) time steps, we hence have:

x(tn+1) = (1 + λ δt)n+1x(0),

= ρn+1x(0), (3.43)

where ρ = (1+λ δt) is referred to as the amplification factor of the time-stepping
scheme. For the discretized system to be bounded, and therefore stable, at all
times, it is easy to see that we require

|ρ| ≤ 1. (3.44)

That is,

|(1 + λ δt)| ≤ 1,

i.e., |[1 + (λR + i λI) δt]| ≤ 1,

i.e.,
√

(1 + λRδt)2 + (λIδt)2 ≤ 1,

i.e., (1 + λRδt)
2 + (λIδt)

2 ≤ 1. (3.45)

This inequality defines the region of stability of explicit Euler discretization (see
Fig. 3.2).
Since λR < 0 for our model Eq. 3.42 to be bounded, we can write λR = − |λR|.
Making this substitution in Eq. 3.45

(1− |λR| δt)2 + (λIδt)
2 ≤ 1

1− 2|λR|δt+ |λR|2δt2 + λ2
Iδt

2 ≤ 1

(|λR|2 + λ2
I)δt

2 ≤ 2|λR|δt
i.e., δt ≤ 2 |λR|

|λR|2+λ2
I

. (3.46)

Therefore, for the explicit Euler scheme of Eq. 3.42 to be numerically stable,
δt must fulfil Eq. 3.46. We call the explicit Euler scheme conditionally stable,
because the sufficient condition for stability is given by Eq. 3.46.
If λ is purely real (i.e., λI = 0), then

δt ≤ 2

|λR|
. (3.47)

The explicit Euler scheme is therefore conditionally stable when λ is purely real,
where the condition for stability is given by Eq. 3.47.
If λ is purely imaginary (i.e., λR = 0), then

δt ≤ 0. (3.48)

3.2. TIME STEPPING FOR CONTINUOUS-TIME MODELS 31

λRδt

λ
I
δ
t

Stability Boundaries

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
Explicit Euler

Leapfrog

RK4

Implicit Euler

Figure 3.2: The numerical stability boundaries for explicit Euler, leapfrog,
Runge-Kutta 4, and Implicit Euler. The region of stability for explicit Euler,
leapfrog and Runge-Kutta 4 is within the boundary, whereas that of Implicit

Euler is outside its boundary.

This condition, however, cannot be satisfied since δt must be greater than 0 in
order to advance time. Therefore, the explicit Euler scheme is unconditionally
unstable when λ is purely imaginary. In other words, explicit Euler scheme
is always linearly unstable for purely oscillatory dynamics (but not necessarily
Lyapunov-unstable!).

3.2.3.2 Leapfrog

The leapfrog scheme for Eq. 3.42 leads to

x(tn+1) = x(tn−1) + 2δt λ x(tn). (3.49)

It is not easy to factor something out here in order to get at the amplification
factor. Nevertheless, we can simply assume that such a factor exists, i.e., there
is a number with which the solution gets multiplied at each step. From this def-
inition of the amplification factor ρ, we thus substitute x(tn+1) with ρ2x(tn−1),
and x(tn) with ρx(tn−1) in Eq. 3.49. Factoring out and dividing by x(tn−1),
this substitution results in the following equation:

ρ2 − 2δtλρ− 1 = 0.

32 CHAPTER 3. TIME STEPPING ALGORITHMS

This is the equation that the amplification factor needs to fulfill. Solving this
quadratic equation, we find the following two amplification factors:

ρ1,2 = λδt±
√
λ2δt2 + 1.

Since both could be true, we can only be sure of stability if both are less than
one. The condition for stability hence is:

|ρ1| ≤ 1 and |ρ2| ≤ 1.

We now find the condition on δt that fulfills the above requirements. We start
by observing that the product of ρ1 and ρ2 is:

ρ1ρ2 = (λδt+
√
λ2δt2 + 1)(λδt−

√
λ2δt2 + 1)

= λ2δt2 − λδt
√
λ2δt2 + 1 + λδt

√
λ2δt2 + 1− λ2δt2 − 1

= −1. (3.50)

Therefore, |ρ1ρ2| = |ρ1||ρ2| = 1. As a consequence, if |ρ1| > 1, then |ρ2| < 1
and vice versa. Therefore, the only possibility of fulfilling the stability criteria
is when |ρ1| = |ρ2| = 1. That is,

|ρ1| = |λδt+
√
λ2δt2 + 1| = 1 and |ρ2| = |λδt−

√
λ2δt2 + 1| = 1.

Setting λ = − |λR| + iλI, we find that |ρ1| = |ρ2| = 1 only when λR = 0 and
|λI| δt ≤ 1. Therefore, the leapfrog scheme is conditionally stable only for purely
oscillatory dynamics.

3.2.3.3 RK4

Following the same methodology as in the previous section, one finds that the
amplification factor ρ for the RK4 scheme is:

ρ =

4∑
k=0

(δt λ)k

k!
.

The region of stability for RK4 is shown in Fig. 3.2. RK4 is conditionally stable
for both non-oscillatory and purely oscillatory dynamics.

3.2.3.4 Implicit Euler

The amplification factor ρ for implicit Euler is found as:

ρ =
1

1− λδt
. (3.51)

Thus, for stability we have to require:

|ρ| ≤ 1

1

|1− λδt|
≤ 1

1 ≤ |1− λδt|

3.2. TIME STEPPING FOR CONTINUOUS-TIME MODELS 33

This is the stability region shown in Fig. 3.2. It is the outside of a circle with
center 1 and radius 1. This includes the entire negative half-plane, meaning
that discretized function always remains bounded when the exact function is
bounded. This means that the implicit Euler scheme is always stable, for any
δt. Implicit Euler is therefore called unconditionally stable. It should, however,
be noted that stability does not guarantee accuracy since the error of implicit
Euler is O(δt) globally. Therefore, if δt is large then the error of implicit Euler
is large. But the scheme will never be unstable. This unconditional stability is
the prime reason for using an implicit scheme.

3.2.4 Consistency and convergence

Consistency of a discretization scheme requires that the error ε between the
discretized time derivative and the true time derivative reduces to zero for all
times as δt is reduced to zero. For accuracy of order p, this means that the error
has to scale with δt as:

ε(t) = C(t)δtp +O(δtp+1), (3.52)

where C(t) is a bounded time-dependent pre-factor. This is the truncation error
of the discretization scheme. As we have already derived above, the error ε(t)
for explicit Euler is

ε(t) =
δt

2!

d2~s

dt2
(t) +

δt2

3!

d3~s

dt3
(t) + . . . (3.53)

= C(t) δt+O(δt2), (3.54)

where C(t) = 1
2

d2~s
dt2 (t). The explicit Euler scheme is therefore first-order accurate

and consistent. Note that we have already arrived at the same order of accuracy
from the global error of explicit Euler. Similarly, we can show that the other
discretization schemes presented in this chapter are consistent with a certain
order of accuracy. As we have seen above, leapfrog is second-order accurate,
RK4 is fourth-accurate, and implicit Euler is first-order accurate.
Convergence of order p requires that the error between the numerical solution
at all times and the exact solution goes to zero as δt goes to zero as:

error(t) = C(t)δtp +O(δtp+1),

where C(t) is now a different pre-factor.
The Lax equivalence theorem combines the notions of consistency, stability, and
convergence. It states that given a properly posed initial condition and a dis-
cretization scheme that is consistent, stability is a necessary and sufficient con-
dition for convergence. Additionally, if a numerical scheme is convergent, then
the order of convergence is equal to the order of accuracy of the discretization
scheme.

34 CHAPTER 3. TIME STEPPING ALGORITHMS

Chapter 4

Particle Methods for
Item-based Simulations

In this chapter:

• Item-based particle simulation of discrete models

• Random number generation for stochastic item-based simulations

• Stochastic agent-based simulations

• Stochastic discrete-space simulation of chemical kinetics

• Verlet time-stepping for deterministic item-based simulations

• The symplectic velocity-Verlet integrator

• Discrete element simulations of granular flow

• Lennard-Jones molecular dynamics simulations

Learning goals:

• Know the difference between aleatory and epistemic randomness in a sim-
ulation

• Be able to sample pseudo-random numbers from a given probability dis-
tribution

• Be able to implement and use stochastic item-based simulations in con-
tinuous and discrete spaces

• Know what a symplectic integrator is

• Be able to implement the Leapfrog and velocity-Verlet integrators for item-
based simulations

35

36CHAPTER 4. PARTICLEMETHODS FOR ITEM-BASED SIMULATIONS

• Be able to implement and use deterministic item-based simulations in
continuous and discrete spaces

In item-based simulations, the modeled real-world entities are individually rep-
resented as discrete items. Examples include traffic simulations where individual
road agents (cars, bikes, etc.) are represented, or molecular dynamics simula-
tions where individual atoms are represented.
Using particle methods for item-based simulations is straightforward: every
item is represented by a particle. The particles then evolve according to the
interactions between the items. These interactions directly define the kernel ~K
and can be of any type. They need not be mathematical equations, but can
also be rule systems, subroutines, or data files. They may be deterministic or
stochastic. In the deterministic case, a particle will always do the same thing in
the same situation. In the stochastic case, the interactions contain randomness.
We illustrate these cases using concrete examples in both continuous and discrete
spaces in this chapter.
The distinction between item-based and field-based simulations may not al-
ways be obvious without knowing the model that is being simulated. Consider
the example of simulating a flexible polymer represented by multiple particles
that are connected by springs. This can be either an field-based or an item-
based simulation, depending on the underlying model. If the underlying model
is a continuum-mechanics description of the filament, then the simulation is
field-based, as the particles discretize the continuous model. The spring char-
acteristics in this case are chosen (in fact, need to be chosen) so as to correctly
converge to the continuum model when the number of particles is increased. If,
however, the underlying model is a filament consisting of solid rods that are
connected by flexible linkers, then the simulation is item-based, as each solid
rod is represented by a particle.

4.1 Stochastic dynamics

In stochastic item-based simulations, the items interact non-deterministically.
This means that the result of an interaction can not be predicted with certainty,
but is a realization of a random process. Therefore, only the probability of a
certain outcome can be quantified.
Stochastic models can describe systems that are indeed stochastic also in the real
world. Examples include the quantum mechanics of electrons, the time between
two radioactive decays, and the chemical reaction between molecules that meet
in space. This type of “real” stochasticity is called aleatory randomness (from
latin alea = dice) and naturally results in stochastic particle interactions.
Stochastic models can also describe systems that are deterministic in reality,
but too complex for us to fully model them. In this case, the stochasticity mod-
els “absence of knowledge” or “uncertainty”. Examples include the weather
forecast providing a probability for rain because there are not enough measure-
ments available to fully determine the atmospheric physics. Another example
is individual-based population dynamics where particle representing animals

4.1. STOCHASTIC DYNAMICS 37

stochastically decide to breed or eat when they meet. In reality, this process is
deterministic, but the ideas, psyche, and mental processes that lead to the deci-
sion are unknown to us. This type of stochasticity in models is called epistemic
randomness (from greek επιστηµη, episteme = knowledge).

4.1.1 Random number generation

Stochastic simulations require generating random numbers. However, determin-
istic computers cannot produce truly random numbers, which is why random
number generators (RNG) produce streams of pseudo-random or quasi-random
numbers [14]. This means that the number sequence is deterministic and repro-
ducible, but depends on a seed in a non-trivial way. For different seeds, different
number sequences are generated, which are indistinguishable from random by
a statistical test. Most programming languages and libraries provide RNGs for
the uniform probability distribution between 0 and 1.

If random numbers from a different distribution are required, they have to be
computed from the uniform ones by a transformation.

The classic transformation to generate standard-normal pseudo-random num-
bers is the Box-Muller transform [15]. It takes two pseudo-random numbers
from a uniform RNG over the unit interval (0, 1] and computes two indepen-
dent pseudo-random numbers from the standard normal distribution, that is the
Gaussian distribution with mean 0 and variance 1. The method is based on the
Euler formula for polar coordinates in the complex plane eiz = cos(z) + i sin(z)
when uniformly sampling Cartesian complex numbers in the unit square. This
is illustrated in Fig. 4.1. Taking two independent uniformly distributed random
numbers r1, r2 ∈ U(0, 1], the transform generates two standard normal variates
z1, z2 ∈ N (0, 1) as:

z1 =
√
−2 ln r1 cos(2πr2) (4.1)

z2 =
√
−2 ln r1 sin(2πr2). (4.2)

The standard normal variates can then be scaled and shifted to any desired
mean µ and standard deviation σ as: σz + µ.

The smallest 32-bit floating-point non-zero number r that can be represented is
2−32. This maps to a random number z of 6.66. The Box-Muller transform will
hence never return samples more than 6.66 standard deviations from the mean.
This means that a probability mass of about 10−11 is lost due to numerical
truncation.

The Box-Muller transform is a special case (for the normal distribution) of the
general inversion method. The inversion method provides a general algorithm
for generating pseudo-random variates from any distribution with known cu-
mulative distribution function (CDF). The CDF of a probability distribution
is:

CDF(x) =

∫ x

−∞
PDF(y) dy (4.3)

38CHAPTER 4. PARTICLEMETHODS FOR ITEM-BASED SIMULATIONS

Figure 4.1: Visualization of the Box-Muller transform. The colored points in
the unit square are uniformly distributed random numbers between 0 and 1

(r1, r2), (circles). They are mapped to a 2D Gaussian (z1, z2), drawn as
crosses. The plots at the margins are the probability distribution functions of
z1 and z2. Note that z1 and z2 are unbounded, but appear to be in [−3, 3] due
to the choice of the illustrated points. (Figure source: wikipedia, CC license)

and is a strictly monotone function with values in (0, 1]. Because the value
of the CDF is always in (0, 1], Y = CDF(X) ∈ U(0, 1] under the CDF of X.
Inverting the CDF of X hence provides a way of transforming uniform random
variates into pseudo-random numbers that are distributed with the given CDF.
The algorithm is:

! generate uniform random number over unit interval

r = uniform_RNG (0,1)

! invert the CDF analytically or numerically

compute x such that CDF(x)=r

Listing 4.1: Inversion method for RNG

For simple distributions, the CDF can be analytically inverted. For example,
exponentially distributed random numbers with parameter λ can be computed
as x = −(1/λ) ln(r), where ln is the natural logarithm. This is the analytical
inverse of the CDF of the exponential distribution, which is 1−e−λx. Solving for
x yields the inverse −(1/λ) ln(1−r). But since r ∈ U(0, 1], also (1−r) ∈ U(0, 1].
For distributions where the CDF is not analytically computable or invertible,
the inversion can be done numerically, e.g., by line search or regula falsi.

4.1.2 Example: Agent-based ecosystem simulation

When simulating the spatiotemporal dynamics of ecosystems, individual ani-
mals are often represented as agents that can move around the habitat and

4.1. STOCHASTIC DYNAMICS 39

perform certain actions. In the absence of deeper knowledge about the decision
processes of the animals, these actions are often modeled stochastically, which
is an example of epistemic stochasticity.
In this case, each particles models an animal agent. The particle position is the
position of the agent in the habitat. Properties may include the species, age, or
weight of an animal. Let’s consider a simple example: a 2D continuous-space
square habitat Ω ∈ [−1, 1]2 ⊂ R2 with discrete time. In this habitat, we want
to simulate the classic predator-prey model of Lotka-Volterra. The simulation
starts from 100 particles distributed in the domain uniformly at random. A
random 10% of them are predatory, the remaining 90% are prey.
Prey behave according to the following rules:

• They perform a random walk in the domain with diffusion constant Dprey.

• They replicate with probability rate ρprey.

Predators behave according to the following rules:

• They perform a random walk in the domain with diffusion constantDpredator.

• They eat prey they encounter, with probability α.

• They die if they do not eat for a time > T .

• They replicate with probability ρpredator every time they ate.

This model is admittedly artificial, as for example prey would live forever if
it does not get eaten. Moreover, animals can spontaneously replicate without
needing a partner. Nevertheless, it is an instructive example, as it corresponds
to a spatial variant of the classical Lotka-Volterra model, which is very well
studied. It is a non-linear model (due to the predator-prey interactions) that
can show a number of different behaviors depending on how the parameters are
chosen: extinction of one or both species, spatial waves of population density,
temporal oscillations of population sizes, or stable steady states. An agent-based
stochastic simulation of this model has been implemented by Hiroki Sayama and
is available on the web as part of the free Wolfram Demonstrations Project1.
Particles have the following properties with the corresponding initializations:

properties = STRUCT{

constant :: type = [predator , prey]

integer :: dinnertime = 1 ! time steps since last eaten

boolean :: isDead = false ! dead or alive

}

Listing 4.2: Particle properties structure of each agent

This is a discrete-time model. The interact() method shown below is only
called for the predators, interacting with prey within a cutoff radius rc (“radius
of encounter”). This can efficiently be done using cell lists for the prey. An
encounter/interaction happens whenever a predatory and a prey get closer to

1http://demonstrations.wolfram.com/PredatorPreyEcosystemARealTimeAgentBasedSimulation/

40CHAPTER 4. PARTICLEMETHODS FOR ITEM-BASED SIMULATIONS

each other than a small cutoff radius rc. Then, an interaction is done according
to the following method:

method interact(q): ! called for all predators

if q.properties.type == prey ! predators only interact with prey

r = uniform_RNG (0,1)

if r < α ! check for eating event

! this eats q

this.properties.dinnertime = 0

q.properties.isDead = true

end

end

end

Listing 4.3: Predator-prey interaction method

The interactions are symmetric, since a predator eating a prey also directly
sets the prey to dead. The evolve() method is always called for all particles,
as the simulation proceeds in discrete time steps 1, 2, 3, The interaction
only determines state changes, but does not apply them. All state changes are
applied in the evolve() method:

method evolve ():

if this.properties.type == prey

if this.properties.isDead == true

delete this

return

end

! check for replication event

r = uniform_RNG (0,1)

if r < ρprey
! replicate

new PARTICLE p

p.position = this.position

p.properties.type = prey

end

! move with random walk

this.position += [Gauss_RNG (0,2Dprey),Gauss_RNG (0,2Dprey)]

end

if this.properties.type == predator

if this.properties.dinnertime > T
! die of hunger

delete this

return

end

if this.properties.dinnertime = 0

! if just eaten , may proliferate

r = uniform_RNG (0,1)

if r < ρpredator ! check for replication event

! replicate

new PARTICLE p

p.position = this.position

p.properties.type = predator

end

end

! move with random walk

this.position += [Gauss_RNG (0,2Dpredator),Gauss_RNG (0,2Dpredator)]

4.1. STOCHASTIC DYNAMICS 41

this.properties.dinnertime += 1

end

Listing 4.4: Agent evolution method

This provides an interesting ecosystem with some of the behaviors shown in
Fig. 4.2. Note that in order to simulate the item-based model, we do not need
to known the resulting macroscopic field-based equations (in this case the Lotka-
Volterra equations). Moreover, it is very easy in such a simulation to try the
effect of different interaction rules and influences.

