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Chapter 1

Introduction

In this chapter:

• What is spatiotemporal modeling and simulation?

• Why and where does modeling and simulation make sense
in biology?

• What makes biological systems so special?

• Which classes of modeling techniques exist?

Learning goals:

• Know when to use modeling and simulation in biology

• Know about the limitations and issues

• Know the specific characteristics of biological systems

• Know the differences between the four realms of models

Describing the dynamics of processes in both space and time simultaneously is re-
ferred to as spatiotemporal modeling. This is in contrast to describing the dynamics
of a system in time only as is, for example, usually done in chemical kinetics or path-
way models. Solving spatiotemporal models in the computer requires spatiotempo-

ral computer simulations. While computational data analysis allows unbiased and
reproducible processing of large amounts of data from, e.g., high-throughput as-
says, computer simulations enable virtual experiments in silico which would not
be possible in reality. This greatly expands the range of possible perturbations
and observations. Computational experiments (i.e. modeling and simulation) are
indicated whenever:

1. the complexity of the system prohibits manual analysis

2. the time or length scales of interest cannot be reached in experiments. Ex-
amples include molecular dynamics studies in structural biology where one is

interested in Ångströms and picoseconds, or studies in ecology or evolutionary
biology where the time scales can be millions of years.

3. certain variables are not observable or not controllable experimentally. In
computational experiments, all variables are controllable and observable. We
can thus measure everything and precisely control all influences and cross-
couplings. This allows disentangling coupled effects that could not be sepa-
rated in real experiments, greatly reduces or eliminates the need for indirect
control experiments, and facilitates interpretation of the results.

4. ethical considerations prohibit experiments. Computational models do not
involve living beings, thus enabling experiments that would be unethical in
reality.

Although in this lecture we focus on applications of spatiotemporal computer sim-
ulations in biology, the employed concepts and methods are more generally valid.
Resolving a dynamic process in space greatly increases the number of degrees of
freedom (variables) that need to be tracked. Consider, for example, a biochemical
hetero-dimerization reaction. This reaction can be modeled by its chemical kinetics
using three variables: the concentrations of the two monomers and the concentra-
tion of dimers. Assume now that monomers are produced at certain locations in
space and freely diffuse from there. Their concentration thus varies in space in a way
that it is higher close to the source and lower farther away, which greatly increases
the number of variables we have to track in the simulation. If we are, say, inter-
ested in the local concentrations at 1000 positions, we already have to keep track
of 3000 variables. Moreover, the reactions taking place at different points in space
are not independent. Each local reaction can influence the others through diffusive
transport of monomers and dimers. The complexity of spatiotemporal models thus
rapidly increases. In fact, there is no theoretical limit to the number of points in
space that we may use to resolve the spatial patterns in the concentration fields.
Using infinitely many points corresponds to modeling the system as a continuum.
In spatiotemporal modeling, nature is mostly described in four dimensions: time
plus three spatial dimensions. While time and the presence of reservoirs (integra-
tors) are essential for the existence of dynamics, three-dimensional (3D) spatial
aspects also play important roles in many biological processes. Think, for example,
of predators hunting their prey in a forest, of blood flowing through our arteries,
of the electromagnetic fields in the brain, or of such an unpleasant phenomenon
as the epidemic spread of a disease. In all of these examples, and many others,
the spatial distributions of some quantities play an essential role. Models and sim-
ulations of such systems should thus account for and resolve these distributions.
When determining the location of an epileptic site in the brain it is, for example, of
little value to know the total electric current density in the whole brain. We need
to know where the source is. These examples extend across all scales of biological
systems. From the above-mentioned predator-prey interactions in ecosystems over
morphogenesis and intracellular processes to single molecules – think for example
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of conformational changes in proteins. Examples on the intracellular level include
virus entry and transport, intracellular signaling, the diffusion of proteins in the
various cellular compartments, or the fact that such compartments exist in the first
place. Spatial organization is important as the same protein can have different ef-
fects depending on the intracellular compartment in which it is located. The most
prominent example is probably Cytochrome C, which is an essential part of the cell
respiration chain in the mitochondria, but triggers programmed cell death (apop-
tosis) when released into the cytoplasm. Another example is found in the role of
trans-membrane signaling during morphogenesis. Differences in protein diffusion
constants are not large enough to produce Turing patterns (discussed in Chap. 7),
and the slow transport across inter-compartment membranes is essential. Examples
of spatiotemporal processes on the multi-cellular level include tumor growth, and
cell-cell signaling, including phenomena such as bacterial quorum sensing, the mi-
croscopic mechanism underlying the macroscopic phenomenon of bioluminescence
in certain squid. Given the wide-spread importance of spatiotemporal processes it
is not surprising that a number of large software projects for spatiotemporal sim-
ulations in biology have been initiated. Examples in computational cell biology
include E-Cell, MCell, and the Virtual Cell.

1.1 Properties of Biological Systems

Simulating spatially resolved processes in biological systems such as geographically
structured populations, multicellular organs, or cell organelles provides a unique
set of challenges to any mathematical method. One often hears that this is because
biological systems are “complex”.
Biochemical networks, ecosystems, biological waves, heart cell synchronization, and
life in general are located in the high-dimensional, nonlinear regime of the map of
dynamical systems, together with quantum field theory, nonlinear optics, and tur-
bulent flows. None of these topics are completely explored. They are at the limit
of our current understanding and will remain challenging for many years to come.
Why is this so and what do we mean by “complex”?
Biological systems exhibit a number of characteristics that render them difficult.
These properties frequently include one or several of the following:

• Many degrees of freedom (infinitely many in the continuum limit)

• Regulated

• Delineated by complex shapes

• Nonlinear

• Coupled across scales and subsystems

• Plastic over time (time-varying dynamics)

• Non-equilibrium

Due to these properties, biological systems challenge existing methods in modeling
and simulation and require state-of-the-art techniques.

1.1.1 Degrees of freedom

The large number of degrees of freedom is due to the fact that biological systems
typically contain more compartments, components, and interaction modes than tra-
ditional engineering applications such as electronic circuits or fluid mechanics. In a
direct numerical simulation, all degrees of freedom need to be explicitly tracked. In
continuous systems each point in space adds additional degrees of freedom, leading
to an infinite number of degrees of freedom. Such systems have to be discretized,
i.e., the number of degrees of freedom needs to be reduced to a computationally fea-
sible amount, which is done by selecting certain representative degrees of freedom
(see Chap. 5). Only these are then tracked in the simulation, approximating the
behavior of the full, infinite system. Discretizations must also be consistent, i.e.,
the discretized system has to converge to the full system if the number of degrees
of freedom goes to infinity.
The number of degrees of freedom of a model is also called the dimensionality of the
model. This is not to be confused with the dimensionality of the space in which the
real system lives, which is typically 2, 3, or 4. The dimensionality of the model is
the dimension of the state space of the model and is given by the number of degrees
of freedom the model has.
Discrete biological systems already have a finite number of degrees of freedom and
can sometimes be simulated directly. If the number of degrees of freedom is too
large, as is the case when tracking the motion of all atoms in a protein, we do,
however, again have to reduce them in order for simulations to be feasible. This
can be done by collecting several degrees of freedom into one and only tracking
their collective behavior. These so-called coarse graining methods greatly reduce
the computational cost and allow simulations of very large, complex (i.e., many
degrees of freedom) systems such as patches of lipid bilayers with embedded pro-
teins, or actin filaments. Coarse graining thus allows extending the capabilities of
molecular simulations to time and length scales of biological interest.