4.1.3 Example: Stochastic chemical kinetics

Consider a chemical reaction network, such as a cell signaling pathway or a gene
regulatory network. There is no spatial information in the network model. All
we know is which chemical can engage in reactions with each other, and how
many molecules are in the system of each chemical. The model does not care
about where they are in space, which is a good assumption when the system is
small enough to be well-mixed, i.e., diffusion is so fast that every molecule has
equal probability of being found anywhere in space.
Chemical reactions are truly random. Molecules undergo thermal motion and
randomly bump into each other. A collision randomly leads to a reaction fol-
lowing the laws of statistical mechanics, which depend, e.g., on the energy and
the orientation of the collision. Chemical reaction networks are hence most
accurately modeled as stochastic processes in the aleatory sense of randomness.
Chemical reactions convert molecules of one species into molecules of another
species. The amount of each species present in the system is given by the number
of molecules of that species. Since molecule numbers are always integers, this
defines a discrete space. If there are S different chemical species in the reaction
system, the space is S-dimensional. Since molecule numbers also cannot be
negative, the space is ~xp ∈ ZS+

0 . This is an example where the space in which
the particle positions live is not the physical, geometric space, but is the state
space of the molecular reaction network.
A particle hence represents a state of the reaction system, and its motion is
due to chemical reactions converting molecules of one species into another. At
each reaction event, the particle makes a discrete jump in the species lattice.
Since chemical reactions are stochastic, the set of particles {~xp}Np=1 is a sample
over possible states of the system. The density of particles in state space is
proportional to the probability that the real system is in that state at that
time. Since individual realizations of the random process are uncorrelated, the
dynamics of all particles are independent. Every particle thus only interacts with
itself, and there is no need for cell lists or Verlet lists to find nearby interaction
partners.
Particle density in space and time is governed by the chemical master equation
(CME), which is derived from conservation of probability and tells how the
state-space probability distribution evolves. The set of particles hence is a
discrete and finite sample from the solution of the CME. When using exact

42CHAPTER 4. PARTICLEMETHODS FOR ITEM-BASED SIMULATIONS

Figure 4.2: Visualization snapshots of the ecosystem simulation as
implemented by Hiroki Sayama on Wolfram Demonstrations Project.

Predators are shown in orange, prey in purple. The interaction cutoff radius rc
is shown as the radius of the individual disks. Top: example with parameters
leading to extinction of predators. Middle: example leading to extinction of
prey. Bottom: example showing traveling waves of predator density chasing

prey density. (Figure source:
http://demonstrations.wolfram.com/PredatorPreyEcosystemARealTimeAgentBasedSimulation/)

4.1. STOCHASTIC DYNAMICS 43

stochastic simulation algorithms (SSA) [16, 17], the sample is drawn from the
exact, analytical solution of the CME, albeit without explicitly computing it.
This is fundamental, since the solution of the CME is analytically intractable
for all but the simplest cases.
Consider a chemical network with S species s = 1, . . . , S and R reactions µ =
1, . . . , R. In SSA, each reaction µ is characterized by its propensity aµ(~xp),
which is the rate at which reaction µ happens (i.e., aµdt is the probability of
reaction µ happening in the next infinitesimal time interval dt). The probability
distribution of reaction events µ and waiting times between reactions τ is [16]:

p(τ, µ|~xp(t)) = aµeaτ , (4.4)

where a =
∑
µ aµ is the total propensity in the system. The reaction propensities

aµ are functions of the population of the involved species, i.e., they are functions
of ~xp.
Gillespie’s original Direct Method SSA samples from the above probability dis-
tribution in two steps: First, the index of the next reaction is sampled propor-
tionally to the reaction propensities as:

µ = arg min
µ′

r1a <

µ′∑
m=1

am

 . (4.5)

In words, the next reaction to happen is the smallest index µ′ for which the
cumulative sum of propensities exceeds the threshold r1a for the first time,
where r1 ∈ U(0, 1] is a uniformly distributed random number between 0 and
1. This is easily understood by imagining the interval [0, a] subdivided into
R sub-intervals such that the µ-th sub-interval has exactly length aµ. Intervals
exclude the lower boundary and include the upper boundary. If one then draws a
uniform random number between 0 and a (which is what r1a is), the probability
for this number to be in interval µ is proportional to aµ. Hence, this sampling
chooses reactions at rates given by their respective propensities.
In the second step of the algorithm, the expected waiting time until the chosen
reaction happens is computed. From statistical physics, it is known that the
waiting times between events that occur with a given frequency is exponentially
distributed. The propensity of any reaction happening is a (we know from before
that it will be reaction µ). The waiting time hence is:

τ = −1

a
ln r2 , (4.6)

where ln is the natural logarithm, and r2 ∈ U(0, 1] is a second uniformly dis-
tributed random number between 0 and 1. This amounts to sampling τ from
the exponential distribution with parameter a using the inversion method.
These two steps are done independently for each particle. Then, all particles
move according to the change in the molecular population ~xp and they update
their time as tp = tp + τ . This is also an example where time is a particle
property, since each particle has its own clock. In this example, the time is the

44CHAPTER 4. PARTICLEMETHODS FOR ITEM-BASED SIMULATIONS

only property of a particle. The simulation ends when all particles have passed a
certain final time T . Since the particles do not move between reaction events, ~xp
is a piecewise constant function of time. The cloud of particles {~xp}Np=1, i.e. their
density, hence provides a numerical approximation to the exact solution of the
CME at any time. The complete algorithm is:

foreach particle p with p.properties.time< T do

p.interact(p)

p.evolve ()

end

Listing 4.5: Particle SSA simulation

Each particle only interacts with itself, as we are simulating independent real-
izations of the random process:

method interact(q)

sample µ from Eq. 4.5

sample τ from Eq. 4.6

compute ∆~xp ! consumed and produced molecules

this.positionChange = ∆~xp
this.propertiesChange.time = τ

Listing 4.6: Particle SSA interaction

No neighbor lists are required. The evolve() method in this discrete-time
simulation simply is:

method evolve ():

this.position += this.positionChange

this.properties.time += this.propertiesChange.time

Listing 4.7: Particle SSA evolution

4.2 Deterministic dynamics

In deterministic item-based dynamics, the particle velocities or the forces acting
on the particles are given by the interaction kernels, i.e., by particle-particle
interactions. These interactions can be contact-less, as in molecular dynamics
where they are mediated by molecular force fields. They can also be mediated
by direct particle-particle contacts or collisions, as in granular flows. In either
case, a time-stepping scheme is used to advance the particles (see Chapter 3).

Ideally, the time-stepping scheme preserves the physical properties of the dis-
crete model, such as time-reversibility (thermodynamic equilibrium) and con-
servation of energy. This is guaranteed by so-called symplectic integrators. Since
the particle-particle interactions are typically the computationally most ex-
pensive part, they should be kept to a minimum. Multi-stage time-stepping
schemes, such as Runge-Kutta, are hence not often used for deterministic item-
based particle simulations.

4.2. DETERMINISTIC DYNAMICS 45

4.2.1 The Verlet time-stepping method

The most popular symplectic time-stepping scheme for item-based particle sim-
ulations is the Verlet method, which is a special case of the leapfrog scheme
introduced in Section 3.2.1.2. The method was first used in 1791 by French
astronomer Jean Baptiste Joseph Delambre to compute the motion of planets.
Carl Størmer used it in 1907 to approximate the motion of charged particles in
an electric field. It was popularized in 1967 by Loup Verlet when he used it for
molecular-dynamics simulations of Lennard-Jones fluids [12].
The Verlet method integrates the ODE:

d2~xp
dt2

= ~ap(t) (4.7)

for the particle positions ~xp as they move under the mechanical force ~Fp = mp~ap
acting on particle p with mass mp and acceleration ~ap. The Verlet scheme then
reads:

~xp(tn+1) = 2~xp(tn)− ~xp(tn−1) + δt2~ap(tn). (4.8)

It is derived by adding the Taylor expansions of ~xp(t) around the two time
points tn+1 and tn−1 as follows:

~xp(tn+1 = tn + δt) = ~xp(tn) + δt~vp +
1

2
δt2~ap +

1

6
δt3

d3~xp
dt3

+ . . .

+ ~xp(tn−1 = tn − δt) = ~xp(tn)− δt~vp +
1

2
δt2~ap −

1

6
δt3

d3~xp
dt3

+ . . .

Adding these two series yields Eq. 4.8 up to a local error of O(δt4). In order to
compute the global error, we also need to take into account that the acceleration
~ap is not known exactly but is itself computed from the approximate particle
positions. A reasonably involved error consideration (see e.g., wikipedia page for
“Verlet integration”) shows that this leads to a global error of O(δt2). One order
is lost due to the fact that reaching final time T requires O(δt−1) time steps,
another order is lost due to the accelerations being approximate themselves.
Adding or subtracting Taylor series around different points in order to derive a
higher-order scheme is a common technique in scientific computing, known as
Richardson extrapolation.
One problem is that the particle velocity ~vp cancels out when adding the two
Taylor series. The Verlet time-stepping scheme directly updates the positions
based on the acceleration or force acting on the particles. This may be un-
desirable, since the velocity could be an important property that the particles
carry, e.g., in order to compute kinetic energy. The usual remedy is to compute
velocity as a centered finite difference from the positions as:

~vp(tn) =
~xp(tn+1)− ~xp(tn−1)

2δt
, (4.9)

which is also second-order accurate. The overall accuracy of the method is hence
second order.

46CHAPTER 4. PARTICLEMETHODS FOR ITEM-BASED SIMULATIONS

The Verlet time-stepping method has the following advantages and disadvan-
tages:

+ centered around tn and hence time-reversible

+ positions are directly moved from accelerations or forces in one step

+ conservation of momentum and energy (the scheme is symplectic)

— velocity is not directly available and needs to be approximated separately

— the scheme is prone to numerical extinction because it involves adding a
very small number (δt2~ap is very small for small δt) into a much larger
one. This severely limits how small one can choose δt, because δt2 must
be larger than machine epsilon for the method to advance at all.

These drawbacks led to the development of two modifications: the leapfrog
scheme and the velocity-Verlet scheme, as discussed next.

4.2.2 Leapfrog time-stepping for deterministic item dy-
namics

The leapfrog scheme has already been introduced in Section 3.2.1.2. It is al-
gebraically equivalent to the Verlet method, but is not affected by numerical
extinction problems. The price one pays for this is that the velocity and posi-
tion values are not available at the same time points, but at staggered, shifted
times. As discussed earlier, the Leapfrog scheme is only stable for purely oscil-
latory linear systems. Here, we are solving Eq. 4.7. For linear stability analysis,
we have ~a(~x) = λ~x. The ODE then describes an undamped oscillator and hence
is purely oscillatory. The leapfrog method is hence stable (and symplectic) if
the time step is chosen such that |δtλi| < 1, which can always be achieved. As
we know, stability in the linear case implies stability also for nonlinear right-
hand sides. The leapfrog scheme is hence a good choice for item-based particle
simulations.
For item-based deterministic particle dynamics, where the particle property is
~ωp = ~vp, the leapfrog scheme reads:

~vp(tn+1/2) = ~vp(tn−1/2) + δt~ap(tn)

~xp(tn+1) = ~xp(tn) + δt~vp(tn+1/2), (4.10)

where the positions of the particles are available at integer time steps, but the
particle velocities are available only at the half-steps tn±1/2 = t ± 1

2δt (hence
the name “leapfrog”). The particles carry these half-step velocities as one of
their properties. The time-staggering can be a problem when the velocities
and positions are needed at coinciding time points, for example to compute the
kinetic and potential energies of the system at identical times in order to check
the evolution of the total energy.

4.2. DETERMINISTIC DYNAMICS 47

This is identical to the leapfrog scheme as we derived it by Taylor expansion in
Section 3.2.1.2 when halving the time step size. Indeed, replacing δt → 1

2δt in
Eq. 3.13 leads to:

~vp(tn+1/2) = ~vp(tn−1/2) + δt~ap(tn)

~xp(tn+1/2) = ~xp(tn−1/2) + δt~vp(tn), (4.11)

which becomes identical to Eq. 4.10 when shifting the index in the second line
by +1

2 .
It is also easy to see that Leapfrog is identical to the Verlet method in Eq. 4.8:
Substituting the first line of Eq. 4.10 into the second gives:

~xp(tn+1) = ~xp(tn) + δt(~vp(tn−1/2) + δt~ap(tn))

= ~xp(tn) + δt~vp(tn−1/2) + δt2~ap(tn)

= 2~xp(tn)− ~xp(tn−1) + δt2~ap(tn),

where we have used in the last step: δt~vp(tn−1/2) = ~xp(tn)−~xp(tn−1) according
to the second line of Eq. 4.10 with the index shifted by −1.

4.2.3 The velocity-Verlet time-stepping method

The velocity-Verlet scheme is a variant of the leapfrog and the Verlet methods
that computes positions and velocities at coinciding time points, hence avoiding
the main drawback of the leapfrog scheme. It is also algebraically equivalent
to the Verlet method and hence symplectic and time-reversible. However, it is
only applicable if the acceleration or force depends only on the particle position,
and not on the velocity. This is typically the case in friction-less systems. If the
acceleration also has a velocity-dependent component, e.g. friction, the scheme
is not explicit any more. The velocity-Verlet scheme reads:

~xp(tn+1) = ~xp(tn) + δt~vp(tn) +
1

2
δt2~ap(tn)

~vp(tn+1) = ~vp(tn) +
1

2
δt [~ap(tn) + ~ap(tn+1)] . (4.12)

Again, it is easy to see that this is identical to the Verlet method in Eq. 4.8:
Shifting the index of the second line of Eq. 4.12 by −1, and substituting the
resulting expression for ~vp(tn) into the first line, we find:

~xp(tn+1) = ~xp(tn) + δt

(
~vp(tn−1) +

1

2
δt [~ap(tn−1) + ~ap(tn)]

)
+

1

2
δt2~ap(tn)

= ~xp(tn) + δt~vp(tn−1) +
1

2
δt2~ap(tn−1) + δt2~ap(tn)

= 2~xp(tn)− ~xp(tn−1) + δt2~ap(tn),

where we have in the last step used the fact that: δt~vp(tn−1) + 1
2δt

2~ap(tn−1) =
~xp(tn) − ~xp(tn−1) according to the first line of Eq. 4.12 with index shifted by
−1.

48CHAPTER 4. PARTICLEMETHODS FOR ITEM-BASED SIMULATIONS

In practice, the scheme is often implemented as:

~vp(tn+1/2) = ~vp(tn) +
1

2
δt~ap(tn)

~xp(tn+1) = ~xp(tn) + δt~vp(tn+1/2)

compute ~ap(tn+1) from ~xp(tn+1)

~vp(tn+1) = ~vp(tn+1/2) +
1

2
δt~ap(tn+1) , (4.13)

which avoids the numerical extinction problem when computing δt2 and saves
memory by re-using the same three memory locations. The value ~a(tn+1) can
also be stored and re-used in the subsequent iteration. This is identical to
Eq. 4.12, as can easily be verified by substituting the expression for ~vp(tn+1/2)
from the first line into both the second and last to eliminate ~vp(tn+1/2).

The velocity-Verlet scheme is the standard time-stepping method for item-based
deterministic particle dynamics with forces that only depend on the particle
positions. The scheme is symplectic and second-order accurate. If the forces
also depend on the velocities, the Leapfrog scheme is the standard choice instead.
We see examples of both in the reminder of this chapter.

4.2.4 Example: discrete element method for granular flows

The discrete element method (DEM) is a deterministic particle method for the
item-based description of granular flows [18]. Granular flows are flows of granu-
lar materials, such as sand, salt, or mining stones. The collective motion of the
individual granules can make the material flow, like sand dunes migrate in the
wind, snow avalanches flow down the slope, and sand drizzles down an hourglass
[19]. The governing equations for the macroscopic flow fields (i.e., the velocity,
density, and pressure fields) are unknown and pose a famous open problem in
physics [20, 21, 22, 23]. Besides experiments, item-based particle simulations
are the prevalent tool of study for such systems.