1.1.2 Regulation

In biological systems, little is left to chance, which might seem surprising given the
inherently stochastic nature of molecular processes, environmental influences, and
phenotypic variability. These underlying fluctuations are, however, in many cases
a prerequisite for adaptive deterministic behavior as has been shown, for example,
in gene regulation networks. In addition to such indirect regulation mediated by
bi-stability and stochastic fluctuations, feedback and feed-forward loops are ubiq-
uitous in biological systems. From signal transduction pathways in single cells to
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Darwinian evolution, regulatory mechanisms play important roles. Results from
control theory tell us that such loops can alter the dynamic behavior of a system,
change its stability or robustness, or give rise to multi-stable behavior that enables
adaptation to external changes and disturbances. Taking all these effects into ac-
count clearly presents a grand challenge to simulation models because many of the
hypothetical regulatory mechanisms are still unknown or poorly characterized.

1.1.3 Geometric complexity

Biological systems are mostly characterized by irregular and often moving or de-
forming geometries. Processes on curved surfaces may be coupled to processes in
enclosed spaces and surfaces frequently change their topology such as in fusion or
fission of intracellular compartments. Examples of such complex geometries are
found on all length scales and include the pre-fractal structures of taxonomic and
phylogenetic trees, regions of stable population growth in ecosystems, pneumonal
and arterial trees, the shapes of neurons, the cytoplasmic space, clusters of intracel-
lular vesicles, electric currents through ion channels in cell membranes, protein chain
conformations, and protein structures. Complex geometries are not only difficult
to resolve and represent in the computer, but the boundary conditions imposed by
them on dynamic spatiotemporal processes may also qualitatively alter the macro-
scopically observed dynamics. Diffusion in complex-shaped compartments such as
the Endoplasmic Reticulum (ER; Fig. 1.1) may appear anomalous, even if the un-
derlying molecular diffusion is normal.

(a) (b)

Figure 1.1: (a) Shaded view of a 3D computer reconstruction of the geometry of an
Endoplasmic Reticulum (ER) of a live cell (Sbalzarini et al., Biophys. J., 89, 2005).
(b) Close-up of a reconstructed ER, illustrating the geometric complexity of this
intracellular structure.

1.1.4 Nonlinearity

Common biological phenomena such as interference, cooperation, or competition
lead to nonlinear dynamic behavior. Many processes, from repressor interactions
in gene networks over predator-prey interactions in ecosystems to calcium waves
in cells, are not appropriately described by linear systems theory as predominantly
used and taught in physics and engineering. Depending on the number of degrees
of freedom, nonlinear systems exhibit phenomena not observed in linear systems.
These phenomena include bifurcations, nonlinear oscillations, and chaos and frac-
tals. Nonlinear models are intrinsically hard to solve. Most of them are impossible
to solve analytically and computer simulations are hampered by the fact that com-
mon computational methods such as normal mode analysis, Fourier transforms,
or the superposition principle (see Sec. 11.3), break down in nonlinear systems,
because a nonlinear system is not equal to the sum of its parts.

1.1.5 Coupling across scales

Coupling across scales means that events on the microscopic scale such as changes
in molecular conformation can have significant effects on the global, macroscopic
behavior of the system. This is certainly the case for many biological systems,
including bioluminescence due to bacterial quorum sensing or the effect on the
behavior of a whole organism when hormones bind to their receptors. Such multi-
scale systems share the property that the individual scales cannot be separated and
treated independently. There is a continuous spectrum of scales with coupled inter-
actions, which imposes stringent limits on the use of computer simulations. Direct
numerical simulation of the complete system would require resolving it in all detail
everywhere. Applied to simulating a living cell, this would mean to resolve the
dynamics of all atoms in the cell. A cell consists of about 1015 atoms and biolog-
ically relevant processes such as protein folding and enzymatic reactions occur on
the time scale of milliseconds. The largest Molecular Dynamics (MD) simulations
currently done consider about 1010 atoms over 1 nanosecond. In order to model a
complete cell we would thus need a simulation about 100 000 times larger, running
over a million-fold longer time interval. This would result in a simulation at least
1011 times bigger than what can currently be done. This is certainly not feasible
and will remain so for decades to come. But even if one could simulate the whole
system at full resolution, the results would be of questionable value. The amount of
data generated by such a simulation would be vast and the interesting macroscopic
phenomena that we are looking for would mostly be masked by noise from the small
scales. In order to treat coupled systems, we thus have to use multi-scale models
and formulations at the appropriate level of detail.
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1.1.6 Temporal plasticity

While the analysis of nonlinear systems is already complicated as such, the systems
themselves also frequently change over time in biological applications. In a mathe-
matical model, this is reflected by jumps in the dynamic equations or by coefficients
and functions that change over time. During its dynamics, the system can change its
behavior or switch to a different mode. The dynamics of many processes in cells,
for example, depend on the cell cycle, physiological processes in organisms alter
their dynamics depending on age or disease, and environmental changes affect the
dynamic behavior of ecosystems. Such systems are called plastic or time-varying.
Dealing with time-varying systems, or equations that change their structure over
time, is an open issue in numerical simulations. Consistency of the solution at the
switching points must be ensured in order to prevent the simulation method from
becoming unstable.

1.1.7 Non-equilibrium

According to the second law of thermodynamics, entropy can only increase. Life
evades this decay by feeding on negative entropy (Schrödinger, 1948). The dis-
crepancy between life and the fundamental laws of thermodynamics has puzzled
scientists for a long time. It can only be explained by assuming that living systems
are not in equilibrium. Most of statistical physics and thermodynamics has been
developed for equilibrium situations and does, hence, not readily apply to living
systems. Phenomena such as the establishment of cell polarity or the organization
of the cell membrane can only be explained when accounting for non-equilibrium
processes such as vesicular recycling. Due to our incomplete knowledge of the
theoretical foundations of non-equilibrium processes, they are much harder to un-
derstand. Transient computer simulations are often the sole method available for
their study.

1.2 Spatiotemporal Modeling Techniques

Dynamic spatiotemporal systems can be described in various ways, depending on
the required level of detail and fidelity. We distinguish three dimensions of de-
scription: phenomenological – physical, discrete – continuous, and deterministic
– stochastic. The three axes are independent and all combinations are possible.
Depending on the chosen system description, different modeling techniques are
available. Figure 1.2 gives an overview of the most frequently used ones as well
as examples of dynamic systems that could be described with them.

continuous discrete
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interacting
particles

random events
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molecular

dynamics

population

dynamics

Figure 1.2: Most common modeling techniques for all combinations of continu-
ous/discrete and deterministic/stochastic models. The techniques for physical and
phenomenological models are identical, but in the former case the models are based
on physical principles. Common examples of application of each technique are given
in the shaded areas.

1.2.1 Phenomenological vs. physical models

Phenomenological models reproduce or approximate the overall behavior of the sys-
tem without resolving the underlying mechanisms. Such models are useful if one is
interested in analyzing the reaction of the system to a known perturbation, without
requiring information about how this reaction is brought about. This is in con-
trast to physical models, which reproduce the mechanistic functioning of the system
bottom-up. Physical models thus allow predicting the system behavior in new, un-
seen situations and they give information about how things work. Physical models
are based on first principles or laws from physics.

1.2.2 Discrete vs. continuous models

The duality discrete – continuous relates to the spatial resolution of the model. In
a discrete model, each constituent of the system is explicitly accounted for as an
individual entity. Examples include MD simulations, where the position and veloc-
ity of each atom is explicitly tracked and atoms are treated as individual, discrete
entities. In a continuous model, a mean field average is followed in space and time.
Examples of such field quantities are concentration, temperature, or charge density
(see Sec. 2.2).
Continuous deterministic models are characterized by smoothly varying field quan-
tities whose temporal and spatial evolution depends on some derivatives of the same
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or other field quantities. The fields can, for example, model concentrations, tem-
peratures, or velocities. Such models are naturally formulated as unsteady Partial
Differential Equations (PDE), since derivatives relate to the existence of integrators,
and hence reservoirs, in the system. The most prominent examples of continuous
deterministic models in biological systems include diffusion (see Chap. 6), advection
(see Chap. 8), flow (see Chap. 9), and waves (see Chap. 10).
Discrete deterministic models are characterized by discrete entities interacting over
space and time according to deterministic rules. The interacting entities can, e.g.,
model cells in a tissue, individuals in an ecosystem, or atoms in a molecule. Such
models can mostly be interpreted as interacting particle systems or automata. In
biology, discrete deterministic models can be found in ecology or in structural biol-
ogy.

1.2.3 Stochastic vs. deterministic models

Biological systems frequently include a certain level of randomness as is the case
for unpredictable environmental influences, fluctuations in molecule numbers upon
cell division, or noise in gene expression levels. Such phenomena can be accounted
for in stochastic models. In such models, the model output is not entirely prede-
termined by the present state of the model and its inputs, but it also depends on
random fluctuations. These fluctuations are usually modeled as random numbers of
a given statistical distribution. Continuous stochastic models are characterized by
smoothly varying fields whose evolution in space and time depends on probability
densities that are functions of some derivatives of the fields. In the simplest case,
this amounts to a single noise term modeling, e.g., Gaussian or uniform fluctuations
in the dynamics. Models of this kind are mostly formalized as Stochastic Differ-
ential Equations (SDE). These are PDEs with stochastic terms that can be used
to model probabilistic processes such as the spread of epidemics, neuronal signal
transduction, or evolution theory.
In discrete stochastic models, probabilistic effects mostly pertain to discrete ran-
dom events. These events are characterized by their probability density functions.
Examples include population dynamics – individuals have certain probabilities to
be born, die, eat, or be eaten – random walks of diffusing molecules, or stochasti-
cally occurring chemical reactions. Several methods are also available for combining
stochastic and deterministic models into hybrid stochastic-deterministic models.
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Chapter 2

Modeling Dynamics

In this chapter:

• Definitions of terms

• Continuity and the relation between microscopic and macro-
scopic models

• How to determine independent dynamic variables for any
system and ensure the model represents the correct system

• How to model multiple time scales

• An 8-step recipe to write dynamic models

Learning goals:

• Know the continuity assumption and its limits of validity

• Be able to check the consistency of an equation using
dimensional analysis

• Be able to find independent dimensionless groupings for a
given system

• Use dimensional analysis to check the validity of a model or
experiment

• Be able to distinguish and appropriately model slow, rele-
vant, and fast time scales

• Be able to follow the 8 steps of modeling to find the
governing eqution of a dynamical system

• Draw, read, and interpret causality diagrams

Let us start by looking at how an unknown biological system is approached and
how its dynamic behavior can be modeled in equations that can then be simulated

in the computer. After defining some basic terms, we will see how one determines
the important variables in a system (also a key factor in experimental design) and
determines dependencies between variables. Finally, we will see an easy to follow
recipe that leads to a mathematical model in 8 steps. For now, we focus on modeling
the dynamics in time only. Spatial resolution will be added in Chap. 4.

2.1 Definitions

We start by introducing some basic definitions that will be used throughout the
course:

System “A system is a potential source of data.”
A system has:

• a boundary. We can clearly state what is inside (belongs to the system)
and what is outside.

• inputs. The environment influencing the system

• outputs. The system influencing the environment

Experiment “The process of extracting data from a system.”
An experiment does:

• observe the trajectory of the system outputs (observation experiment)

• apply a defined change to the system inputs and record the reaction in
the outputs (perturbation experiment)

The problem in most real-world systems is that not all inputs are controllable
or not all outputs observable.

Model “A model for a system, and a specific experiment, is anything to which the
experiment can be applied in order to answer questions about the system.”

• each model is a system (hierarchy of models)

• models need not be mathematical

• models are only defined on the tuple (system, experiment). No model is
valid for all experiments and all models are valid for the null experiment.

• It is nonsense to state that a model is “valid” or “invalid” for a given
system.

Simulation “A simulation is an experiment performed on a model.”

• need not be computational

• beware not be use the simulation to make an experiment for which the
model is not valid, i.e. outside its “experimental frame”!
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• Model description and experiment description should be modularly sep-
arated.

Modeling “The process of organizing knowledge about a given system.”

2.2 The Continuity Assumption

The basic framework for modeling biological systems is given by the fact that ulti-
mately all matter is composed of discrete particles. These can be atoms, molecules,
or other “particles” such as individuals in an ecosystem. Particles are modeled by
their basic properties:

• the position of the particle in space: xp(t)

• the physical properties (attributes) of the particle: ω(P, t). These can be
properties such as mass, charge, energy, volume, etc.

Often, there is an abundance of particles filling the space and we can abstract from
individual particles to continuous “fields”. A field can be modeled as a continu-
ous and differentiable function in space and it is the result of an averaging over
the physical properties of the underlying particles. This averages out the random
(often thermal) fluctuations in the case of large numbers of particles. Fields thus
define quantities such as the density (concentration) of particles as a function of
space. The concentration of molecules can be determined by measuring the total
mass of all molecules within a given volume and dividing this mass by the volume.
We imagine such an averaging volume around each point in space in order to re-
cover a spatially resolved concentration field. These definitions are, however, only
valid in special cases and it is important to keep in mind that they are a model
approximation to the inherently discrete nature of things. As we increase the size V
of the averaging volume that we use for “measuring” the concentration, we observe
that the averaged field quantity u varies something like this:

λ VL

u

We can define two characteristic length scales of the system:
λ: the continuum limit (related to the mean free path of the particles)
L: the length scale of field variations.
Below λ, the averaging volume is too small compared to the particle density and
entry/exit of individual particles causes the average to strongly fluctuate. The value
of the continuum limit is governed by the abundance of particles compared to the
size of the averaging volume. If the microscopic particles are molecules such as
proteins, λ is related to their mean free path. Above L, macroscopic gradients be-
come apparent (or we are interested in resolving/measuring them) if the field is not
constant in space, again causing the average to change. The value of L is related to
the so-called Kuramoto length, or the notion of well-mixedness of the system. The
definition of a continuous concentration value only makes sense for length scales
above λ. Spatial variations can be neglected only below L. The region between
λ and L hence is the domain of validity of non-spatial dynamic models, such as
pathway models and chemical reaction networks. Above L, we need to take space
into account. For any system, we can define the dimensionless ratio Kn = λ/L,
called the Knudsen number. Only systems for which Kn ≪ 1 allow capturing the
field variations by continuous models. For systems with Kn > 1, spatial variations
become important or apparent before the continuity limit is reached, hence every
particle counts and must be modeled as a separate, discrete entity.
Furthermore, we can distinguish two types of properties: If the value between λ
and L depends on V , the property is called extensive, else intensive. Examples of
extensive properties include mass, charge, and heat. Extensive and intensive prop-
erties always come in pairs and the corresponding intensive properties in the above
example are concentration, charge density, and temperature.
Temperature is an intensive property. If one liter of water at 20◦C is divided into
two half-liter glasses, the water in each of the two glasses will still have a temper-
ature of 20◦C, even though the volume is halved. The temperature of the water is
independent of the volume of water. Neither of the two half liters of water however
has the same mass as the original liter. Mass hence is an extensive property.
Field quantities as considered in continuous models are always intensive, and quanti-
ties in discrete models are usually extensive. Corresponding extensive and intensive
quantities are interrelated through an averaging operation as described in Sec. 2.3.

Example 2.2.1 (Some examples of common field variables).

1. density/concentration

ρ =
npmp

V
= lim

V→0

∆m

∆V

[ρ] =
M

L3
⇒ kg

m3
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2. pressure (on surfaces)

p = lim
A→0

∆F · n
A

[p] =
M

LT 2
⇒ Pa =

N
m2

3. temperature T
[T ] = Θ ⇒ K

4. velocity v

[v] =
L

T
⇒ m

s

5. viscosity
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V

v = const

τ : force

needed to

maintain

β

ξ

d

y

x

ξ ≈ vt

β ≈ ξ
d

Momentum exchange due to inner friction (particles moving up lack momen-
tum and need to be accelerated):

solids: τ = G · β ; G: sheer modulus
fluids: τ = µdβ

dt

∼= µ d
dt

(
vt
d

)
= µ v

d = µdv
dy

µ : dynamic viscosity

[µ] = M
LT ⇒ Ns

m2

µ (water) ≈ 10−3 kg
ms > µ (air) ≈ 1.8 · 10−5 kg

ms

typically: µ ↓ if T ↑

6. surface tension

��

��

������

Fnet 6= 0

Fnet = 0

σ =
′′E′′

L2
=

′′F ′′

L
⇒ N

m

work = F ·∆x (energy)

area = ∆x∆y

σ =
F∆x

∆x∆y
=

F

∆y

for curved liquid surfaces:

∆p = σ

(
1

R1
+

1

R2

)

(Laplace)

R1, R2: curvature radii in the two principal directions ⇒ important for cell mem-
branes.

Question 1. What is ∆p for a spherical droplet of radius R?

Question 2. Estimate the maximum pressure difference across a cell membrane
for σ ≈ 0.03N

m , knowing that membranes can not assume curvature radii of less
than 20 nm.

2.3 Macroscopic vs. Microscopic View

The two views correspond to different levels of model resolution:
macroscopic → continuum approximation using field functions
microscopic→ account for and track the individual particles (for example in molec-
ular dynamics simulations).

The macroscopic view is the result of some averaging procedure and requires sepa-
ration of scales in order to be valid (Kn≪ 1).
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Example 2.3.1.

1. Temperature 3
2kBT =

〈

1

2
mpvp · vp
︸ ︷︷ ︸

kinetic energy

〉

P

2. Density ρ = 〈npmp〉V
3. Pressure

normal force
unit area = 〈F · n〉A

m · v

Notice that all quantities inside the averaging brackets are extensive and all av-
erages are intensive. The quantities carried by the particles are thus in general
extensive, whereas field quantities are intensive.

2.4 Dimensionality Analysis

Dimensionality analysis is a simple yet powerful technique to analyze a system
without prior knowledge. It can be used to:

• estimate orders of magnitude of quantities

• find out about correlations between variables

• check similitude between model and system

• check consistency of equations.

The governing equations do not need to be known, but we need to know physics.
By selecting the dimensions of the problem we postulate certain physical processes.
Kolomogrov (1914) derived his famous turbulence results using dimensionality anal-
ysis.

Basic idea:

dimensions 6= units
(M,L, T, . . .) (m, kg, J, . . .)

(in, lb, btu, . . .)
independent

Theorem 1. In classical physics, all dimensions can be expressed as power series
of six independent dimensions. While there are many possible choices of six, a fre-
quent choice is: mass (M), length (L), time (T), temperature (Θ), charge (C), and
luminosity (J).

Note that in relativistic or quantum physics, there is only a single independent
dimension, which is usually taken to be Energy.
The notation [·] means “dimensions of”, thus [µ] = M

LT .
All dimensions are power series of the independent dimensions (basis of the dimen-
sion space). Examples:

Force=ML/T 2 (Newton)
Energy=Force·L = ML2/T 2

Theorem 2. All equations derived from physical principles are dimensionally ho-
mogeneous

⇒ become familiar with an unknown governing equation

Question 3 (dimensional analysis of the Navier-Stokes equation for incompressible
flows). Determine the dimension of each term in the Navier-Stokes equation:

ρ
∂v

∂t
+ ρv

∂v

∂x
= −∂p

∂x
+ µ

∂2v

∂x2
.

The symbols are: x for position, t for time, v for the flow velocity, µ is the dynamic
viscosity of the fluid, and p the pressure.

Definition 2.4.1 (dimensionless grouping). A dimensionless grouping is an alge-
braic combination of variables that has no dimension (Example: Knudsen number).

Theorem 3. Let n be the number of independent dimensions of a model and p
the number of variables (parameters). We need p − n dimensionless groupings to
completely describe the dynamics of the model (Buckingham Π Theorem, 1915).

Example 2.4.1. Let’s say we have a model of a moving object. The p = 4 model
variables are the mass of the object, the force acting on it, the time during which
the force is active, and the velocity of the object. This model thus involves the
n = 3 independent dimensions M , L, and T . There is nothing that would depend
on charge, temperature, or resistance. We can completely describe the dynamics of
the model using p− n = 1 dimensionless grouping. Since this is the only indepen-
dent variable in this model, it must be constant. (In this case the dimensionless
grouping would immediately allow us to derive Newton’s second law of motion!)

But how to find the dimensionless groupings that form the minimum set of variables
needed to describe a model?
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2.4.1 E. S. Taylor’s Method (1974)

Taylor’s method is a recipe to find dimensionless groupings:

1. determine the number of groupings needed using the Π theorem.

2. write a matrix with columns representing (independent) dimensions and rows
variables.1

3. choose the simplest-looking column and eliminate all but one entries by Gauss
elimination with the simplest row that has non-zero entries in this column.

4. If only one variable is left for a certain dimension, delete it from the matrix,
along with the corresponding dimension.