In discrete element methods, every grain of the granular material is explicitly
represented as a particle. Each particle has a position ~xp(t) and carries the
properties: velocity ~vp(t), angular velocity ~ωp (t), elastic deformation ~up(t), ra-
dius Rp of the grain it represents, mass mp of the grain, polar moment of inertia
Ip of the grain. Particles interact with each other in direct-contact collisions.
These collisions are classically modeled according to [24] with the correction
from [25]. The collision force has two components: a radial component due to
elastic deformation of the colliding grains, and a tangential component due to
friction between the colliding grains. The radial, elastic deformation is given
by:

dpq = (Rp +Rq)− |~xp − ~xq| . (4.14)

The radial and tangential components of the relative velocity between the two

4.2. DETERMINISTIC DYNAMICS 49

particles at the point of collision are:

~vrpq = ((~vp − ~vq) · ~npq)~npq (4.15)

~vtpq = ~vp − ~vq − ~vrpq − (~ωpRp + ~ωqRq)× ~npq , (4.16)

where ~npq = (~xp − ~xq)/|~xp − ~xq| is the unit normal vector onto the plane of
contact. The evolution of the elastic tangential deformation is integrated over
the duration of the contact as:

d~upq
dt

= ~vtpq (4.17)

with initial condition ~upq(t = 0) = 0 at the time of first contact. The radial and
tangential forces acting on the colliding particles then are:

~F rpq =

√
dpq

Rp +Rq

(
krdpq~npq − γrmeff~v

r
pq

)
(4.18)

~F tpq =

√
dpq

Rp +Rq

(
−kt~upq − γtmeff~v

t
pq

)
, (4.19)

where kr and kt are the radial and tangential elastic constants of the grains,
and γr and γt the radial and tangential friction constants of the grains. The
effective collision mass is meff = mpmq/(mp +mq).
One physical problem is that the elastic tangential deformation ~up cannot grow
indefinitely, since the grains will at some point start to slide against each other
with no further deformation induced. In order to model this sliding limit, the
tangential displacement is truncated as given by Coulomb’s law |~F tpq| < µ|~F rpq|.
This is simply done by rescaling the tangential force as:

~F tpq ← ~F tpq
µ|~F rpq|
|~F tpq|

(4.20)

and adjusting the displacement as:

~upq = − 1

kt

(
~F tpq

√
Rp +Rq
dpq

+ γtmeff~v
t
pq

)
. (4.21)

The total resultant force on particle p is then computed by summing the forces
from all particles q it is currently in contact with:

~Fp = mp~g +
∑
q

(~F rpq + ~F tpq) , (4.22)

where ~g is the acceleration due to gravity or any other body force. The total
torque acting on particle p is similarly computed as:

~Tp = −Rp
∑
q

(~npq × ~F tpq) . (4.23)

Implementing these particle interaction laws leads to the following implementa-
tion of the interact method:

50CHAPTER 4. PARTICLEMETHODS FOR ITEM-BASED SIMULATIONS

method interact(q):

! "this" refers to the particle of which the method is a member

dx = this.position - q.position

dist = sqrt(dx · dx) ! scalar product

diam = this.properties.radius + q.properties.radius

! skip this interaction if the particles do not touch

if (dij > diam*diam) return [0, 0]

! compute overlap of particles (Eq. 4.14)

dpq = diam - dist

! unit normal vector of contact

dist = 1.0/ dist

normal = dx*dist

! relative velocity at contact point

vpq = this.properties.velocity - q.properties.velocity

! radial component of the relative velocity (Eq. 4.15)

vpqr = vpq · normal ! scalar product

! tangential component of the relative velocity (Eq. 4.16)

a = this.properties.angularvelocity * this.properties.radius +

q.properties.angularvelocity * q.properties.radius

vpqt = vpq - vpqr - a × normal ! cross product

! integrate elastic deformation for this contact (Eq. 4.17) using explicit Euler

! deformation is stored separately for each contact pair

this.properties.deformation(q) += upq(cidx+1,ipt) + dt*vpqt

! radial contact force (Eq. 4.18)

factor = sqrt(dpq/diam)

meff = this.properties.mass * q.properties.mass/

(this.properties.mass + q.properties.mass)

gnm = gamma_n*meff

Fpqr = factor *(k_n*dpq*normal - gnm*vpqr)

! tangential contact force (Eq. 4.19)

gtm = gamma_t*meff

Fpqt = factor*(-k_t*this.properties.deformation(q)-gtm*vpqt)

! truncate displacement to satisfy Coulomb yield criterion (Eq. 4.20)

a = mu*mu*(Fpqr · Fpqr) ! scalar product

b = Fpqt · Fpqt ! scalar product

if b>a

a = sqrt(a/b)

! truncate the force magnitude accordingly

Fpqt = Fpqt * a

! compute the corresponding u_pq from Eq. 4.21

factor = 1.0/ factor

this.properties.deformation(q) = -k_tinv *(factor*Fpqt + gtm*vpqt)

end

! total force on the particle (Eq. 4.22)

kx = Fpqr + Fpqt

! total torque on the particle (Eq. 4.23)

kw = normal × Fpqr ! cross product

return [kx , kw]

Listing 4.8: Interaction method for DEM

One may then use any of the algorithms in Chapter 2 to compute all pair-

4.2. DETERMINISTIC DYNAMICS 51

wise particle interactions within a cutoff radius of rc = 2 maxpRp, which are
all particles that a particle can possibly collide with. This yields the final
propertiesChange.velocity= ∆~xp =

∑
kx and propertiesChange.angularvelocity=

∆~ωp =
∑

kw, i.e., the total force and torque acting on each particle. In order
to include the effect of gravity, however, the force should not be initialized to
zero, but to mp~g for each particle before starting the interaction loop.
Using the leapfrog scheme for time-stepping, the particle positions and proper-
ties are updated as:

~ωp(tn+1) = ~ωp(tn) +
δt

Ip
~Tp(tn) (4.24)

~vp(tn+1/2) = ~vp(tn−1/2) +
δt

mp

~Fp(tn) (4.25)

~xp(tn+1) = ~xp(tn) + δt~vp(tn+1/2) (4.26)

The angular velocity ~ω is integrated using the explicit Euler scheme. In this
model, the radius Rp, mass mp, and polar moment of inertia Ip of all par-
ticles remain constant throughout the simulation. Note that we cannot use
velocity-Verlet time-stepping for this simulation, because the friction makes the
acceleration depend on the velocity.
In the practical implementation, the particles store the half-step velocities in
their property variable ~vp. This is just naming, and the physical meaning of half
time points remains. The implementation of the evolve method then becomes:

method evolve ():

this.properties.angularvelocity +=

this.propertiesChange.angularvelocity*dt/this.properties.polarinertia

this.properties.velocity +=

this.propertiesChange.velocity*dt/this.properties.mass

this.position += dt*this.properties.velocity

Listing 4.9: Particle evolution for DEM

Using the PPM Library [26, 27] to implement these methods on distributed-
memory parallel computers, DEM simulations of sand avalanches have been
done using more than a hundred million particles on 192 processors [5].
The model presented here is very general and includes many of the important
physical phenomena (grains of different sizes, friction, elasticity, deformations,
rotation, Hertz pressure). The main limitation is that all grains are spheres.
Extending to more complex grain shapes is, however, challenging. Already for
ellipsoids in 3D there is no analytical formula for collision detection known (for
ellipses in 2D there is one, though). One then has to resort to representing the
surfaces of the grains using triangulations or level sets, and detecting collisions
numerically. This, however, renders the simulation very time-consuming.

4.2.5 Example: Lennard-Jones molecular dynamics

Molecular dynamics [2] is an item-based model to study atomic and molecu-
lar processes in simulations. Since systems at this time and length scale are

52CHAPTER 4. PARTICLEMETHODS FOR ITEM-BASED SIMULATIONS

extremely difficult to study experimentally, the molecular dynamics simulation
method is fundamental to our understanding of molecular systems, which is why
its inventors Martin Karplus, Michael Levitt, and Arieh Warshel were awarded
to 2013 Nobel Prize in chemistry.
In molecular dynamics, atoms or molecules are explicitly represented by particles
that take positions in continuous space. The continuous forces acting on them
are given by atomic force fields or pairwise potentials. The atoms then move
according to Newtonian mechanics. The surprising fact that this reproduces the
correct physics even at those length scales is part of the magic of the molecular
dynamics method.
While the basic algorithm is always the same, the force fields differ from ap-
plication to application, and it is something between an art and a science to
design and validate new force field models for certain molecular systems, in-
cluding lipids, proteins, or DNA. The simplest historic example of a force field
is the Lennard-Jones potential [12]. It approximates the interaction between
electrically neutral inert atoms (e.g., noble gases) as:

ULJ(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
, (4.27)

where r is the distance between the two atoms, ε is the depth of the potential
well, and σ is the distance at which the interaction potential becomes zero (see
Fig. 4.3). The minimum of the potential hence has value ULJ(rm) = −ε and is
reached at r = rm = 21/6σ. The r12 term is repulsive, describing short-range
Pauli exclusion due to electron orbitals starting to overlap. The r6 term models
the attraction from van-der-Waals forces. The exponents 6 and 12 are chosen
for efficient computation, since the r12 term can be computed as the square of
the r6 term.
The force acting between two atoms that are a distance of r apart is given by
the negative gradient of the interaction potential, thus:

~F (r) = −∇rULJ(r) = 24ε
(
2σ12/r13 − σ6/r7

)
. (4.28)

In order to efficiently compute this term across all particle pairs, we precompute
and define s = σ6 and ρ = r−2. Then, the above can be rewritten as:

~F (r) = 24εr
(
2s2ρ7 − sρ4

)
. (4.29)

Since long-range interactions are negligibly small, we introduce a cutoff radius
rc = 2.5σ, beyond which the potential is smaller than ε/60. Nevertheless, trun-
cating the potential at rc introduces a discontinuity at r = rc where the potential
jumps to zero and the force will be infinite. In order to avoid the instabilities
this would introduce in the simulation, the potential is shifted upward so that it
is exactly zero at r = rc. This shift is inconsequential for the particle dynamics,
because the force only depends on the potential gradient, which is invariant to
shifts. The final, truncated and shifted potential then is:

ULJ,trunc(r) =

{
ULJ(r)− ULJ(rc) r ≤ rc
0 r > rc

. (4.30)

4.2. DETERMINISTIC DYNAMICS 53

Figure 4.3: Plot of the Lennard-Jones potential function. (Figure source:
thesaurus.rusnano.com)

The force is still given by Eq. 4.29 for r ≤ rc. For r > rc, the force is zero
and the interactions are not considered in the simulation. While the shifted
potential has no jump at r = rc, the force (i.e., its gradient) still jumps. This,
however, is generally harmless. Only in special cases, like when computing gas-
liquid critical points, this force discontinuity can be a problem. In this case,
more elaborate smooth truncations (so-called tail corrections) are used, which,
however, slightly change the model.

When simulating a Lennard-Jones fluid with particles, each particle represents
one atom. The particles have positions ~xp and velocity ~vp as their only property.
All particles are atoms of the same type and hence all have the same mass m.

The particles hence interact according to the following method:

method interact(q):

r = |this.position - q.position|

rho = 1.0/(r*r)

s = sigma^6

F = 2.0*s^2* rho^7 - s*rho^4

F = 24.0* epsilon*r*F

kx = 0 ! there is no direct velocity

kw = F/m ! acceleration

return [kx ,kw]

Listing 4.10: Particle interaction for Lennard-Jones MD

A typical sanity check for Lennard-Jones molecular dynamics simulations is to

54CHAPTER 4. PARTICLEMETHODS FOR ITEM-BASED SIMULATIONS

check that the total energy

Etot = Ekin + Epot (4.31)

Ekin =
1

2
m
∑
p

~vp · ~vp (4.32)

Epot = 4ε
∑
p

∑
q,rpq<rc

[(
σ

rpq

)12

−
(
σ

rpq

)6
]
, (4.33)

is conserved. It is therefore common practice to use a symplectic time-stepping
scheme that conserves energy, such as the velocity-Verlet scheme (see Sec. 4.2.3).
This can be used here because the force acting on a particle only depends on
the position of the particles and not on their velocities. The evolve method
then becomes:

method evolve ():

this.properties.velocity +=

dt*0.5* this.propertiesChange.velocity

this.properties.position += this.properties.velocity*dt

compute new accelerations of the particles

this.properties.velocity += 0.5*dt*this.propertiesChange.velocity

Listing 4.11: Particle evolution for Lennard-Jones MD

The interaction partners within the cutoff radius rc are commonly found using
Verlet lists. Verlet lists are a good choice for Lennard-Jones simulations, because
the atoms do not move far, but rather jiggle around their equilibrium position.
Therefore, the simulation is first run until the system has equilibrated from the
initial particle placement, i.e., until the potential and kinetic energies plateau.
The particles are initially commonly placed on a Cartesian lattice with a given
density, defining the density of the Lennard-Jones fluid to be simulated.

Chapter 5

Discretizing Linear
Differential Operators on
Particles

In this chapter:

• Field-based particle simulations of continuous models

• Discretizing linear differential operators over particles

• Smooth particle function approximation

• Smooth particle hydrodynamics

• Particle strength exchange

• Discretization-corrected Particle strength exchange

• Moment conditions

• Overlap condition

• Diffusion operators

Learning goals:

• Be able to approximate a smooth function using particles

• Know SPH, PSE, and DC-PSE for discretizing linear differential operators
over particle function approximations

• Know the advantages and drawbacks of these methods

• Be able to derive PSE kernels for any given linear differential operator

55

56CHAPTER 5. DISCRETIZING LINEARDIFFERENTIAL OPERATORS ON PARTICLES

• Be able to implement the resulting discretization schemes

• Be able to implement the DC-PSE kernel system

Recall the equation of motion for particle p for continuous-time models intro-
duced in Chapter 3:

d~xp
dt

(t) = ~vp(t, ~x(t), ~ω(t))

d~ωp
dt

(t) = ~gp(t, ~x(t), ~ω(t)). (5.1)

The velocity ~vp and/or the property rate ~gp in general contain spatial differential
operators acting on ~xp and/or ~ωp. For example, one way (the Fick’ean way)
of describing diffusion would be to set ~vp = 0 and ~gp = D∇2~ωp, where D is
the diffusion constant. In order to represent this on particles, the differential
operators need to be discretized over the particle locations. In Chapter 3, we
presented numerical methods to discretize the temporal differential operator
d
dt . In the present Chapter, we introduce discretization schemes for spatial
differential operators:

Dβ =
∂|β|

∂xβ1

1 ∂xβ2

2 · · · ∂x
βd
d

, (5.2)

where d is the dimension of space. β = (β1, β2, . . . , βd) is a multi-index such
that |β| = β1 + β2 + . . . + βd. For example, d = 1 and β = (1) is the first
derivative along x, i.e., ∂

∂x .

5.1 Smooth Particle Hydrodynamics: SPH

SPH is a particle method invented originally to solve astrophysical problems
in three dimensions. The governing equations of such problems emerge from
classical Newtonian hydrodynamics. Therefore, this method is referred to as
smooth particle hydrodynamics or SPH in short. The method, however, has
subsequently been used as a general method to discrete differential operators
on particles.
In SPH, the process of discretizing a spatial derivative starts with the inte-
gral representation of the function. Any function f(~x) can be represented as a
convolution of the function with the Dirac delta distribution:

f(~x) =

∫
Ω

f(~y)δ(~x− ~y)d~y,

where Ω represents the complete domain of f(·), and the Dirac delta δ(·) is
defined as

δ(~x− ~y) =

{
∞, if ~x = ~y

0, ~x 6= ~y.
(5.3)

5.1. SMOOTH PARTICLE HYDRODYNAMICS: SPH 57

This is an identity and is exact. However, it is not useful for practical compu-
tation, since the Dirac delta is infinite and discontinuous.
Therefore, the Dirac delta function is replaced by a smooth function with a
smoothing length ε, then the function f(~x) can be approximated by fε(~x) where:

f(~x) ≈ fε(~x) =

∫
Ω

f(~y)Wε(~x− ~y)d~y, (5.4)

where Wε(·) is referred to as the smoothing function, or smoothing kernel, or
kernel function, or mollification kernel, or simply kernel. The variable ε is the
smoothing length defining the length scale of smoothing, and the approximation
fε is referred to as the mollified approximation of the function f . For the
mollified approximation fε to be a proper approximation of the function f(~x)
according to Eq. 5.4, the kernel function must fulfill the following properties:

1. The kernel Wε(·) must be even:

Wε(~z) = Wε(−~z).

2. The kernel must be normalized:∫
Ω

Wε(~z)d~z = 1.

3. The kernel must converge to the Dirac delta:

lim
ε→0

Wε(~z) = δ(~z).

One standard choice for Wε(·) that fulfills these properties is:

Wε(~z) =
1

εd
W

(
~z

ε

)
, (5.5)

where W is any even, normalized, local function.
As mentioned earlier, fε is an approximation of the true function f . We would
now like to find the approximation error. This is, however, cumbersome to derive
in d dimensions. We, therefore, assume a one-dimensional domain in order to
derive the approximation error. The results from this derivation, however, are
also valid in higher dimensions. For a one-dimensional domain, Eq. 5.4 can be
rewritten as

fε(x) =

∫
Ω

f(y)Wε(x− y)dy,

Taylor-expanding f(y) around x:

f(y) = f(x) +
1

1!

df(x)

dx
(y − x) +

1

2!

d2f(x)

dx2
(y − x)2 + . . .