5. Go to (3) until all entries are zero.

Example 2.4.2 (Couette flow wall force).
Models the shear stress on the plasma membrane of an erythrocyte moving along
the wall of a blood vessel.

τ

u(y), u(h) = U

µ, ρ
x

y

h

U

1. independent dimensions: M , L, T (n = 3)
variables: h, U , µ, ρ, τ
⇒ We need 5− 3 = 2 dimensionless groupings.

2.
M L T

h 0 1 0
U 0 1 −1
µ 1 −1 −1
ρ 1 −3 0
τ 1 −1 −2 (force/area)

3. simplest column: 1st(M) ⇒ eliminate using row ρ (simplest)
⇓
M L T

h 0 1 0
U 0 1 −1
µ/ρ 0 2 −1

⇒ ρ 1 −3 0
τ/ρ 0 2 −2

4. ρ is the only variable having a non-zero entry left in the column M ⇒ delete
row and column.

L T
h 1 0
U 1 −1
µ/ρ 2 −1
τ/ρ 2 −2

5. Go to (3). The next simplest column is the 3rd(T) ⇒ eliminate with U (sim-
plest row that has a non-zero entry in T )

⇓
L T

h 1 0
⇒ U 1 −1

µ/(ρU) 1 0
τ/(ρU2) 0 0

Delete column T and row U as there is only one non-zero entry left. The only
column left is L ⇒ eliminate with h (simplest row).

⇓
L

⇒ h 1
µ/(ρUh) 0
τ/(ρU2) 0

Delete the column L and the row h. What remains are the two dimensionless
groupings for this problem:

Π1 =
µ

ρUh
; Π2 =

τ

ρU2
.

Since these are the only two parameters that are independent (all others are
functionally dependent on each other and the form of the functional depen-

1product Ansatz: [R] =
∏

N−1

i=1
[vi]

αi (Note: αi is one entry in the matrix)
⇒ result is a power product of other variables. (proof by Buckingham)
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dence follows from the dimensionless groupings!), they must be related as:

µ

ρUh
= f

(
τ

ρU2

)

.

The form of the functional dependence can, e.g., be determined experimen-
tally, since we know now how to control the variables.

When the governing equations are written in nondimensional form, the dimension-
less groupings of the problem appear as coefficients.

2.4.2 Common dimensionless groupings

There are many pre-defined dimensionless groupings with intuitive meaning. These
can be used to guide the elimination process. The most important examples include:

• Reynolds number Re = ρUL
µ “viscous stress”

• Mach number Ma = U
a “speed”

• Stronhal number St = ωL
U “frequency”

• Weber number We = ρU2L
σ “surface tension”

• Drag coefficient CD = ρU2

τ

It is not surprising that the two dimensionless groupings we found in the previous
example were the Reynolds number and the Drag coefficient (well, their inverse),
as the example dealt with viscous forces in a fluid flow.

2.5 Dynamic Similitude

Often, the model differs from the real system in certain parameters. When and
how can we make sure that the dynamic behavior of the model is comparable to
the one of the real system? We know that the dynamics are only goverend by the
dimensionless groupings. If they have the same values for model (or simulation)
and the system (or experiment), then the two dynamics are the same. This is true
even if individual variables have different values. This is a very important principle
to establish model–system correspondence.

Dynamic similitude is reached when all dimensionless groupings of model and reality
match in value (use the n degrees of freedom to compensate model scaling).
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2.6 Slow and Fast Time Scales

So far we have not included dynamics in our modeling framework. The relations
between dimensionless groupings found by dimensional analysis are algebraic equa-
tions in which time at most appears as a static quantity. We will now explicitly
include rates of change of quantities and temporal differences, leading to dynamic
models formulated as ordinary differential equations (ODE). ODEs model the dy-
namics in time, i.e. resolve transients, but not in space. These models are valid
on length scales between λ and L. Later on, we will then extend our framework
to include also spatial resolution, which then leads to partial differential equations
that include time and space. We start our discussion of dynamics by looking at
different time scales.
Models should only involve time scales of similar order. Otherwise, efficient numer-
ical simulations are not possible because the step size limit for explicit numerical
integration schemes is limited by the fastest dynamics.
We distinguish three types of dynamics:

1. relevant ⇒ modeled as differential equations

2. slow ⇒ modeled as constants

3. fast ⇒ modeled as algebraic terms

“Relevance” is defined by the variables of interest, e.g. the quantity based on which
the model will be compared to experiments.
No systematic rules exist for classifying the dynamics of a system. Distinguishing
slow, fast, and relevant time scales is mainly a matter of experience and constitutes
a good part of the “art of modeling”.

Example 2.6.1 (FRAP experiment).
Consider again the FRAP experiment example from the first lecture. The following
time scales can be distinguished:

1. relevant: diffusion dynamics of the protein. This is the variable we are inter-
ested in.

2. slow: variations in the room temperature; changes in cell shape. Can be
modeled as constant.

3. fast: camera shutter dynamics; laser switch-on dynamics. Can be modeled as
algebraic functions, such as step functions.

2.6.1 Numerical stability of an explicit time integrator

Consider the model problem ẋ = −ax with solution x(t) = x0e
−at. The exponent

a defines the time scale of the decay.

An integrator is called stable (asymptotically stable) if all trajectories of a stable
system remain bounded for t → ∞. The above model problem is stable for all
a > 0. In these situations, the numerical integration scheme should have bounded
trajectories.
Let’s consider the forward Euler scheme as an example. The value at the next time
point t+ h is computed as:

xt+1 = xt − h · axt = [1− ha]xt

= [1− ha]t+1 · x0 ,

where x0 is the initial condition at t = 0. Numerical stability requires that
|xt+1| < C, which can only hold if |1 − ha| < 1. The two cases of the absolute
value lead to:

(1− ha) > 0⇒ ha > 0
(1− ha) < 0⇒ ha < 2

}

⇒ 0 < h <
2

a
.

The upper bound for the admissible time steps is inversely proportional to the
exponent a. Fast decay processes require small time steps.
This concept generalizes beyond the Euler scheme. For any system ẋ = Ax we can
write a linear explicit scheme as xt+1 = Fxt with A,F ∈ R

n×n.
Numerical stability requires that all Eigenvalues λ of F with Re(λ) < 0 have |λ| < 1.
The fastest time scale (largest |λ|) thus dictates the time step limit. Moreover, the
ratio between the largest Eigenvalue of F and the smallest Eigenvalue of F should
also not be too large. Systems with a large ratio are called “stiff” and are problem-
atic for numerical integration.

2.7 Reservoirs and Flows

A system can only exhibit dynamic behavior if it contains storage/reservoirs (inte-
grators). This is a necessary condition for the existence of dynamics. The levels of
these reservoirs are called state variables. Examples include:
amount of money (discrete), mass, energy, information, . . .
Only extensive quantities can be levels. Each level has an associated intensive
quantity, e.g.:

Level
kinetic Energy→ Speed
Heat →Temperature

If the levels of all reservoirs in a system are known at time t, the future behavior of
the system can be predicted. The levels thus describe the state of the system. If a
system has m reservoir levels, its state is a point in an m-dimensional vector space.
This space is called the state space of the system.
Reservoirs are connected by flows that can transport the contents from one reser-
voir to another one, thereby changing the levels of the two reservoirs they connect.

12



2.8 Modeling Steps

Based on the concept of reservoirs and flows, we present a simple recipe for mod-
eling the dynamics of a system and deriving the corresponding governing ordinary
differential equations (ODE). There are no spatial effects for the moment. We will
include them later. Following are the steps of the modeling procedure:

1. Define the system boundaries (see definition in Section 2.1) and the inputs
and outputs of the system. Be careful not to confuse inputs and outputs with
inflows and outflows!

2. Identify the reservoirs of relevant time scales (see Section 2.6) and the corre-
sponding level variables (see Section 2.7).

3. Formulate the (algebraic) equations that describe the flows between the reser-
voirs. In general, these equations have the form:

flow = f(activating level− inhibiting level) .

They can be found from physics, experiments, or dimensional analysis.

4. Use the conservation laws from physics to formulate the balance equations
that govern the dynamics of the reservoir levels:

d

dt
(level) =

∑

inflows−
∑

outflows .

5. Simplify the equations, resolve algebraic parts, non-dimensionalize, normalize
(avoid numerical extinction and problems with finite machine precision!), . . .

6. Solve the equations (analytically or numerically) to obtain level(t).

7. Identify unknown parameters values from experiments, literature, . . .
⇒ Parameter identification

8. Validate the model on data that have not been used for parameter identifi-
cation.

Example 2.8.1 (FLIP-Experiment in the ER lumen).
FLIP = Fluorescence Loss In Photobleaching. Repeatedly bleach the same part of
the ER and monitor the dynamics of fluorescence loss in other parts of the ER.

1. system boundary = ER membrane
u input bleaching rate
y output fluorescence intensity

2. relevant reservoir: fluorescence content in the ER ⇒ level: fluorescent mass
m(t)

• too fast:

– individual bleaching pulses

– laser on/off dynamics

– camera shutter dynamics

– diffusion within a compartment

– . . .

• too slow:

– changes in environmental temperature

– synthesis of new fluorescent proteins

– cell cycle

– . . .

These assumptions define (limit) the experimental frame of the model.

3. inflow: none (assumed that synthesis of new proteins is slow)
outflow: bleaching ṁout ⇒ νm

V β(t− k∆t)
m: activating level, there is no inhibiting level
ν: bleached volume
V : total ER volume
β(t) = 1

tb
(H(t − ts) − H(t − ts − tb)) is the algebraic function that models

the bleaching pulses (laser and camera dynamics assumed to be fast). This
function periodically repeats itself every ∆t = 2ts + tb + tr in order to model
the experimental bleaching cycle:

ts tr

resetscanbleach

tb

scan

ts

− 1
tb

We further assume tb ≪ tr (not accurately reflected in the figure) in order to
avoid one bleach to drain the entire mass, hence further limiting the experi-
mental frame of the model.
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4. balance equation for conservation of mass:

dm

dt
= − ν

V
β(t− k∆t)m (*)

5. simplify → nothing here

6. Model is a first order homogeneous ODE, so it can be solved analytically:

m(t) = m0e
−αβt (**)

α =
ν

V

7. Parameter identification: determine α by fitting (**) to FLIP measurements.

8. Validate: check that (**) explains the observations from independent experi-
ments.

This model can already be used to evaluate experiments. Figure 2.1 shows the
model fits to two FLIP experiments in the lumen of the perinuclear ER in yeast
cells. The constant α, the ratio between the bleached volume and the (unknown)
total volume of the ER, is determined by fitting the model to FLIP data of the mem-
brane protein Sec61. Validation is then done on the soluble pure GFP. Comparing
the exponential time constants of the fluorescence mass decay for both proteins, we
can state that the soluble GFP drains about 20 times faster than the membrane-
bound Sec61. This difference is explainable by the difference in diffusion constants
between the two proteins. The model thus supports the hypothesis that protein
transport in the ER happens through diffusion.
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Figure 2.1: Exponential time constants of measured FLIP data when the mother
cell is bleached. The fitted solution of the simple one-reservoir model is shown as
a solid line and the experimental FLIP data as circles. The ratio of time constants
between the ER-membrane protein and the soluble protein is τS/τG = 22.3

mother cell daughter cell

nucleus

nuclear ER mother (N)

cortical ER mother (M)

cortical ER daughter (B)

?

Figure 2.2: Schematic of the ER in budding yeast before nuclear division. The ER
forms three compartments: one concentrated in the perinuclear area of the mother
cell (N), one in the cortical region of the mother cell (M) and one in the cortical
region of the bud (B). All compartments are known to be connected but the exact
mechanism by which the cortical ERs are connected is unknown.

We can now extend this model to do real biology with it. Before nuclear division,
the ER in budding yeast cells is organized in three compartments: the perinuclear
ER in the mother cell, the cortical ER in the mother cell, and the cortical ER in the
bud (see Fig. 2.2). All three compartments are connected, but transport between
them is much slower than transport inside a compartment. We can thus safely
identify each compartment with a different reservoir in our model.

Between the two ER compartments inside the mother cell, thin tubular connections
can be observed in fluorescence microscopy. Between the cortical ERs of the mother
cell and the bud, however, no connections are visible. Nonetheless there must be
some connection since bleaching the mother cell’s cortical ER also drains the bud’s
ER. So the biological question is: How are the cortical ERs of the mother cell and

the bud connected? Going one step further, we also ask: Is this connection different

for membrane proteins and for soluble proteins?

We address this question using our modeling technique. Modeling is required in
the present setting because the connection we want to investigate is not observ-

able in experiments. This is one of the possible indications for modeling in biology
(cf. Chap. 1). Using different FLIP combinations, we can indirectly probe the
connections between the ER compartments, but correcting for dimensionality and
compartment sizes requires a model. We thus extend our simple one-reservoir model
from above to three compartments as follows:
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1. system boundary = ER membrane
u input bleaching rate and location of bleaching (mother/bud)
y output fluorescence intensities in all 3 compartments

2. relevant reservoirs: fluorescence content in the three ER compartments N, M,
B (see Fig. 2.2)⇒ levels: fluorescent mass contents n(t), m(t), b(t). Slow and
fast processes are the same as in the one-reservoir model above.

3. Figure 2.3 shows a representation of the three compartments and the flows
between them. Each compartment is attributed an (unkown) volume V and
the connections between the compartments are assumed to be diffusive. They
are characterized by their length L, cross-section area A, and the diffusion
constant D (different for soluble and membrane proteins).

Vb

l 2

l1

A

A 2

1

2

D1

V

D
����

�
�
�
�

nV

m

N

M B

n(t)

m(t)

b(t)

Figure 2.3: Abstraction of the three-reservoir model. The cortical ER in the mother
cell (M) and the cortical ER in the bud (B) are connected by connection 1, the per-
inuclear ER in the mother cell (N) and the cortical ER in the mother cell are
connected by connection 2. Each connection is characterized by its length L, cross-
section area A, and diffusion constant D.