58CHAPTER 5. DISCRETIZING LINEARDIFFERENTIAL OPERATORS ON PARTICLES

and inserting this into the above mollified function approximation:

fε(x) =

∫
Ω

[f(x) +
1

1!

df(x)

dx
(y − x) +

1

2!

d2f(x)

dx2
(y − x)2 + . . .]Wε(x− y)dy

= f(x)

∫
Ω

Wε(x− y)dy +
df(x)

dx

∫
Ω

(y − x)Wε(x− y)dy +

1

2

d2f(x)

dx2

∫
Ω

(y − x)2Wε(x− y)dy + . . .

= f(x)

∫
Ω

Wε(x− y)dy +

∞∑
n=1

1

n!

dnf(x)

dxn

∫
Ω

(y − x)nWε(x− y)dy.

Substituting in the integral y − x = z, we get

fε(x) = f(x)

∫
Ω

Wε(−z)dz +

∞∑
n=1

1

n!

dnf(x)

dxn

∫
Ω

znWε(−z)dz

= f(x)

∫
Ω

Wε(z)dz +

∞∑
n=1

1

n!

dnf(x)

dxn

∫
Ω

znWε(z)dz

= f(x)

∫
Ω

Wε(z)dz +

∞∑
n=2,4,...

1

n!

dnf(x)

dxn

∫
Ω

znWε(z)dz

= f(x) +

∞∑
n=2,4,...

1

n!

dnf(x)

dxn

∫
Ω

znWε(z)dz.

The first line in the above equation is merely a consequence of substituting
y − x = z. The second line is a consequence of Wε(·) being even. The third
line is a consequence of

∫
Ω
znWε(z) = 0 for odd n, for which znWε(z) is an odd

function. The fourth line is a consequence of the normalization condition of
Wε(·).
The approximation error between the mollified approximation fε and the true
function f therefore is

error = |fε(x)− f(x)|,

=

∣∣∣∣∣
∞∑

n=2,4,...

1

n!

dnf(x)

dxn

∫
Ω

znWε(z)dz

∣∣∣∣∣ ,
=

∣∣∣∣∣
∞∑

n=2,4,...

1

n!

dnf(x)

dxn

∫
Ω

zn
1

ε
W
(z
ε

)
dz

∣∣∣∣∣ ,
(

since Wε(z) =
1

ε
W
(z
ε

))

=

∣∣∣∣∣
∞∑

n=2,4,...

1

n!

dnf(x)

dxn
εn
∫

Ω

αnW (α) dα

∣∣∣∣∣ , (
setting

z

ε
= α

)
.

Therefore, the approximation error between the mollified approximation fε and

the true function f is O(ε2) since 1
2

d2f(x)
dx2 ε2

∫
Ω
α2W (α) dα is the dominant error

5.1. SMOOTH PARTICLE HYDRODYNAMICS: SPH 59

term in the above expression for small ε. The second moment of W is just a
constant. This results in a second-order approximation of the function f .
A frequently used choice for W is a Gaussian kernel:

Wε(z) =
1

ε
√

2π
e
−z2

2ε2 .

Note that the Gaussian kernel is strictly positive, i.e., the value of the Gaussian
kernel is always greater than zero.
If, however, the smoothing kernel Wε(·) in addition also fulfills the following
conditions: ∫

Ω

znWε(z)dz = 0, for n = 2, 4, . . . r − 2, (5.6)

then the approximating error between the mollified approximation fε and the
true function f becomes O(εr). It is easy to see that this can never be achieved
by strictly positive, even, normalized kernels. The Gaussian kernel can hence be
at most second order accurate. Kernels whose order of approximation is greater
than 2 cannot be strictly positive.
The condition prescribed by Eq. 5.6 imposes that the moments1 of Wε be zero
for the second, fourth, up to the (r− 2)th moment. Such conditions prescribing
values for the moments of a kernel are referred to as moment conditions.
This provides us with a smooth approximation fε(x) of the function f(x) to
order O(εr). However, the function is still continuous. Discretizing it over the
particles starts from Eq. 5.4, where the integral is replaced by a sum. This
amounts to using quadrature (numerical integration)

f(~x) ≈ fε(~x) =

∫
Ω

f(~y)Wε(~x− ~y)d~y ≈
∑
p

f(~xp)Wε(~x− ~xp)Vp = f(~x)hε . (5.7)

This now only requires knowing the function value at the particle locations ~xp.
However, the numerical integration introduced the particle volume Vp, which
is the integration element or the weight of the quadrature scheme. This is a
limitation in practice, as it has to be computed. One way is to do a Voronoi
tessellation of the particles in order to find the portion of space for which any
given particle is responsible. Mostly, however, particles are simply initialized on
a regular Cartesian grid, which renders all volumes equal to hd, where h is the
grid spacing.
This discretization introduces another error, the quadrature error, which de-
pends on the quadrature scheme used. For midpoint quadrature (i.e., the rect-
angular rule), we have:

ωp = f(~xp)Vp .

The discretization (quadrature) error then becomes:

fhε (~x) = fε(~x) +O

(
h

ε

)s
,

1The nth moment of a function f(x) is
∫
Ω x

n f(x)dx.

60CHAPTER 5. DISCRETIZING LINEARDIFFERENTIAL OPERATORS ON PARTICLES

where h is the distance between nearest-neighbor particles and s is the con-
vergence order of the quadrature scheme used (s = 1 for the above midpoint
quadrature). From this expression, we see that in order for the overall error to
decrease for higher-order quadrature, we have to require that

h

ε
< 1 .

This condition means that the kernel widths must be greater than the distance
between nearest particles. The condition is thus frequently called overlap condi-
tion because it states that “particles must overlap.” This makes sense because
otherwise the value of the function f at off-particle locations can not be com-
puted any more, as all information is missing there, which also no longer allows
to bound the approximation error.
As opposed to simply sampling the function at the particle locations, the above
formulation with the overlapping smoothing kernels has an important advan-
tage: it is smooth. This means that it can be evaluated at any location, also
between particles. Moreover, it allows computing differential operators, which
require the function to have an appropriate level of smoothness.
Evaluating a differential operator is then done by exploiting its linearity:

Dβf(x) ≈ Dβfhε (x) ≈
∑
p

f(~xp)D
βWε(~x− ~xp)Vp , (5.8)

since f(~xp) and Vp are constants with respect to ~x. Evaluating the differential
operator applied to f(x) at particle p hence becomes:

Dβfhε (~xp) ≈
∑
q

f(~xq)
[
DβWε

]
(~xp − ~xq)Vq =

∑
q

~K(~xp, ~xq) , (5.9)

This of course only works for linear differential operators. There are also non-
linear ones, such as Schwarzian derivatives, but they are much less common in
practice. SPH hence provides a simple recipe for approximating linear differen-
tial operators over functions represented on particles: use the (usually analyti-
cally known) derivative of the smoothing kernel in the function approximation.
This also immediately shows that the smoothing kernel (and hence the whole
function approximation) must be sufficiently smooth, as otherwise the derivative
would not exist.
However, there are three drawbacks with this way of approximating differential
operators in particle methods: (1) The particle interactions are not symmet-

ric. This is because ~K(~xp, ~xq) 6= − ~K(~xq, ~xp). This means that the represented
quantity (e.g., mass) is not exactly conserved, and that using symmetric neigh-
bor lists will not lead to a reduction in the number of kernel evaluations. This is
akin to other asymmetric non-conservative schemes, like Fishelove’s scheme [28].
(2) The approximation loses one order of accuracy with every degree of deriva-
tive. This is because of the inner derivative of the kernel Wε = ε−dW (z/ε). It’s
first derivative is W ′ε = ε−(d+1)W ′(z/ε). So, with every derivative we get an
additional pre-factor of 1/ε, which cancels an order in the εr pre-factor of the

5.2. PARTICLE STRENGTH EXCHANGE (PSE) 61

leading error order. Therefore, if the kernel Wε fulfills the moment conditions
to order r, the |β|-th derivative of Wε will only fulfill them to order r−|β|. Note
that the higher moments are not exactly zero, because of the quadrature error.
For sufficiently high derivatives, this eventually leads to an approximation error
that is constant or even grows with increasing particle number. The classical
SPH formulation as presented here is therefore strictly-speaking inconsistent,
as it does not converge for all derivatives. While various “corrected SPH” for-
mulations attempt to alleviate this problem, we present in the next section a
different approach that avoids the problem altogether. (3) The kernels in an
rc-neighborhood from a boundary are wrong, because some of the interaction
partners are missing. While the operator can still be computed, the result is
going to be wrong. A common remedy is to place mirror particles outside the
domain (i.e., mirroring all particles in an rc-neighborhood from the boundary
at the boundary) and then computing the full interaction spheres including the
mirror particles. This allows imposing homogeneous boundary conditions only.
For homogeneous Neumann conditions, the mirror particles are given the same
value as the respective source particle. For homogeneous Dirichlet boundary
conditions, the sign is flipped. Besides its limitation to homogeneous boundary
conditions, this so-called method of images is only first-order accurate (on gen-
eral boundaries; at flat boundaries it is exact), hence reducing the convergence
order of the method to 1 in the L∞-norm.

5.2 Particle Strength Exchange (PSE)

One obvious remedy for point (2) above is to independently derive different
kernels for the different derivatives, instead of using derivatives of the same
kernel. This then allows to impose the moment conditions independently for
each kernel, engineering all of them to the same order of accuracy. At the same
time, the derivation can also be made symmetric and hence conservative. The
function approximation is still done in the same way as in SPH, and in particular
the overlap condition still holds. But differential operators are approximated
using different, symmetric particle interactions.

One such method is Particle Strength Exchange (PSE), which has originally
been developed as a deterministic pure particle method to simulate diffusion
in the continuum (macroscopic) description. The method was introduced by
Degond and Mas-Gallic in 1989 [29, 30, 31]. Just like SPH, it is also based on a
deterministic integral approximation of the diffusion (i.e., differential) operator.
Moreover, PSE also uses a smooth particle function approximation, which allows
recovering the field values everywhere in space. The difference to SPH is that
we are using a different kernel ηβ for every differential operator β, where ηβ 6=
Dβη. Since PSE is a pure particle method, we look for an integral operator
approximation with a certain kernel η. This will then lead to a particle-particle
interaction scheme as outlined in Section 1.2.4.

62CHAPTER 5. DISCRETIZING LINEARDIFFERENTIAL OPERATORS ON PARTICLES

Isotropic Homogeneous Diffusion

We start deriving PSE with the classic case of isotropic, homogeneous diffusion,
where we want to approximate the Laplacian on scattered particle locations such
that mass is conserved. For simplicity, we consider the 1D case. The derivation
in d dimensions is analogous.
In 1D, the diffusion equation is

∂u

∂t
= D

∂2u

∂x2
,

where D is the diffusion constant.
We start by expansion of the concentration field u(y, t) into a Taylor series
around point x:

u(y) = u(x) + (y − x)
∂u

∂x
+

1

2
(y − x)2 ∂

2u

∂x2
+

1

6
(y − x)3 ∂

3u

∂x3
+ (5.10)

We then subtract u(x) on both sides, multiply with the (unknown) kernel ηε =
ε−1η(x/ε) and integrate over the entire domain of solution Ω in order to arrive
at an integral operator approximation:∫

Ω

(u(y)− u(x))ηε(y − x)dy =

∫
Ω

(y − x)
∂u

∂x
ηε(y − x)dy

+
1

2

∫
Ω

(y − x)2 ∂
2u

∂x2
ηε(y − x)dy

+
1

6

∫
Ω

(y − x)3 ∂
3u

∂x3
ηε(y − x)dy + . . . (5.11)

The term we want is the ∂2u
∂x2 on the right-hand side. We thus design the kernel

η such that this term is the only one remaining on the right-hand side, up to a
certain order r. This requires that:

• η be even ⇔ all integrals over odd powers vanish

•
∫
z2η(z)dz

!
= 2⇔ second term becomes ∂2u

∂x2 · 1
2 · 2 · ε

2

•
∫
zsη(z)dz

!
= 0 ∀ 2 < s ≤ r+ 1 ⇔ higher-order terms vanish up to order

r + 1

The moment conditions are based on the change of variables z = (y − x)/ε,
hence dy = εdz, for which the second expansion order becomes:

1

2

∫
Ω

(y − x)2 ∂
2u

∂x2
ηε(y − x)dy =

1

2

∂2u

∂x2

∫
Ω

z2ε2
1

ε
η(z)εdz

=
1

2

∂2u

∂x2
ε2
∫

Ω

z2η(z)dz . (5.12)

5.2. PARTICLE STRENGTH EXCHANGE (PSE) 63

Using such an η, the only terms remaining are:∫
Ω

(u(y)− u(x))ηε(y − x)dy =
∂2u

∂x2
ε2 +O(εr+2) . (5.13)

The factor ε2 comes from the fact that the differential operator is found with
the second moment of η(z) in the Taylor expansion. We now solve this equation
for the desired term, which is the right-hand side of the diffusion equation:

∂2u

∂x2
=

1

ε2

∫
Ω

(u(y)− u(x))ηε(y − x)dy +O(εr) . (5.14)

(5.15)

This is the integral operator approximation to the 1D diffusion operator. Any
kernel function η that fulfills the above three moment conditions can be used.
The next step is to discretize this integral operator as a quadrature over the
set of N particles, thus:

∂2uh

∂x2
(xhp) =

1

ε2

N∑
q=1

Vq(u
h
q − uhp)ηε(x

h
q − xhp) . (5.16)

If all particles have the same volume, the difference in the first parenthesis can
simply be computed over the strengths ωp = Vpu(xp). This is the discrete form
of the diffusion operator. In d dimensions, the operator looks exactly the same.
Even the pre-factor ε−2 remains the same because it comes from the order of
the approximated differential operator and not from the dimension. The only
thing that changes is that a different η has to be used, namely one that satisfies
the above moment conditions in dD, for the respective d.
The final PSE method is again formulated in terms of particles and the dy-
namics of their properties. Particles have positions ~xp and properties (in PSE
traditionally called “strengths”) ωp(t) = Vpu(~xp, t). The particle positions and
strengths then evolve according to:

d~xp
dt

= ~0

dωp
dt

=
VpD

ε2

N∑
q=1

(ωq − ωp)ηε(~xq − ~xp) .
(5.17)

if all particles have the same volumes.
PSE has an intuitive interpretation in terms of Fick’s law of diffusion. Fick’s law
states that in diffusion, mass is flowing against the concentration gradient. This
is exactly what the PSE operator does: the first parenthesis computes the mass
difference between a pair of interacting particles whereas the kernel η converts
this difference into a flux of mass depending on the distance between the two
particles.

64CHAPTER 5. DISCRETIZING LINEARDIFFERENTIAL OPERATORS ON PARTICLES

Frequently used second-order accurate kernels in 1D and 3D are:

ηε(x) =
1

2ε
√
π
e−

x2

4ε2 x ∈ R

η(~x) =
15

π2

1

|~x|10 + 1
~x ∈ R3

The first kernel is a Gaussian, which naturally follows from the transition density
(Green’s function) of diffusion being a Gaussian and the differential equation
(i.e., the diffusion equation) being linear (Superposition principle). The sec-
ond example shows that there can also be other kernels that fulfill the moment
conditions. Polynomial kernels such as the one here are computationally more
efficient than Gaussians because we don’t need to evaluate an exponential func-
tion. Both of these kernels have order r = 2 and are strictly positive. Like
in SPH, strictly positive kernels cannot achieve orders r > 2. However, these
kernels are independent of the function-approximation kernel W and they are
not equal to the second derivative of W . Unlike in SPH, it is possible in PSE
to, e.g., use a Gaussian kernel for W in combination with a polynomial kernel
for η.

Anisotropic Inhomogeneous PSE (Optional Material)

So far we have focused on isotropic and homogeneous diffusion for simplicity.
The same derivations, however, can also be made for anisotropic and inhomo-
geneous diffusion, where D is a full matrix. We then need to find an integral
approximation to the operator ∇ · (D∇) rather than the Laplacian ∆. In d
dimensions, this leads to the integral operator approximation:

∇ · (D∇u) ≈ Qεu(~x, t) = ε−2
∫

Ω
(u(~y)− u(~x))σε(~x, ~y, t)d~y (5.18)

(5.19)

(we skip the details of the derivation because there is nothing conceptually new)
and the PSE scheme remains

dωp
dt

=
Vp
ε2

N∑
q=1

(ωq − ωp)σε(~xp, ~xq, t) for Vp = Vq

d~xp
dt

= ~0 .