We thus have the following flows for the three reservoirs:

• N: diffusive inflow from M, diffusive outflow to M

• M: diffusive inflow from N, diffusive outflow to N, diffusive inflow from
B, diffusive outflow to B, bleaching outflow if mother cell is bleached

• B: diffusive inflow from M, diffusive outflow to M, bleaching outflow if

bud is bleached

Bleaching is modeled as ν
V β(t− k∆t) as above. The diffusive flows are mod-

eled using Fick’s law. Fick’s law states that the flux (flow per unit area) due
to diffusion is given by j = −D∇c, where D is the diffusion constant and

∇c the concentration gradient. We approximate the concentration gradient
between two compartments x and y by their concentration difference, divided
by the length of the connection, thus:

∇c ≈ 1

L

(
x(t)

Vx
− y(t)

Vy

)

.

The concentration in a compartment is given by the total mass in that com-
partment divided by the compartment volume. We now define the transport

rate of an inter-compartment connection as:

λ =
DA

L
.

The transport rate λ has the dimensions L3/T and thus corresponds to the
total volume of material that can be transported through the connection per
unit time. With this, the diffusive flow between compartments x and y be-
comes:

ẋ(t) = λ

(
y(t)

Vy
− x(t)

Vx

)

.

4. Now we can formulate the balance equations, taking all the mass flows be-
tween the reservoirs into account. Using the expressions from above for the
flows, we find the equations as:







db(t)

dt
= λ1

(
m(t)

Vm
− b(t)

Vb

)

−(1− χm)νb
b(t)

Vb
β(t− k∆t)

dm(t)

dt
= λ1

(
b(t)

Vb
− m(t)

Vm

)

+ λ2

(
n(t)

Vn
− m(t)

Vm

)

−χmνm
m(t)

Vm
β(t− k∆t)

dn(t)

dt
= λ2

(
m(t)

Vm
− n(t)

Vn

)

(2.1)

with the transport rates for the two connections:

λ1 =
D1A1

ℓ1
, λ2 =

D2A2

ℓ2

and the indicator variable

χm =

{
1 if mother cortex is bleached
0 if bud is bleached

.

The colors in these equations correspond to the reservoir colors in Fig. 2.3.
The structure of the flows as “activating level minus inhibiting level” is nicely
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visible. Also notice that compared to the one-compartment model, we have
actually included some spatial resolution. We know now in which part of the
ER a certain fluorescent mass is. Increasing the number of reservoirs thus
increases the spatial resolution. This is exactly the road we will follow in
Chap. 4 to extend to spatiotemporal models.

5. The above balance equations can not be simplified any further.

6. Unlike the one-compartment model, the present three-compartment model
can not so easily be solved analytically any more (in principle it could, but
it would be more intricate). We thus choose to solve the model numerically.
In this example, I have implemented the model in Matlab/Simulink, where
reservoirs directly map to integrators and flows are represented by arrows.
The corresponding Simulink diagram is shown in Fig. 2.4. This provides a
graphical way of representing the model in the computer and simulating it
by hitting the “play” button without having to program a single line of code.
Once a reservoir-and-flow model is formulated, translating it to Simulink is
very easy. Scopes attached to the integrators plot their respective levels over
time, providing the numerical solution of the model.

Diffusion in budding Yeast cells  −−  second order lumped capacitance model

Color legend:
        states: orange
        input signals: blue
        output signals: yellow
        nonlinear: red
        linear: white

Mother cell mass content

1
s

M

1−Mble

Mble

1/Vm

1/Vb

Bud cell mass content

Bleaching

1
s

B

2

lambda

1

Ar

Figure 2.4: Matlab/Simulink implementation to numerically simulate the three-
compartment ER FLIP model.

7. The four unknown parameters λ1, λ2, νb/Vb, and νm/Vm are determined by
fitting the model to FLIP experiments using non-linear least-squares fitting.
Four experiments are performed:

• Membrane protein Sec61, cortical ER in the mother cell bleached

• Membrane protein Sec61, cortical ER in the bud bleached

• Soluble protein GFP, cortical ER in the mother cell bleached

• Soluble protein GFP, cortical ER in the bud bleached

It can easily be seen from the model Eq. 2.1 that this is the minimal set of
experiments that allows to identify all model parameters. In each FLIP ex-
periment, we monitor all three fluorescence levels b(t), m(t), and n(t). The
results of fitting the model to the experimental data is shown in Table 2.1.
It can be seen that the model represents well the bleaching dynamics in all
cases and in all compartments. Even the saw-tooth bleach-recovery cycles are
captured.

16



Mother cell bleached Daughter cell bleached
S
ec

6
1

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time   [s]

re
la

ti
v
e
 m

a
s
s
  
 [
−

]

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

1.2

time   [s]

re
la

ti
v
e
 m

a
s
s
  
 [
−

]

G
F
P

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time   [s]

re
la

ti
v
e
 m

a
s
s
  
 [
−

]

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time   [s]

re
la

ti
v
e
 m

a
s
s
  
 [
−

]

Table 2.1: Three-reservoir FLIP model parameter identification on experimental
results. The solid lines corresponds to the model predictions of the total fluorescent
mass in the cortical ER of the mother cell, the dotted lines to the model predictions
for the cortical ER of the daughter cell, and the dashed lines to the predictions
for the perinuclear ER. Circles mark experimental post-bleach values and pluses
experimental pre-bleach values.

8. The model was validated on other, independent FLIP experiments in the same
cells (total 7 experiments). In addition, the validity of the three-compartment
approach was validated using a two compartment model in which the two ERs
in the mother cell are lunmped together into one compartment. We will not
show the results here as they simply confirm the validity of the present three-
reservoir model.

After the model is developed and validated, we can use it to answer the original
biological question. The transport rates for the different proteins and connections
are summarized in Table 2.2. Comparing different connections for the same pro-
tein species, the diffusion constant D cancels out and the differences in λ are only
caused by differences in A/L, i.e. the ratio between total connection cross-section

and effective connection length. From the fitting results, we find:

ssGFP:
λ2

λ1
=

13.7

0.05
= 274 , Sec61-GFP:

λ2

λ1
=

15.0

0.0034
= 4411 .

If we assume that L2 ≈ 5 . . . 10 ·L1 (the radius of the mother cell is typically about
2.5µm, such that the radial distance between the perinuclear and the cortical ER
is on the order of 1. . . 2µm and the separation gap between the two cortical ER
parts is about 0.1. . . 0.4µm), this means that the total cross-section of the connec-
tion within the mother cell is at least 103 to 104 times larger than the one between
mother cell and bud. This explains why the former can be seen in fluorescence light
microscopy, but not the latter. In summary, the model provides the following an-
swer to the first biological question: The ER compartments within the mother cell
behave much like a single compartment, whereas the bud is very weakly connected.
This weakening of the connection is more pronounced for membrane proteins than
for soluble proteins.

Table 2.2: Average model parameters from 7 FLIP experiments.
Case λ1 λ2 RMS error
Sec61-GFP, mother bleached 0.00225 15.43 0.07709
Sec61-GFP, bud bleached 0.00435 14.71 0.10111
ssGFP, mother bleached 0.06668 14.07 0.06326
ssGFP, bud bleached 0.03042 13.12 0.08573

There seems to be a difference in behavior between membrane proteins and soluble
proteins. This difference cannot be explained by the different diffusion constant
as they cancel out in the λ ratio. In order to understand this, let’s compare the
transport rates of the two species for the same connection. We find:

bud neck:
λ1,GFP

λ1,Sec61
= 14.81 , mother:

λ2,GFP

λ2,Sec61
= 0.934 .