(5.20)

The operator kernel σ is now a bit more complicated and has the form:

σε(~xp, ~xq, t) = ε−2ηε(~xp − ~xq)︸ ︷︷ ︸
isotropic part

d∑
i,j=1

Mij(~xp, ~xq, t)(~xp − ~xq)i(~xp − ~xq)j︸ ︷︷ ︸
anisotropic

(5.21)

While the isotropic part of the operator (NOT of D!) looks analogous to
isotropic PSE, there is a second part, which depends on the space directions

5.2. PARTICLE STRENGTH EXCHANGE (PSE) 65

i and j. It contains the mapping tensor M, which maps distance to strength
in a direction-dependent way (before this was just the scalar η). In order for
the method to conserve mass, M must be symmetric, such that M(~xp, ~xq) =
M(~xq, ~xp) for any pair of interacting particles p and q. The simplest way to
ensure this is to set:

M(~xp, ~xq, t) =
1

2
(m(~xp, t) + m(~xq, t)) , (5.22)

where m is related to the diffusion tensor as:

m(~x, t) = D(~x, t)− 1

d+ 2
Tr(D(~x, t)) · 1 . (5.23)

Subtracting the trace from the diffusion tensor leaves the anisotropic part. This
is correct because the isotropic part has already been accounted for in the pre-
factor to the sum in σ.
A frequently used choice in 3D for the radially symmetric isotropic kernel η(r)
is:

ηε(~xp − ~xq) =
4

ε3π
√
π
e−
|~xp−~xq|22

ε2 in R3 . (5.24)

This kernel is second-order accurate, as it fulfills the moment conditions for
r = 2.

5.2.1 Example

We show an example is using PSE to simulate isotropic homogeneous diffusion,
as a benchmark, we compare to the method of Random Walk (RW), where
particles never change their strength, but perform Brownian motion by adding
Gaussian random numbers to their positions. The method of Random Walk is
inspired by the microscopic interpretation of diffusion (i.e., Brownian motion),
and is stochastic item-based simulation method (Well, at the same time it is also
a field-based method using Monte-Carlo integration to perform the quadrature
in the operator discretization). We solve the following benchmark problem on
the one-dimensional (d = 1) ray Ω = [0,∞), subject to the following initial and
boundary conditions:{

u(x, t = 0) = u0(x) = xe−x
2

x ∈ [0,∞), t = 0
u(x = 0, t) = 0 x = 0, 0 < t 6 T .

(5.25)

The exact analytic solution of this problem is

uex(x, t) =
x

(1 + 4Dt)
3/2

e−x
2/(1+4Dt) . (5.26)

Both RW and PSE simulations of this benchmark case are performed with
varying numbers of particles in order to study convergence. The boundary
condition at x = 0 is satisfied using the method of images.

66CHAPTER 5. DISCRETIZING LINEARDIFFERENTIAL OPERATORS ON PARTICLES

For the PSE we use the 2nd order accurate Gaussian kernel

ηε(x) =
1

2ε
√
π
e−x

2/4ε2 , (5.27)

which fulfills the moment conditions in one dimension to order r = 2. The
continuous-time equations of evolution for the particle positions and strengths
are given by Eq. 5.17. We place N particles regularly spaced in the interval
[0, X], where the right-most particle location X is chosen such that the solu-
tion value never exceeds machine epsilon there. All particle volumes are then
identical to Vp = X/N . The particles interact with all neighbors within a cutoff
radius rc = 5ε, beyond which the interaction kernel becomes negligibly small.
The interact method hence simply is:

method interact(q):

z = (q.position - this.position)

eta = Exp(-z*z/(4* epsilon*epsilon))

eta = eta /(2* epsilon*Sqrt(pi))

kw = (q.properties.strength - this.properties.strength)*eta

kw = kw*((X/N)*D/(epsilon*epsilon))

kx = 0

return [kx,kw]

Listing 5.1: 1D PSE interaction method

Using explicit Euler for time integration of the particle strength (their only
property), the evolve method is:

method evolve ():

! Time step size dt is a parameter

this.properties.strength += this.propertiesChange.strength * dt

Listing 5.2: 1D PSE evolution method

The particle positions never change, due to the PSE formulation.
The concentration values at particle locations xp and simulation time points
tn = nδt are recovered as

uPSE(xp, t
n) = ωnp ·N/X = ωp/Vp ,

as all particle volumes are same. For RW, binning of the particles is used to
recover the concentration field in a piecewise constant approximation.
Figure 5.1 shows the RW and PSE solutions in comparison to the exact solution
at a final time of T = 10 for N = 50 particles and a diffusion constant of
D = 10−4. The accuracy of the simulations for different numbers of particles is
assessed by computing the final L2 error

L2 =

[
1

N

N∑
p=1

(uex(xp, T)− u(xp, T))
2

]1/2

(5.28)

for each N . The resulting convergence curves are shown in Fig. 5.2.

5.2. PARTICLE STRENGTH EXCHANGE (PSE) 67

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

x

c
(x

)

(a) RW

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

c
(x

)

x

(b) PSE

Figure 5.1: Comparison of RW (a) and PSE (b) solutions of the benchmark
case. The solutions at time T = 10 are shown (circles) along with the exact

analytic solution (solid line). For both methods N = 50 particles, a time step
of δt = 0.1, and ν = 10−4 are used. The RW solution is binned in M = 20

intervals of δx = 0.2. For the PSE a core size of ε = h is used.

lo
g
(e
rr
o
r)

log(N)

Figure 5.2: Convergence curves for RW and PSE. The L2 error versus the
number of particles for the RW (triangles) and the PSE (circles) solutions of
the benchmark case at time T = 10 are shown. For both methods a time step

of δt = 0.1 and ν = 10−4 are used. The RW solution is binned in M = 20
intervals of δx = 0.2 and for the PSE a core size of ε = h is used. The machine

epsilon is O(10−6).

For RW we observe the characteristic slow convergence of O(1/
√
N). For PSE,

a convergence of O(1/N2) is observed, in agreement with the employed 2nd

order kernel function. Below an error of 10−6, machine precision is reached

68CHAPTER 5. DISCRETIZING LINEARDIFFERENTIAL OPERATORS ON PARTICLES

(the simulations were done in single precision, which yields 23 bits of significant
precision). It can be seen that the error of a PSE simulation is several orders of
magnitude lower than the one of the corresponding RW simulation with the same
number of particles. Using only 100 particles, PSE is already close to machine
precision. It is evident from these results that large numbers of particles are
necessary to achieve reasonable accuracy using RW in complex-shaped domains.

5.2.2 PSE for arbitrary differential operators

The concept of PSE can also be extended to arbitrary linear differential opera-
tors [32]. The idea is that using appropriate moment conditions, any derivative
from the right-hand side of Eq. 5.11 can be isolated.
PSE operators approximate any spatial derivative

Dβf(~x) =
∂|β|f(~x)

∂xβ1

1 ∂xβ2

2 . . . ∂xβdd
(5.29)

of a (sufficiently smooth) field f by an integral operator over scattered particle
locations [32]:

Qβf(~x) =
1

ε|β|

∫
Rd

(f(~y)± f(~x)) ηβε (~x− ~y) dy = Dβf(~x) +O(εr) . (5.30)

The operator kernel ηβε (~z) = ε−dηβ(~z/ε) is scaled to width ε (kernel width) and
chosen such as to fulfill continuous moment conditions [32]. The sign in Eq. 5.30
is positive for odd |β| and negative for even |β|. This is because for odd |β|,
the kernel η is also odd (then, all even terms in the Taylor expansion vanish)
and thus η(xp − xq) = −η(xq − xp) gives the sign change for symmetry. If all
volumes are the same, the operator thus remains symmetric and conservative.
Since for odd |β|, the 0-th moment vanishes, the sign of the constant term in
the Taylor expansion can be chosen arbitrarily, because it is zero.
The integral operator in Eq. 5.30 is discretized by midpoint quadrature over the
particles, thus,

Qβhf(~xp) =
1

ε|β|

∑
q∈N (~xp)

Vq (f(~xq)± f(~xp)) η
β
ε (~xq − ~xp) , (5.31)

where ~xp and Vp are the position and the volume of particle p, respectively,
and N (~x) is the set of all particles in an rc-neighborhood around ~x. The cutoff
radius rc of the operator is defined such that N (~0) approximates the support
of ηβε with a certain accuracy. The resolution of the discretization is given by
the characteristic interparticle spacing h, defined as the dth root of the average
particle volume.
The PSE method overcomes two of the main limitations of SPH: the resulting
scheme is symmetric and hence conservative, provided all particles have the
same volume Vp = Vq = V or PSE is used in strong form. Also, the PSE kernels
have the same order of convergence for all degrees of derivatives. The former is

5.2. PARTICLE STRENGTH EXCHANGE (PSE) 69

trivial to see, since the PSE interaction operator for identical volumes only de-
pends on the difference between the two interacting particles. The effect of p on
q is hence symmetric with the effect of q on p. This symmetry allows us to use
symmetric cell lists and Verlet lists in order to reduce the computational cost by
a factor of two. Moreover, it renders the method conservative in the sense that
the total strength in the system is always conserved to machine precision. This
is because particles only exchange strength (hence then name “particle strength
exchange”), but no strength is lost or created during an interaction. The latter
point is due to the fact that different differential operators are approximated us-
ing different kernels. This provides the degrees of freedom necessary to engineer
them all to the same order of convergence.
The main drawbacks of PSE are:
(1) Boundary conditions are difficult to impose. For particles in an rc-neighbor-
hood from the boundary, some of the interaction partners are missing. While the
operator can still be computed, the result is going to be wrong. As a remedy, it
has been proposed to use one-sided kernels at all particles in an rc-neighborhood
from the boundary [32]. These then only interact with partners in the half of
the Verlet sphere toward the interior of the domain. This, however, introduces
a conditional statement into the inner loop of the method, preventing it from
vectorizing. Moreover, the one-sided kernels fail if the boundary is curved on
the length scale of rc or below. A second possibility is to place mirror particles
outside the domain (i.e., mirroring all particles in an rc-neighborhood from the
boundary at the boundary) and then computing the full interaction spheres
including the mirror particles. This allows imposing homogeneous boundary
conditions only. For homogeneous Neumann conditions, the mirror particles
are given the same value as the respective source particle. For homogeneous
Dirichlet boundary conditions, the sign is flipped. Besides its limitation to
homogeneous boundary conditions, this so-called method of images is only first-
order accurate (on general boundaries; at flat boundaries it is exact), hence
reducing the convergence order of the method to 1 in the L∞-norm. The most
general method is to solve a separate boundary integral problem for the particles
near the boundary and then modifying their strength such that the boundary
condition is satisfied when evaluating the PSE operator there. This can be done
using a heat-panel method [33] or by extrapolation [34]. While this works for
arbitrary boundaries, it is the most involved method.
(2) The PSE method is still inconsistent, like SPH, but for a different reason.
This is because the overlap condition requires that h and ε are proportional.
Hence, h/ε is a constant, and the quadrature error of (h/ε)s is also a constant
for any quadrature with finite s (like the midpoint quadrature). This means
that even when increasing the resolution of a simulation (i.e., decreasing h), the
quadrature error remains constant. Sooner or later in a convergence plot, the
error hits this plateau and does not decrease any further. The method is hence,
strictly speaking, inconsistent. The only way around this is to simultaneously
increase the number of particles in the support of the kernel, as h decreases.
This means that h decreases faster than ε and the computational cost of the
method increases over-proportional with N . This is also the case for SPH,

70CHAPTER 5. DISCRETIZING LINEARDIFFERENTIAL OPERATORS ON PARTICLES

which also has an error plateau from the quadrature. However, in SPH the
error from losing one order with every derivative usually dominates, making it
rather inconsistent with β. PSE is consistent with β, but still inconsistent with
ε.

(3) Both SPH and PSE are sensitive to distortions in the particle arrangement
(“Lagrangian grid distortion”). They work well for particles that are symmetri-
cally and more or less evenly distributed. In that case, the continuous moment
conditions used to derive the kernels also hold to a good approximation in the
discrete, i.e., when actually evaluating the kernels only at the particle locations.
For sufficiently distorted or irregular particle distributions, however, this is no
longer the case. Then, the discrete moments one actually gets when evaluat-
ing the kernels over a given particle distribution may be too different from the
continuous moments, hence making leading-order terms in the Taylor expansion
dominate the error again. This is the point where DC-PSE comes in.

5.3 DC-PSE

DC-PSE was originally introduced as a discretization correction to PSE in order
to address the above two limitations of PSE. DC-PSE operators transparently
handle boundaries and are not limited by any quadrature error. The latter is
achieved by getting rid of the quadrature altogether by directly formulating the
operator in the discrete domain. Satisfying the moment conditions discretely
on the given particle distribution also guarantees that the method converges at
full order for irregular particle distributions. Since on irregular particle distri-
butions, the local neighborhood of each particle looks different, also the discrete
moment conditions around different particles can be different. This means that
in DC-PSE, we do not only have a different kernel for each differential operator,
but a different kernel for each particle. This provides the necessary degrees of
freedom to satisfy the moment conditions everywhere. But it also creates three
problems: (1) kernels cannot be analytically pre-computed any more and need
to be determined at runtime, and re-determined every time the particles moved.
This creates additional computational cost, which may, however, be amortized
by the higher accuracy and stability of the resulting simulation [35, 36]. (2) For
certain “pathological” particle distributions (e.g., all particles are on a line) in
the neighborhood of any particle, the system of moment conditions may not have
full rank or be ill-conditioned. Then, the method does not work. (3) Since the
kernel is different for every particle, the method is no longer symmetric, and
hence also not conservative. It can be made conservative only for first-order
convergence. For all higher convergence orders symmetric DC-PSE operators
do not exist, and symmetric cell- or Verlet-lists cannot be used. While sim-
ulations of equilibrium models may benefit from exact conservation, DC-PSE
is well-suited for simulations of non-equilibrium models or open systems where
no conservation laws exist. It is also well suited for simulations in moving or
complex-shaped domains and near boundaries, since the kernels automatically
adjust to the actual particle distribution at runtime.

5.3. DC-PSE 71

We exemplify the derivation in 2D here by considering a differential operator,
of arbitrary order, for a sufficiently smooth field f(x) = f(x, y) at point xp =
{xp, yp} of a particular particle set

Dm,nf(xp) =
∂m+n

∂xm∂yn
f(x, y)

∣∣∣∣
x=xp,y=yp

(5.32)

where m and n are integers that determine the order of the differential operator.

The DC PSE operator for the spatial derivative Dm,nf(xp) looks like the stan-
dard PSE operator from Eq. 5.31:

Qm,nf(xp) =
1

ε(xp)m+n

∑
xq∈N (xp)

(f(xq)± f(xp)) η

(
xp − xq
ε(xp)

)
. (5.33)

The difference is that the kernel η now satisfies discrete moment conditions
and that ε(x) is a function of space, since we also allow irregular particle dis-
tributions where h is different for different particles. The original weak-form
PSE formulation also includes a particle volume Vp and a dimension-dependent
normalization factor for the particle volume ε(xp)

−d, where d is the spatial di-
mension, providing a normalization of the integration length, area, or volume
for the particle. As we now allow each particle to have a different εp = ε(xp),
both the particle volume and the normalization pre-factor of the kernel can be
absorbed into εp. Since εp is determined numerically at runtime, there is no need
in DC-PSE to care about particle volumes. N (xp) is the set of points in the
support of the kernel function. Just as in standard PSE, the sign in Eq. (5.33)
is positive for odd (m+ n), and negative for even.

We want to construct the DC-PSE operators so that as we decrease the spacing
between particles, h(xp) → 0, the operator converges to the spatial derivative
Dm,nf(xp) with an asymptotic rate r for all positions xp:

Qm,nf(xp) = Dm,nf(xp) +O(h(xp)
r), (5.34)

where it is convenient to explicitly define the component-wise average neighbor
spacing as h(xp) = 1

N

∑
xq∈N (xp)(|xp − xq|+ |yp − yq|), where N is the number

of particles in the support of xp.

Therefore, we need to find a kernel function η(x) and a scaling relation ε(xp)
that satisfy Eq. (5.34). To achieve this, we replace the term f(xq) in Eq. (5.33)
with its Taylor expansion around xp:

Qm,nf(xp) =
1

ε(xp)m+n

∑
xq∈N (xp)

(∞∑
i=0

∞∑
j=0

(xp − xq)i(yp − yq)j(−1)i+j

i!j!
Di,jf(xp)

± f(xp)

)
η

(
xp − xq
ε(xp)

)
. (5.35)

72CHAPTER 5. DISCRETIZING LINEARDIFFERENTIAL OPERATORS ON PARTICLES

This can be rewritten as:

Qm,nf(xp) =

 ∞∑
i=0

∞∑
j=0

ε(xp)
i+j−m−n(−1)i+j

i!j!
Di,jf(xp)Z

i,j(xp)

 (5.36)

± Z0,0(xp)ε(xp)
−m−nf(xp),

where

Zi,j(xp) =
∑

xq∈N (xp)

(xp − xq)i(yp − yq)j

ε(xp)i+j
η

(
xp − xq
ε(xp)

)
(5.37)

are the discrete moments of η. In order to keep the number of neighbors of
each particle bounded by a constant (for computational efficiency), we require
the scaling parameter ε(xp) to converge at the same rate as the average spacing
between points h(xp), that is

h(xp)

ε(xp)
∈ O(1), (5.38)

then we find that the discrete moments Zi,j are O(1) as h(xp)→ 0 and ε(xp)→
0. This is because the terms

(xp−xq)i(yp−yq)j(−1)i+j

ε(xp)i+j are O(1) from the scaling

relation and definition of h(xp). Further, the second term η
(
xp−xq
ε(xp)

)
is O(1),

through normalization of the function argument. Therefore, the scaling behavior
of Eq. (5.36) is determined solely by the ε(xp)

i+j−m−n term of smallest power
with non-zero coefficient. Note that Eq. (5.38) is a much looser constraint on
the average spacing of particles than the overlap condition of the PSE method.
We no longer need to require h/ε < 1, but it can be bounded by any other
constant, also > 1.
Given Eq. (5.38), the convergence rate r of the DC PSE operatorQm,n (Eqs. 5.34
and 5.36) is determined by the coefficients of the terms ε(xp)

i+j−m−n in Eq. 5.36.
This coefficient is required to be 1 when i = m and j = n, and 0 otherwise as
long as i+ j −m− n < r. This results in the following set of conditions for the
discrete moments,

Zi,j(xp) =

i!j!(−1)i+j i = m, j = n

0 αmin ≤ i+ j < r +m+ n

<∞ otherwise

(5.39)

where αmin is 1 if m+n is even and 0 if odd. This is due to the zeroth moment
Z0,0 trivially canceling out for odd m+n, whereas it cannot (and must not) be
zero for even m+n. Note that the pre-factor ε(xp)

−m−n in Eq. (5.33) simplifies
the expression of the moment conditions.
For the kernel function η(x) to be able to satisfy the l conditions given in
Eq. (5.39) for arbitrary particle distributions, the operator must have l degrees
of freedom. This leads to the requirement that the support N (x) of the kernel

5.3. DC-PSE 73

function has to include at least l neighboring particles. It is common to use
kernel functions of the form [35]

η(x) =

i+j<r+m+n∑

i,j

ai,jx
iyje−x

2−y2
√
x2 + y2 < rc

0 otherwise.

(5.40)

This is a monomial basis multiplied by an exponential window function, where
rc sets the kernel support and the ai,j are scalars to be determined to satisfy the
moment conditions in Eq. (5.39). The cut-off radius rc should be set to include
at least l particles in the support N (x). A simple choice is to set rc to include
the l − 1 nearest neighbors of each particle.
If αmin = 1, the a0,0 coefficient is a free parameter and can be used to in-
crease the numerical robustness of solving the linear system of equations for the
remaining ai,j [35].
Since the kernels are different for different particles and can hence not be pre-
computed, they are determined numerically at runtime. This means that the
coefficients ai,j are found by solving a linear system of equations resulting from
the moment conditions. With the above choice of kernel function we have,

Qm,nf(xp) =
1

ε(xp)m+n

∑
xq∈N (xp)

(f(xq)± f(xp))p

(
xp − xq
ε(xp)

)

aT (xp)e
−(xp−xq)2−(yp−yq)2

ε(xp)2 , (5.41)

where p(x) = {p1(x), p2(x), . . . , pl(x)} and a(x) are vectors of the monomial
basis and of their coefficients in Eq. (5.40), respectively.
Using this formulation, the operator system becomes straightforward. For ex-
ample, if we set r = 2 and approximate the first spatial derivative in the x
direction, D1,0, we have l = 6 moment conditions (r + m + n = 3, αmin =
0: (i, j) = {(0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (2, 0)}) and the monomial basis is
p(x, y) = {1, x, y, yx, x2, y2}. The linear system for the kernel coefficients then
is:

A(xp)a
T (xp) = b, (5.42)

where

A(xp) = B(xp)
TB(xp) ∈ Rl×l (5.43)

B(xp) = E(xp)
TV (xp) ∈ Rk×l (5.44)

b = (−1)m+nDm,np(x)|x=0 ∈ Rl×1. (5.45)

The scalar number k ≥ l is the number of particles in the support of the operator,
l the number of moment conditions to be satisfied, and V (xp) the Vandermonde
matrix constructed from the monomial basis p(xp). E(xp) is a diagonal matrix
containing the square roots of the values of the exponential window function at

74CHAPTER 5. DISCRETIZING LINEARDIFFERENTIAL OPERATORS ON PARTICLES

the neighboring particles in the operator support. Further, for particle xp we
define {zq(xp)}kq=1 = {xp−xq}xq∈N (xp), the set of vectors pointing to xp from
all neighboring particles xq in the support of xp. Then explicitly

V (xp) =

p1

(
z1(xp)
ε(xp)

)
p2

(
z1(xp)
ε(xp)

)
· · · pl

(
z1(xp)
ε(xp)

)
p1

(
z2(xp)
ε(xp)

)
p2

(
z2(xp)
ε(xp)

)
· · · pl

(
z2(xp)
ε(xp)

)
...

...
. . .

...

p1

(
zk(xp)
ε(xp)

)
p2

(
zk(xp)
ε(xp)

)
· · · pl

(
zk(xp)
ε(xp)

)

 ∈ Rk×l (5.46)

E(xp) = diag

{e−|zq(xp)|22ε(xp)2

}k
q=1

 ∈ Rk×k. (5.47)

Once the matrix A(xp) is constructed at each particle xp, the linear systems
can be solved for the coefficients a(xp) used in the DC PSE operators at each
particle as in Eq. (5.41). The matrix A(xp) only depends on the number of
moment conditions l and the local distribution of particles in N (xp). Therefore,
if the system in Eq. (5.42) is solved using a decomposition (such as LU) of
A(xp). this form can be re-used for multiple right-hand sides, i.e., for different
differential operators (albeit with different convergence rates r). The matrix
A contains information about the spatial distribution of the particles around
the center particle xp. The invertibility of A depends entirely on that of the
Vandermonde matrix V , due toE being a diagonal matrix with non-zero entries.
The condition number of A depends on both V and E and determines the
robustness of the numerical inversion.

5.3.1 Finite-differences are a limit case of DC-PSE (Op-
tional Material)

For uniform Cartesian particle distributions with spacing h and a finite operator
support of radius rc, the DC-PSE operator (Eq. 5.33) can be rewritten as

Qβhf(x) =
cn

ε|β|

br2c/h
2c∑

|k|2=0

(f(x+ kh)± f(x)) ηβ(−ck), k ∈ Zn . (5.48)

Using the kernel template given in Eq. 5.40, the value of the DC kernel function
at −ck is

ηβ(−ck) =

 |β|+r−1∑
|γ|=αmin

β+γ even

aγ(−ck)γ

 e−c
2|k|2 (5.49)

and the discrete moments become

Zαh = cn
br2c/h

2c∑
|k|2=0

|β|+r−1∑
|γ|=αmin

β+γ even

aγ(ck)α+γe−c
2|k|2 . (5.50)

5.3. DC-PSE 75

Here, “β + γ even” stands for all multiindices γ for which β + γ contains only
even elements. All other γ need not be considered since the corresponding
coefficients aγ can a priori be set to zero.
The DC PSE operators for c → ∞ can be derived from Eqs. 5.48 to 5.50 and
the moment conditions. For the second-order accurate DC PSE operator ap-
proximating the first derivative along dimension i (r = 2, β = ei), for example,
the DC kernel function can be written as

ηei(−ck) =
kie
−c2|k|2

cn+1
∑br2c/h2c
|l|2=0 l2i e

−c2|l|2
. (5.51)

Using this kernel, the operator (Eq. 5.48) becomes

Qeih f(x) =

∑br2c/h2c
|k|2=0 (f(x+ kh) + f(x)) kie

−c2|k|2

h
∑br2c/h2c
|k|2=0 k2

i e
−c2|k|2

.

This is a FD stencil with extent and weights that can be adjusted by the choice
of the cutoff radius rc and the ratio c. Letting c→∞ yields

lim
c→∞

Qeih f(x) =
f(x+ hi)− f(x− hi)

2h
, hi = hei , (5.52)

for any value of rc ≥ h. This is the classical centered difference stencil for the
first derivative of f .
Following the same procedure, the second-order DC PSE operator approximat-
ing the Laplacian ∆f(x) = ∇2f(x) becomes

lim
c→∞

QLap
h f(x) = lim

c→∞

n∑
i=1

Q2ei
h f(x) =

∑n
i=1 [f(x+ hi)− 2f(x) + f(x− hi)]

h2

(5.53)
and the fourth-order DC PSE approximation of the first derivative along ei
yields

lim
c→∞

Qeih f(x) =
−f(x+ 2hi) + 8f(x+ hi)− 8f(x− hi) + f(x− 2hi)

12h
.

(5.54)
On Cartesian particle distributions, all these classical compact FD stencils can
hence be interpreted as DC PSE operators with a kernel width ε tending to zero
(grid points).

76CHAPTER 5. DISCRETIZING LINEARDIFFERENTIAL OPERATORS ON PARTICLES

Chapter 6

Eulerian Particle Methods
for Field-based Models

In this chapter:

• Eulerian particle methods

• Numerical scheme using Eulerian particle methods

• Numerical stability of Eulerian methods

• Numerical stability due to advection in Eulerian particle methods

Learning goals:

• Be able to devise Eulerian numerical schemes

• Be able to analyze numerical stability of Eulerian particle methods

• Know the advantages and disadvantages of Eulerian particle methods

In this chapter, we use the techniques presented in the Chapters 3 and 5 to
develop particle methods for numerically solving continuous-time field-based
models. Recall the general equation of motion for such particle methods that
was presented in Chapters 3 and 5:

d~xp(t)

dt
= ~vp(t, ~x(t), ~ω(t))

d~ωp(t)

dt
= ~gp(t, ~x(t), ~ω(t)), (6.1)

where ~xp(t) is the position, ~ωp(t) is the property, ~vp is the velocity, and ~gp is
the property rate of particle p. Using this framework, we will develop Eulerian
particle methods for field-based models in this chapter. In Eulerian particle

77

78CHAPTER 6. EULERIAN PARTICLEMETHODS FOR FIELD-BASEDMODELS

methods, position of particles do not change in time and only the properties
evolve as a function of time. That is,

d~xp(t)

dt
= 0

d~ωp(t)

dt
= ~g Eul

p (t, ~x(t), ~ω(t)), (6.2)

where ~g Eul
p denotes the property rate in Eulerian particle methods. Since the

particle positions do not change in time, the equation of motion for any Eulerian
particle method is simply:

d~ωp(t)

dt
= ~g Eul

p (t, ~x(t), ~ω(t)). (6.3)

We will apply this framework (Eq. 6.3) to develop Eulerian particle methods to
numerically solve a model equation. As a model equation, we choose a general
transport equation, namely the advection-diffusion equation.

6.1 Model equation: Advection-diffusion

The general equation describing the transport of a scalar quantity u due to
advection and diffusion processes is given by

∂u

∂t
+ ∇ · (v u) = ∇ · (D∇u) + S(~x, t). (6.4)

Here u is the scalar quantity being transported. This could be concentration in
a description for mass transfer, or temperature in a description for heat transfer.
The tensor D is the diffusivity. The quantity v is the velocity with which the
scalar quantity u is advected. If ∇ · v = 0, the flow field or the velocity field
v is incompressible. If v is incompressible, then the advection term ∇ · (v u)
simplifies to v ·∇u. S represents a source term. The source term could for
example be chemical reaction terms in a mass transfer description. ∇ is the
spatial gradient or nabla operator. In three-dimensional coordinates (x, y, z),
∇ = (∂/∂x, ∂/∂y, ∂/∂z). We consider an isotropic, spatially homogeneous dif-
fusivity so that D = D.
Rewriting Eq. 6.4 after expanding the advection term (∇·(v u)) and considering
only an isotropic, homogeneous diffusion, Eq. 6.4 simplifies to:

∂u

∂t
= D∇2u− v · (∇u)− u(∇ · v) + S(~x, t). (6.5)

We now discretize the spatial differential operators using the methods presented
in Chapter 5. Specifically, we use PSE for discretizing for the sake of illustration
over DC-PSE. In DC-PSE, most things happen numerically at runtime and there
is not much we could illustrate here on paper. Moreover, the advection-diffusion
equation is derived from conservation of mass, so one may prefer PSE over DC

6.2. ONLY DIFFUSION 79

PSE in practical applications due to conservation properties. The results and
the methodology used in the rest of chapter is, however, applicable to DC-
PSE and other discretization methods. Using PSE and the explicit Euler time
stepping scheme presented in Chapter 3, we now attempt to develop a stable
numerical scheme for numerically solving Eq. 6.5. For this we first consider only
the diffusion term and then consider the advection terms alone before combining
our results. Note that the source term S(~x, t) contains no differential operators
and is simply evaluated point-wise.

6.2 Only diffusion

Setting v = 0 in Eq. 6.5, we obtain the diffusion equation:

∂u

∂t
= D∇2u. (6.6)

Using PSE to discretize the Laplacian operator, the equation of motion for the
scalar quantity u carried by particle p is (refer to Chapter 5) is

dup
dt

=
D

ε2

N∑
q=1

Vq(uq − up)ηε(~xp − ~xq). (6.7)

Using explicit Euler time-stepping scheme (see Chapter 3), the above equation
can be written as

un+1
p = unp + δt

D

ε2

N∑
q=1

Vq(u
n
q − unp)ηε(~xp − ~xq), (6.8)

where unp = up(t = nδt). The kernel ηε is given by:

ηε(x) =
1

2ε
√
π
e−

x2

4ε2 x ∈ R

ηε(~x) =
1

4ε2π
e−
|~x|2

4ε2 ~x ∈ R2. (6.9)

Order of accuracy. Using these kernels, the numerical scheme given in Eq. 6.8
to numerical solve Eq. 6.6 is second-order accurate in space and first-order ac-
curate in time.

6.2.1 Stability

We now investigate the numerical stability of Eq. 6.8. For this we make use of
von Neumann stability analysis assuming a periodic domain. We consider the
general integral PSE formulation where second derivative can be approximated
as [32]

∇2u(~x) ≈ 1

ε2

∫
Ω

(u(~y)− u(~x))ηε(~x− ~y)d~y, (6.10)

80CHAPTER 6. EULERIAN PARTICLEMETHODS FOR FIELD-BASEDMODELS

where the kernel is given by Eq. 6.9. (Note that in practice the integral is
approximated by a numerical quadrature leading to Eq. 6.8).
We consider a one-dimensional domain for the sake of simplicity. The numerical
scheme in one dimension to numerically solve Eq. 6.6 with explicit Euler time
stepping, and Eq. 6.10 for approximating the second derivative is

un+1
p = unp +

Dδt

ε2

∫ ∞
−∞

(un(y)− unp)
1

2ε
√
π
e−

(xp−y)2

4ε2 dy. (6.11)

Now we postulate that

u = û+ θ,

where û is the exact solution of Eq. 6.11, u is the numerical solution, and θ is
the error. Since û is the exact solution of Eq. 6.11, it satisfies the equation by
definition. Therefore, the error θ also satisfies Eq. 6.11. That is,

θn+1
p = θnp + δt

D

ε2

∫ ∞
−∞

(θn(y)− θnp)
1

2ε
√
π
e−

(xp−y)2

4ε2 dy. (6.12)

We now use Fourier series to represent the error θ such that

θ(x, t) =

M∑
m=1

eamteikmx,

where km are the spatial Fourier wave numbers and eamt is the amplification
factor of the Fourier mode with wavenumber km. Substituting the above ansatz
in Eq. 6.12 yields:

M∑
m=1

eamtn+1eikmxp =

M∑
m=1

eamtneikmxp +
δtD

ε2

∫ ∞
−∞

(
M∑
m=1

eamtneikmy− (6.13)

M∑
m=1

eamtneikmxp

)
1

2ε
√
π
e−

(xp−y)2

4ε2 dy. (6.14)

This equation has to be true for each Fourier modes m individually in order for
the sequences on both sides of the equality to be the same. Therefore:

eamtn+1eikmxp = eamtneikmxp +
δtD

ε2

∫ ∞
−∞

(
eamtneikmy − eamtneikmxp

)
ηdy(6.15)

eamtneamδteikmxp = eamtneikmxp +
δtD

ε2

∫ ∞
−∞

(
eamtn(eikmy − eikmxp)

)
ηdy,(6.16)

where we used tn+1 = tn+δt in the first step. Dividing the whole equation with
the non-zero number eamtneikmxp , we find:

eamδt = 1 +
Dδt

ε2

∫ ∞
−∞

(eikm(y−xp) − 1)
1

2ε
√
π
e−

(xp−y)2

4ε2 dy, (6.17)

= 1 +
Dδt

ε2

∫ ∞
−∞

(eikmx − 1)
1

2ε
√
π
e−

x2

4ε2 dx, (6.18)

= 1 +
Dδt

ε2
(e−ε

2k2m − 1), (6.19)

6.3. ONLY ADVECTION 81

where we substituted x = y−xp in the second step. Numerical stability requires
that the amplification factor |eamδt| ≤ 1 for all m in order for the amplitudes of
all spatial Fourier modes of θ to be bounded. This requires∣∣∣∣1 +

Dδt

ε2
(e−ε

2k2m − 1)

∣∣∣∣ ≤ 1. (6.20)

Since Dδt
ε2 (e−ε

2k2m − 1) ≤ 0 always, the above condition imposes that

Dδt
ε2 (e−ε

2k2m − 1) ≥ −2, (6.21)

i.e., δt ≤ 2ε2

D(1−e−ε2k2m)
since − 1 ≤ (e−ε

2k2m − 1) ≤ 0. (6.22)

This condition should be fulfilled for all modes m. The most limiting constraint
for δt is obtained when D(1 − e−ε2k2m) has the largest possible absolute value.

The largest possible value of D(1− e−ε2k2m) is D when km →∞. Therefore, the
condition ensuring that the amplitudes of all spatial Fourier modes are bounded
is

δt ≤ 2ε2

D
. (6.23)

The above condition is a necessary and sufficient condition for our numerical
scheme to be stable, making the numerical scheme in Eq. 6.8 conditionally
stable.

6.3 Only advection

Setting D = 0 in Eq. 6.5, we obtain:

∂u

∂t
= −v · (∇u)− u(∇ · v). (6.24)

Here, we assume that the flow field v is known analytically and therefore the
analytical expression for (∇ · v) can be substituted in Eq. 6.24.
Using PSE (see [32] for details) and explicit Euler time stepping scheme:

un+1
p = unp − δt

vp
ε
·
N∑
q=1

Vq(u
n
q + unp)ηε(~xp − ~xq)− δt up(∇ · v)p, (6.25)

where vp is the velocity field at the location of particle p and (∇ · v)p is the
divergence of the velocity field at the location of particle p. The kernel ηε is a
scalar in one-dimension and a vector in higher dimensions. It is given by:

ηε(x) =
−2x

ε2
√
π
e−

x2

ε2 x ∈ R

ηε(~x = (x, y)) =

(
−2x

ε3π
e−
|~x|2

ε2 ,
−2y

ε3π
e−
|~x|2

ε2

)
~x ∈ R2. (6.26)

82CHAPTER 6. EULERIAN PARTICLEMETHODS FOR FIELD-BASEDMODELS

Using the same procedure employed in Sec. 6.2.1, we find that the numerical
scheme presented in Eq. 6.25 is unconditionally unstable. This unfavorable
property is similar to those of finite difference difference schemes using central
differences to approximate the advection operator.

6.3.1 Upwind PSE scheme

In order to overcome the unfavorable stability criteria of the numerical scheme
in Eq. 6.25, we devise a scheme called a upwind scheme using PSE, analogous to
upwind schemes in finite differences. According to the upwind scheme (written
for two-dimensions where ~x = (x, y)),

un+1
p = unp − δt

max(vp,x, 0)

ε

∑
q;xq<xp

Vq(u
n
q + unp)ηL(1,0)

ε (~xp − ~xq)

− δt
max(vp,y, 0)

ε

∑
q;yq<yp

Vq(u
n
q + unp)ηL(0,1)

ε (~xp − ~xq)

− δt
min(vp,x, 0)

ε

∑
q;xq>xp

Vq(u
n
q + unp)ηR(1,0)

ε (~xp − ~xq)

− δt
min(vp,y, 0)

ε

∑
q;yq>yp

Vq(u
n
q + unp)ηR(0,1)

ε (~xp − ~xq),

− δt up(∇ · v)p, (6.27)

where the kernels ηLε and ηRε are one-sided kernels. Specifically, ηLε denotes a
left-sided kernel and ηRε is a right-sided kernel. The superscript (1, 0) denotes
one sided kernel along the x-direction and (0, 1) denotes one-sided along the y-

direction. For example, η
L(1,0)
ε denotes a left-sided kernel along the x-direction.

One choice for these kernels are:

ηL(1,0)
ε (x) = ηR(1,0)

ε (x) =
−4x

ε2
√
π
e−

x2

ε2 , x ∈ R.

ηL(1,0)
ε (~x) = ηR(1,0)

ε =
−4x

ε3π
e−
|~x|2

ε2 , ηL(0,1)
ε = ηR(0,1)

ε =
−4y

ε3π
e−
|~x|2

ε2 ,

~x ∈ R2. (6.28)

Order of accuracy. Using these kernels, the numerical scheme given in Eq. 6.27
to numerical solve Eq. 6.24 is first-order accurate in space and first-order accu-
rate in time. For higher order kernels please refer [32].

6.3. ONLY ADVECTION 83

6.3.1.1 Stability

We now investigate the numerical stability of Eq. 6.27 in one dimension. We
again consider the general integral PSE formulation [32] using which

v∂xu(x) ≈ max(v, 0)

ε

∫ x

−∞
(u(y) + u(x))ηL(1,0)

ε (x− y)dy

+
min(v, 0)

ε
·
∫ ∞
x

(u(y) + u(x))ηR(1,0)
ε (x− y)dy (6.29)

where the kernel is given by Eq. 6.28. The scheme to numerically solve Eq. 6.24
in one dimension using explicit Euler time stepping and Eq. 6.29 to approximate
the advection term is

un+1
p = unp − δt

max(vp, 0)

ε

∫ xp

−∞
(un(y) + unp)ηL(1,0)

ε (xp − y)dy

− δt
min(vp, 0)

ε

∫ ∞
xp

(un(y) + unp)ηR(1,0)
ε (xp − y)dy

− δt unp (∂xv)p. (6.30)

Using Eq. 6.12, the error θ is given by

θn+1
p = θnp − δt

max(vp, 0)

ε

∫ xp

−∞
(θnp (y) + θnp)ηLε (xp − y)dy

− δt
min(vp, 0)

ε

∫ ∞
xp

(θnp (y) + θnp)ηRε (xp − y)dy

− δt unp (∂xv)p. (6.31)

Using the von Neumann ansatz (Eq. 6.13), we get

eamδt = 1− δtmax(vp, 0)

ε

∫ xp

−∞
(eikm(y−xp) + 1)

(−4)(xp − y)

ε2
√
π

e−
(xp−y)2

ε2 dy

− δt
min(vp, 0)

ε

∫ ∞
xp

(eikm(y−xp) + 1)
(−4)(xp − y)

ε2
√
π

e−
(xp−y)2

ε2 dy

− δt (∂xv)p. (6.32)

Without any loss of generality, we assume that flow velocity vp > 0 and carry
out the derivation to find the stability criteria. For vp > 0,

eamδt = 1− δtvp
ε

∫ ∞
xp

(eikm(y−xp) + 1)
(−4)(xp − y)

ε2
√
π

e−
(xp−y)2

ε2 dy − δt (∂xv)p,

= (1− δt (∂xv)p)−
vpδt

ε

4√
π

+
vpδt

ε
P (kmε)− i

vpδt

ε
Q(kmε),

with

P (x) = xe
−x2
4 Erfi

(x
2

)
,

Q(x) = xe
−x2
4 , (6.33)

84CHAPTER 6. EULERIAN PARTICLEMETHODS FOR FIELD-BASEDMODELS

where Erfi is the imaginary error function. In order to enforce |eamδt| ≤ 1 we
need ∣∣∣∣(1− δt (∂xv)p)−

vpδt

ε

4√
π

+
vpδt

ε
P (kmε)− i

vpδt

ε
Q(kmε)

∣∣∣∣ ≤ 1,

i.e.,

[
(1− δt (∂xv)p)−

vpδt

ε

4√
π

+
vpδt

ε
P (kmε)

]2

+

[
vpδt

ε
Q(kmε)

]2

≤ 1,

δt ≤
2(∂xv)p +

2vp
ε

[
4√
π
− P (αm)

]
2[(∂xv)p]2 +

2vp(∂xv)p
ε

[
4√
π
− P (αm)

]
+

v2p
ε2

{[
4√
π
− P (αm)

]2
+ [Q(αm)]2

} ,(6.34)

where αm = kmε. For any value of αm, P (αm) and Q(αm) are bounded. We
numerically determine that for any value of αm, 0 ≤ P (αm) . 1.45 and analyt-

ically determine that |Q(αm)| ≤
√

2e
−1
2 . Using these bounds and the possible

values for vp in a simulation, we can numerically determine the most restrictive
upper bound for δt according to Eq. 6.34.
In case of incompressible flow ((∂xv)p = 0 for all p), we can make use of the
bounds for P (·) and Q(·) to compute an analytical upper bound for δt as:

δt ≤
2
[

4√
π
− P (αm)

]
vp
ε

{[
4√
π
− P (αm)

]2
+ [Q(αm)]2

} . (6.35)

The most restrictive upper bound for δt is when |Q| is maximum (=
√

2e
−1
2)

and P = 0. Therefore,

δt ≤ 4e

2e+
√
π

ε

vp
≈ 1.5

ε

vp
. (6.36)

This is also referred to as the Courant-Levy-Friedrich condition. All Eulerian
schemes have such an upper bound on δt which is of the form:

δtv < Cε. (6.37)

The value of C is specific to the discretization scheme used and the process
simulated.
Combining the schemes derived in Secs. 6.2 and 6.3.1, we obtain the complete
Eulerian particle method for numerically solving the advection-diffusion equa-
tion. The resulting scheme has an upper bound for the value of time-step size
δt and is therefore conditionally stable.
The existence of the CFL condition is the biggest drawback of Eulerian methods,
and it is addressed in the Lagrangian formulation as discussed next.

Chapter 7

Lagrangian Particle
Methods for Field-based
Models

In this chapter:

• Lagrangian particle methods

• Numerical scheme using Lagrangian particle methods

• Numerical stability of Lagrangian methods

• Numerical stability due to advection in Lagrangian particle methods

• Remeshing

• Particle to mesh moment-conserving interpolation schemes

Learning goals:

• Be able to devise Lagrangian numerical schemes

• Be able to decide when to use Lagrangian particle methods over Euler
particle methods

• Know the advantages and disadvantages of Lagrangian particle methods

In this chapter, we develop Lagrangian particle methods. In contrast to Eulerian
methods, the particle positions in Lagrangian particle methods change as a
function of time. The general equation of motion governing Lagrangian particle
methods is

d~xp(t)

dt
= ~vp(t, ~x(t), ~ω(t))

d~ωp(t)

dt
= ~gp(t, ~x(t), ~ω(t)), (7.1)

85

86CHAPTER 7. LAGRANGIAN PARTICLEMETHODS FOR FIELD-BASEDMODELS

where ~vp is the velocity of particle p and ~gp is the property rate corresponding
to the Lagrangian scheme.

7.1 Concept behind Lagrangian particle meth-
ods

Consider a general conservation law governing a scalar field u:

Du(~x(t))

Dt
= G(u)− u(∇ · v), (7.2)

where Du(~x)
Dt is the Lagrangian time derivative (also referred to as the total time

derivative, or material derivative) defined as

Du(~x(t))

Dt
=
∂u

∂t
+ v · (∇u). (7.3)

The quantity G(u) is a rate function that can account for rate of change of u
due to diffusion, reaction or other processes. The term u(∇ · v) is the rate of
change of u due to compressibility of the velocity field. if the velocity field is
incompressible (∇ · v = 0), this term does not contribute to any change in u.

Mathematically, Eq. 7.2 can equivalently be written as two equations

dx

dt
= v, (7.4)

du(x)

dt
= G(u)− u(∇ · v). (7.5)

The interpretation of these equations is as follows. Consider a infinitesimally
small packet of scalar quantity u at position x. Eq. 7.4 is the equation of motion
for the position of the packet. Eq. 7.5 is the rate of change of the scalar quantity
carried by the moving packet. In summary, Eq. 7.5 is the equation of motion
of the scalar quantity u of a infinitesimally small container at position x where
the position x of the container changes according to Eq. 7.4. This is contrast
to the equation of motion in the Eulerian frame of reference where the particles
do not move (see Chapter 6) given by

du(x)

dt
= G(u)− u(∇ · v)− (v ·∇u). (7.6)

Note, however, that the description in the Eulerian (Eq. 7.6) and the Lagrangian
frames of reference (Eqs. 7.4 and 7.5) are mathematically equivalent and describe
the same conservation law given by Eq. 7.2.

We will now develop Lagrangian particle methods to numerically solve a model
equation. As in Chapter 6, as a model equation, we choose a general transport
equation, namely one describing advection-diffusion (Eq. 6.5).

7.2. ADVECTION-DIFFUSION IN THE LAGRANGIAN FRAMEOF REFERENCE87

7.2 Advection-diffusion in the Lagrangian frame
of reference

For the advection-diffusion process (Eq. 6.5), rate function G(u) in Eq. 7.5 is
the rate of change of concentration due to diffusion, and is equal to D∇2u. The
advection-diffusion equation in the Lagrangian framework is therefore given by

dx

dt
= v,

du(x)

dt
= D∇2u− u(∇ · v). (7.7)

By discretizing the spatial differential operators using any of the methods pre-
sented in Chapter 5, and using time-stepping schemes presented in Chapter 3,
we can devise a family of Lagrangian particle methods for numerically solving
Eq. 7.7. In the rest of this chapter, we will use PSE to discretize spatial differen-
tial operators and explicit Euler for time stepping to devise a particular instance
of a Lagrangian particle method for numerically solving the advection-diffusion
equation.

7.3 Lagrangian particle method for advection-
diffusion

Applying PSE for discretizing spatial differential operators, and explicit Euler
for time stepping the particle method in the Lagrangian frame of reference is
given by

~xn+1
p = ~xnp + δtvnp ,

un+1
p = unp + δt

D

ε2

N∑
q=1

Vq(u
n
q − unp)ηε(~xp − ~xq)− δtunp (∇ · v)np . (7.8)

Here a superscript n denotes the time step number corresponding to time t =
nδt, δt being the time step size used in explicit Euler. ~xp is the position of
particle p and up is the scalar quantity carried by particle p. ηε is the kernel used
in PSE to discretize the Laplacian operator (Eq. 6.9). Here, we have considered
a case where the flow field v is know analytically, so that ∇ ·v can be computed
analytically, and therefore does not have to be approximated through a spatial
discretization scheme. In cases where v is not known analytically, ∇ · v can be
discretized using PSE or DC-PSE as presented in Chapter 5.

Owing to the expression of the kernel ηε given by Eq. 6.9, the Lagrangian
particle method given by Eq. 7.8 is second-order accurate in space. In time,
the explicit Euler scheme renders the method first-order accurate. Next, we
study the stability condition for the numerical method given by Eq. 7.8.

88CHAPTER 7. LAGRANGIAN PARTICLEMETHODS FOR FIELD-BASEDMODELS

7.3.1 Stability

As in Chapter 6, we restrict ourselves to a one-dimensional domain to carry
out the stability analysis. As in Sec. 6.2.1, we rewrite the numerical scheme
(Eq. 7.8) using the integral PSE formulation to approximate the Laplacian, and
the expression for ηε given by Eq. 6.9. Subsequently, the numerical scheme for
one-dimension advection-diffusion is

xn+1
p = xnp + δt vnp , (7.9)

un+1
p = unp +

Dδt

ε2

∫ ∞
−∞

(un(y)− unp)
1

2ε
√
π
e−

(xp−y)2

4ε2 dy

−δtup(∂xv)np . (7.10)

Since the above two equations can be evaluated independently to compute the xp
and up at the next time point given the positions and property of all particles at
the current time, we can carry out the linear stability analysis for each equation
independently.

First, let us evaluate the stability criteria of Eq. 7.10. Using the same procedure
presented in Chapter 6, we find that numerical stability of Eq. 7.10 requires

δt ≤ 1

(D/ε2) + (∂xv)
. (7.11)

Now, we evaluate the stability condition of Eq. 7.9. The trajectory of xp(t)
according to Eq. 7.9 gives the streamlines of particles. Streamlines of particles
are never allowed to cross, and this condition acts as the stability criterion. This
criterion is ensured if the distance between any two particles p and q is always
greater than zero. We therefore write the equation of motion for the distance
xpq = xp − xq between particles p and q. Using Eq. 7.9, we find that

xn+1
pq = xnpq + δt(vnp − vnq). (7.12)

We now use Taylor expansion of vq = v(xq) around vp = v(xp), which is given
by

vq = vp − xpq (∂xv)p +O(x2
pq). (7.13)

Using the above expression for vq in Eq. 7.12, the equation reduces to:

xn+1
pq = xnpq + δt xnpq (∂xv)np ,

= xnpq(1 + δt (∂xv)np).

Ensuring that particles never cross requires(
1 + δt (∂xv)np

)
> 0,

i.e., δt(∂xv)np > −1. (7.14)

7.4. REMESHING 89

At a given time, in order to satisfy that every pair of particles do not cross

δt > 0, if min(∂xv) ≥ 0, (7.15)

δt <
1

max(−∂xv)p
, if min(∂xv) < 0. (7.16)

Here the min and max represents the minimum and maximum values over all
particles in the entire computational domain. This condition for the time step
is referred to as the Lagrangian CFL condition. In a two or three-dimensional
domain, the Lagrangian CFL condition is given by

δt||∇v||∞ ≤ C, (7.17)

where ∇v is the velocity gradient matrix and ||∇v||∞ is the maximum norm of
the matrix. It is worth noting that in contrast to the Eulerian CFL condition
(Eq. 6.37), the Lagrangian CFL condition is potentially much less restrictive.
Therefore, numerical stability of the scheme in Eq. 7.8 requires fulfilling Eqs. 7.11
and 7.17.

7.4 Remeshing

As mentioned in the previous section, the Lagrangian CFL condition (Eq. 7.17)
compares favorably with the Eulerian CFL condition (Eq. 6.37). Moving parti-
cles, however, has the potential of violating the overlap condition required for
SPH and PSE. Even for DC-PSE, moving particles can lead to situations where
certain parts of the computational domain are not populated by particles, re-
sulting in the value of the field quantities being unknown in those regions. In
order to avoid this unfavorable scenario, Lagrangian particle methods employ
remeshing, consisting of:

• interpolating the particle properties to a regular mesh. In the case of SPH
or PSE, the spacing h of the regular mesh should be less than ε in order
to satisfy the overlap condition.

• deleting the old set of particles, and

• creating new particles at the location of the non-zero mesh nodes, carrying
the node weights as their new strengths.

Therefore, the crucial ingredient for remeshing are interpolation schemes to go
from particles to a regular mesh.

7.4.1 Particle-Mesh Interpolation schemes

We require that the interpolation scheme does not introduce numerical artifacts.
Therefore, we make use of moment-conserving interpolation schemes. The n-th
moment of a function is again given by

Mn =

∫
Ω

xnf(x)dx. (7.18)

90CHAPTER 7. LAGRANGIAN PARTICLEMETHODS FOR FIELD-BASEDMODELS

For example, the 0-th moment is the total area under the function. We require
that when interpolating from particles to a mesh, as many moments of the
function are conserved as the operator discretization conserves. In addition, we
require that interpolation results in a smooth function on the mesh nodes.

These conditions are satisfied by the Λ interpolation kernels [37]. The Λ inter-
polation kernel Λn,m conserves moments up to order n and produces a function
that is Cm smooth. Kernels with larger values of n conserve more moments,
and kernels with a larger value of m result in smoother functions.

Using the Λn,m interpolation, the values on the mesh nodes are obtained as
follows: Consider a regular mesh where each mesh node is indexed by a triplet
(i, j, k) corresponding to coordinates (iδx, jδy, kδz) in a three-dimensional do-
main with coordinates (x, y, z). The δx, δy and δz are the mesh spacings in
the x, y, and z directions, respectively. Assume that particles carry strength
ωp. Given ωp carried by the particles p, the values of the strength at the mesh
nodes are computed as

ω(i, j, k) =
∑
p

Wp(i, j, k)ωp,

i = 0, . . . , Nx − 1, j = 0, . . . , Ny − 1, k = 0, . . . , Nz − 1, (7.19)

where Nx, Ny, and Nz are the number of mesh modes in the x, y, and z direc-
tions, respectively. The function Wp is the weight (a multiplicative factor) of
the property carried by particle p with location ~xp = (xp, yp, zp), contributing
to the value of the property at location (j, i, k) on the mesh node. The weight
is given by

Wp(i, j, k) = Λn,m

(∣∣∣∣xp − iδxδx

∣∣∣∣)Λn,m

(∣∣∣∣yp − jδyδy

∣∣∣∣)Λn,m

(∣∣∣∣zp − kδzδz

∣∣∣∣) ,(7.20)

where Λn,m is the interpolation kernel that conserves moments up to order n and
results in a function that is Cm smooth, i.e., m times continuously differentiable.

In the following we present the expression of a couple of Λn,m kernels for different
values of n and m. The Λ2,1 kernel is given by

Λ2,1(s) =

 1− 5
2 |s|

2 + 3
2 |s|

3, 0 ≤ |s| < 1,
2− 4|s|+ 5

2 |s|
2 − 1

2 |s|
3, 1 ≤ |s| < 2,

0 2 ≤ |s|.
(7.21)

for the normalized distance s =
xp−iδx
δx and analogous for the other coordinate

directions.

7.4. REMESHING 91

The Λ4,4 kernel is given by

Λ4,4(s) =

1− 5
4 |s|

2 + 1
4 |s|

4 − 100
3 |s|

5

+ 455
4 |s|

6 − 295
2 |s|

7 + 345
4 |s|

8 − 115
6 |s|

9, 0 ≤ |s| < 1,

−199 + 5485
4 |s| −

32975
8 |s|2 + 28425

4 |s|3
− 61953

8 |s|4 + 33175
6 |s|5

− 20685
8 |s|6 + 3055

4 |s|
7 − 1035

8 |s|
8 + 115

12 |s|
9, 1 ≤ |s| < 2,

5913− 89235
4 |s|+ 297585

8 |s|2
− 143895

4 |s|3 + 177871
8 |s|4 − 54641

6 |s|5
+ 19775

8 |s|6 − 1715
4 |s|

7 + 345
8 |s|

8 − 23
12 |s|

9, 2 ≤ |s| < 3,

0 3 ≤ |s|.

(7.22)

As seen from the expression of the above kernels, they have compact support.
As a consequence, particle p only contributes to the values of the mesh nodes in
its vicinity. Therefore, the time complexity for interpolating particle property
to mesh nodes is O(N). However, as the number of moments required to be
conserved and the degree of smoothness increases, the support of the kernels
increase.
We also see from Eq. 7.20 that the interpolation weights are Cartesian products.
That is, the kernel does not need to be evaluated for all possible combinations of
i, j, and k. Instead, 1D interpolation weights can be computed independently
in each direction and the results multiplied. For a kernel with a support of
ρ = supp(Λ) mesh nodes in each direction, the complexity of interpolation in d
dimensions therefore is O(dρ) and not O(ρd), which renders these kernels very
efficient.
The same interpolation schemes can also be used to interpolate back from the
mesh to particles, if that is required. For this, the roles p↔ (i, j, k) are simply
swapped in the above equations. The interpolation kernels remain the same and
anyway only depend on the absolute value of the normalized distance between a
particle and a mesh node. Interpolating from the mesh to particles may be useful
in hybrid discrete-continuous simulations in order to, e.g., interpolate forces back
to the particles that represent discrete model entities. In simulations of field-
based models, mesh-to-particle interpolation is almost never used, because it
is easier there to just make new particles at the mesh nodes. If the particles
however represent discrete model entities, like atoms or animals, they cannot
be reallocated.

92CHAPTER 7. LAGRANGIAN PARTICLEMETHODS FOR FIELD-BASEDMODELS

Chapter 8

Fast Algorithms for
Far-field Interactions

If particles do not only interact with their neighbors, but with every other par-
ticle, the number of interactions to be computed becomes O(N2), which renders
the simulation prohibitively expensive. A variety of algorithms is available to
compute fast approximate solutions.

8.1 Hybrid Particle-Mesh Methods

8.1.0.1 Mesh-Particle Interpolation

8.1.0.2 Field solvers on the mesh

8.1.1 Lennard-Jones molecular dynamics with electrostat-
ics

8.2 Fast Multipole Methods

8.3 Inverting the System Matrix

93

94 CHAPTER 8. FAST ALGORITHMS FOR FAR-FIELD INTERACTIONS

Chapter 9

Boundary Conditions

Basic idea is to modify the particle properties near the boundary such that they
also fulfill the boundary conditions. This modification can be given by “ghost
particles”, adjusting the kernels to become one-sided [35], artificial boundary-
reaction terms [34] or by solving another equation on the boundary [33].

9.1 Ghost particles: the Method of images

9.2 Immersed boundary methods and Penaliza-
tion

95

96 CHAPTER 9. BOUNDARY CONDITIONS

Chapter 10

Particle Methods for
Surfaces

10.1 Particle Level-Set Surface Representation

10.2 Particle Methods for Item-based Models

Moving along the surface and projecting back

10.3 Particle Methods for Field-based Models

10.3.1 Embedding schemes

10.3.2 Moving local frames

97

98 CHAPTER 10. PARTICLE METHODS FOR SURFACES

Chapter 11

Adaptive-resolution
Particle Methods

11.1 Self organization

11.2 Particle-Particle interpolation

99

100 CHAPTER 11. ADAPTIVE-RESOLUTION PARTICLE METHODS

Chapter 12

Particle Methods on
Parallel Computers

12.1 Abstractions for parallel particle methods

12.2 The PPM Library

12.3 The PPML language

101

102 CHAPTER 12. PARTICLE METHODS ON PARALLEL COMPUTERS

Bibliography

[1] W. of Ockham, Quaestiones et decisiones in quattuor libros Sententiarum
Petri Lombardi. ed. Lugd., 1495.

[2] D. Frenkel and B. Smit, Understanding Molecular Simulation. From Algo-
rithms to Applications. Academic Press, 2002.

[3] J. J. Monaghan, “Smoothed particle hydrodynamics,” Annu. Rev. Astron.
Astrophys., vol. 30, pp. 543–574, 1992.

[4] J. Cardinale, G. Paul, and I. F. Sbalzarini, “Discrete region competition
for unknown numbers of connected regions,” IEEE Trans. Image Process.,
vol. 21, no. 8, pp. 3531–3545, 2012.

[5] J. H. Walther and I. F. Sbalzarini, “Large-scale parallel discrete element
simulations of granular flow,” Engineering Computations, vol. 26, no. 6,
pp. 688–697, 2009.

[6] J. Barnes and P. Hut, “A hierarchical O(N logN) force-calculation algo-
rithm,” Nature, vol. 324, pp. 446–449, 1986.

[7] L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,”
J. Comput. Phys., vol. 73, pp. 325–348, 1987.

[8] L. Greengard and V. Rokhlin, “The rapid evaluation of potential fields in
three dimensions,” Lect. Notes Math., vol. 1360, pp. 121–141, 1988.

[9] R. W. Hockney, “The potential calculation and some applications,” Meth-
ods Comput. Phys., vol. 9, pp. 136–210, 1970.

[10] U. Trottenberg, C. Oosterlee, and A. Schueller, Multigrid. San Diego: Aca-
demic Press, 2001.

[11] M. M. Hejlesen, J. T. Rasmussen, P. Chatelain, and J. H. Walther, “A
high order solver for the unbounded Poisson equation,” J. Comput. Phys.,
vol. 252, no. 458–467, 2013.

[12] L. Verlet, “Computer experiments on classical fluids. I. Thermodynamical
properties of Lennard-Jones molecules,” Phys. Rev., vol. 159, no. 1, pp. 98–
103, 1967.

103

104 BIBLIOGRAPHY

[13] G. Sutmann and V. Stegailov, “Optimization of neighbor list techniques in
liquid matter simulations,” J. Mol. Liq., vol. 125, pp. 197–203, 2006.

[14] L. Devroye, Non-uniform random variate generation. Springer-Verlag New
York, 1986.

[15] G. E. P. Box and M. E. Muller, “A note on the generation of random
normal deviates,” Ann. Math. Statist., vol. 29, no. 2, pp. 610–611, 1958.

[16] D. T. Gillespie, “A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions,” J. Comput. Phys., vol. 22,
pp. 403–434, 1976.

[17] D. T. Gillespie, “Exact stochastic simulation of coupled chemical reac-
tions,” J. Phys. Chem., vol. 81, no. 25, pp. 2340–2361, 1977.

[18] M. L. Hunt, “Discrete element simulations for granular material flows: ef-
fective thermal conductivity and self-diffusivity,” Int. J. Heat Mass Trans-
fer, vol. 40, no. 13, pp. 3059–3068, 1997.

[19] A. Daerr and S. Douady, “Two types of avalanche behaviour in granular
media,” Nature, vol. 399, pp. 241–243, 1999.

[20] P. G. de Gennes, “Granular matter: a tentative view,” Rev. Mod. Phys.,
vol. 71, no. 2, pp. 374–382, 1999.

[21] S. Douady, B. Andreotti, and A. Daerr, “On granular surface flow equa-
tions,” Eur. Phys. J. B, vol. 11, pp. 131–142, 1999.

[22] S. Douady, B. Andreotti, A. Daerr, and P. Cladé, “From a grain to
avalanches: on the physics of granular surface flows,” C. R. Physique, vol. 3,
pp. 177–186, 2002.

[23] S. Douady, A. Manning, P. Hersen, H. Elbelrhiti, S. Protière, A. Daerr,
and B. Kabbachi, “Song of the dunes as a self-synchronized instrument,”
Phys. Rev. Lett., vol. 97, p. 018002, 2006.

[24] L. E. Silbert, D. Ertaş, G. S. Grest, T. C. Halsey, D. Levine, and S. J.
Plimpton, “Granular flow down an inclined plane: Bagnold scaling and
rheology,” Phys. Rev. E, vol. 64, p. 051302, 2001.

[25] L. E. Silbert, G. S. Grest, and S. J. Plimpton, “Boundary effects and self-
organization in dense granular flows,” Phys. Fluids, vol. 14, no. 8, pp. 2637–
2646, 2002.

[26] I. F. Sbalzarini, J. H. Walther, M. Bergdorf, S. E. Hieber, E. M. Kotsalis,
and P. Koumoutsakos, “PPM – a highly efficient parallel particle-mesh li-
brary for the simulation of continuum systems,” J. Comput. Phys., vol. 215,
no. 2, pp. 566–588, 2006.

BIBLIOGRAPHY 105

[27] O. Awile, O. Demirel, and I. F. Sbalzarini, “Toward an object-oriented core
of the PPM library,” in Proc. ICNAAM, Numerical Analysis and Applied
Mathematics, International Conference, pp. 1313–1316, AIP, 2010.

[28] G.-H. Cottet and P. Koumoutsakos, Vortex Methods – Theory and Practice.
New York: Cambridge University Press, 2000.

[29] P. Degond and S. Mas-Gallic, “The weighted particle method for
convection-diffusion equations. Part 2: The anisotropic case,” Math. Com-
put., vol. 53, no. 188, pp. 509–525, 1989.

[30] P. Degond and S. Mas-Gallic, “The weighted particle method for
convection-diffusion equations. Part 1: The case of an isotropic viscosity,”
Math. Comput., vol. 53, no. 188, pp. 485–507, 1989.

[31] P. Degond and F.-J. Mustieles, “A deterministic approximation of diffusion
equations using particles,” SIAM J. Sci. Stat. Comput., vol. 11, no. 2,
pp. 293–310, 1990.

[32] J. D. Eldredge, A. Leonard, and T. Colonius, “A general deterministic
treatment of derivatives in particle methods,” J. Comput. Phys., vol. 180,
pp. 686–709, 2002.

[33] P. Koumoutsakos, A. Leonard, and F. Pépin, “Boundary conditions for
viscous vortex methods,” J. Comput. Phys., vol. 113, pp. 52–61, 1994.

[34] N. Fiétier, O. Demirel, and I. F. Sbalzarini, “A meshless particle method
for Poisson and diffusion problems with discontinuous coefficients and in-
homogeneous boundary conditions,” SIAM J. Sci. Comput., vol. 35, no. 6,
pp. A2469–A2493, 2013.

[35] B. Schrader, S. Reboux, and I. F. Sbalzarini, “Discretization correction of
general integral PSE operators in particle methods,” J. Comput. Phys.,
vol. 229, pp. 4159–4182, 2010.

[36] B. Schrader, S. Reboux, and I. F. Sbalzarini, “Choosing the best kernel:
performance models for diffusion operators in particle methods,” SIAM J.
Sci. Comput., vol. 34, no. 3, pp. A1607–A1634, 2012.

[37] G.-H. Cottet, J.-M. Etancelin, F. Pérignon, and C. Picard, “High order
semi-Lagrangian particle methods for transport equations: numerical anal-
ysis and implementation issues,” ESAIM: Mathematical Modelling and Nu-
merical Analysis, vol. 48, no. 4, pp. 1029–1060, 2014.

106 BIBLIOGRAPHY

Index

agent, 38
aleatory randomness, 36
algorithm, 10

cell list, 10
short-range interactions

cell list, 11
symmetric long-range particle in-

teractions, 15
symmetric short-range particle in-

teractions, 15, 16
Verlet list, 13

Barnes-Hut algorithm, 6
Box-Muller transform, 37

cell list, 10, 11
symmetric, 15
symmetric interactions

algorithm, 15
cell-list algorithm, 10
computational cost, 12, 14

cell list, 12
Verlet list, 14

conserved quantity, 15
continuous model, 2
continuous-time model, 20
cutoff radius, 6

difference equation, 20
differential equation, 20
direct method, 43
discrete element method (DEM), 48
discrete model, 2
discrete-time model, 20
discretization, 21, 27
discretization of time derivative, 21, 27

explicit schemes, 21
implicit schemes, 27

discretization point, 3

epistemic randomness, 37
equation

difference, 20
differential, 20

evolve, 4
experimental frame, 2
explicit Euler, 30

Fast Multipole Method, 6
fast neighbor list, 10

cell list, 10
Verlet list, 10

fast neighbour list
cell list, 11
Verlet list, 12

field-based simulation, 4
FMM, 6
frame

experimental, 2

Gillespie algorithm, 43

hybrid particle-mesh method, 7

integral representation, 56
interact, 4
interaction

long-range, 6
symmetric, 15

inversion method, 37
inversion sampling method, 37
item-based simulation, 4

107

108 INDEX

kernel
interaction, 5
operator, 8

L2 error, 66
Lax equivalence theorem, 33
leapfrog time-stepping, 46
Lennard-Jones potential, 52
long-range interaction, 6
long-range interactions

symmetric interactions
algorithm, 15

long-range particle interactions, 15

model, 1
continuous, 2
continuous-time, 20
discrete, 2
discrete-time, 20

molecular dynamics, 51

Ockham’s razor, 3
operator

asymmetric, 8
symmetric, 8

operator kernel, 8

particle method, 4
particle-mesh method, 7
permittivity, 7
potential

Lennard-Jones, 52
propensity, 43

quantity
conserved, 15
replicating, 15

radius
cutoff, 6

random number generator, 37
randomness

aleatory, 36
epistemic, 37

reaction propensity, 43
region of stability, 30
replicating quantity, 15

Richardson extrapolation, 45

seed, 37
short-range interactions, 10, 11, 13

Verlet list, 13
short-range interactions with cell list,

11
short-range interactions with Verlet list,

13
short-range particle interactions, 15
simulation, 2

field-based, 4
item-based, 4

Smooth Particle Hydrodynamics, 56
SPH, 56
SSA, 43
stochastic simulation algorithm (SSA),

43
symmetric interactions, 15
symplectic integrator, 44

time-stepping, 21
continuous-time model, 21
leapfrog method, 46
symplectic, 44
velocity-Verlet, 47

transform
Box-Muller, 37

velocity-Verlet time-stepping, 47
Verlet list, 10, 12, 13

symmetric, 16

well-sampled, 3