This means that the soluble GFP is exchanged about 16 times faster than the
membrane-associated Sec61 in the bud neck than it is within the mother cell. The
model’s answer to the second question thus is: The diffusion of Sec61 is slowed
down about 16-fold in the bud neck compared to GFP.
This behavior could be explained by assuming a diffusion barrier in the ER mem-
brane across the bud neck. The model thus suggests a new hypothesis and new
experiments. Indeed, the existence and identity of such a diffusion barrier (similar
to the septin ring in the plasma membrane) have been confirmed experimentally
(Lüdeke et al., J. Cell. Biol., 169, 2005). This was the first time that compartmen-
talization of an intracellular membrane has been demonstrated.
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2.9 Causality Diagrams

Causality diagrams are a way of visualizing causal relationships in a system or a
model. In steps (2) to (4) of the obove modeling procedure, it is often beneficial
to draw a diagram with explicit cause-effect relations. This helps keeping overview
and making sure all variables are accounted for in the balance equations.

2.9.1 Conventions

The following drawing conventions are used in causality diagrams:

reservoirs: shaded boxes

flows: plain boxes

causality: arrow with mediating variable indicated

sums: nodes

The entry point of the diagram must not depend on any property within the dia-
gram. It must be an independent input.

Example 2.9.1 (Causality diagram of the one-reservoir FLIP model).

mass m

bleaching

m(t)y(t)

u

-

ṁout(t)
αβ

Question 4. Derive the model equations and the causality diagram for an ecosys-
tem with two species: A & B. Each (A,B) is characterized by:

• a probability of dying (δ) → assumed to be age-independent (not realistic)

• a probability of generating offspring (β)

A is a predator of B. At each encounter of A & B, there is a probability ǫ for B to
be eaten. The birth rate of each A (βA) depends on how many B it has eaten.

(a) Follow the modeling steps described above to write down the governing equa-
tions (ODE) for the excepted population dynamics. What are the reservoirs
and flows? (K4)

(b) Draw the causality diagram for this system. (K3)

18



Chapter 3

Recapitulation of Vector
Calculus

In this chapter:

• Scalar and vector fields

• Differential operators on fields

• Flux and work of vector fields

• Integral theorems

• Conservative fields and differential equations

Learning goals:

• Be familiar with the differential operators and the Nabla
notation

• Be able to prove compute rules of differential operators in
Cartesian coordinates

• Know the theorems of Gauss and Stokes by heart and be
able to explain them intuitively

• Be able to define the terms “potential” and “state variable”

• Know when to use the Laplace and Poisson equations to de-
scribe a field

We review the most important concepts of vector analysis that are required in order
to follow the rest of these lecture notes. The notation and concepts introduced here
provide the mathematical foundation for the rest of the course and should be famil-
iar to the reader. Knowledge of them is both necessary and sufficient as no other
mathematical concepts than the ones recalled here will be used. Readers familiar
with vector analysis can safely skip this chapter.

3.1 Fields

Fields are used to describe the spatial distribution or variation of quantities of
interest. We distinguish:

Scalar fields : A scalar field is a scalar-valued function f : Rn 7→ R (x)→ f(x).
Scalar fields describe the spatial distribution of scalar quantitites such as tem-
perature, pressure, density, concentration, . . .

In a scalar field, we can define iso-lines as curves C(s) : s → x(s) such that
f(x) is constant along C ∀x.

Vector fields : A vector field is a vector-valued function v : Rn 7→ R
m (x) →

v(x). Vector fields describe the spatial distribution of vector (directed) quan-
titites such as velocity, force, electric field, . . .

In a vector field, we can define field lines as curves K(s) : s → x(s) such
that v(x) is tangential to K ∀x. These curves are the solution of the ODE:
dx
vx

= dy
vy

= dz
vz

.

Example 3.1.1.

• The field lines of the velocity field of a rigid body rotation are concentric
circles in the planes normal to the axis of rotation with centers on the
axis of rotation.

• The field lines of the velocity field of fluid flow are the trajectories of the
molecules.

With respect to their temporal dynamics, we distinguish:

Definition 3.1.1 (stationary field). In a stationary field, the scalar or vector value
at each location does not change over time.

Definition 3.1.2 (unsteady field). In an unsteady field, the scalar or vector value
depends on time in at least certain locations.

3.1.1 Differentation of vectors

Vector fields can be differentiated analogously to scalar fields. Following are the
rules of differentiation on vectors:
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Let a(t), b(t), and c(t) be vector fields in the scalar variable t ∈ R and ϕ(t) a scalar
field. Then:

d

dt
(a± b± c) =

da

dt
± db

dt
± dc

dt
d

dt
(ϕa) =

dϕ

dt
a+ ϕ

da

dt
d

dt
(a · b) = da

dt
· b+ a · db

dt
d

dt
(a× b) =

da

dt
× b+ a× db

dt
(not commutative!)

d

dt
(a(ϕ(t))) =

da

dϕ

dϕ

dt
(chain rule)

3.2 Differential Operators

Scalar and vector fields can be manipulated using differential operators that involve
some combination of derivatives of the field. The result of a differential operator is
again a scalar or vector field, but not necessarily of the same type as the argument.
The most important differential operators in spatiotemporal models in biology are:

• Gradient grad f(x)

in Cartesian R
3:

grad f(x, y, z) =

(
∂f

∂x
(x, y, z),

∂f

∂y
(x, y, z),

∂f

∂z
(x, y, z)

)

in general:

grad f = lim
∆v→0

∮

Σ
fdS

∆v

– Σ: closed surface
– ∆v: enclosed volume

This can be intuitively understood as follows: dS is a boundary element
(with outer unit normal) of the volume ∆v with boundary Σ. The outer
normal on Σ is scaled with the local value of the field f at every point
and the scaled normals are integrated over the whole boundary of ∆v. If
f has the same value everywhere, the integral evaluates to zero. If f is
larger on one side of ∆v than on the other, the result will be a non-zero
vector pointing from the side where f is smaller to the side where it is
larger. If we let the size of the volume ∆v go to zero, we obtain a vector
indicating the local point change in f and its direction.

properties:

– orthogonal to iso-surfaces f = 6c

– points in direction of the steepest increase of f .
– grad f = 0 ⇔ local extremum (minimum, maximum, or saddle

point) of f .

• Directional derivative df
dc with ||c|| = 1.

The directional derivative gives the infinitesimal change of f in direction c,
thus: df

dc = c · grad f . It is equivalent to the projection of the gradient of f
onto the unit vector c.

f = 6c

cdf

dc

∇f

• Divergence div v

in Cartesian R
3:

div v(x, y, z) =
∂v1
∂x

(x, y, z) +
∂v2
∂y

(x, y, z) +
∂v3
∂z

(x, y, z)

in general:

div v = lim
∆v→0

∮

Σ
v · dS
∆v

Again, this can be intuitively understood: the vector field is locally pro-
jected onto the outer unit normal of the boundary Σ of the volume ∆v
and all the projections are integrated over the whole closed boundary.
The integral will thus evaluate to the total amount of v that is crossing
the boundary. If we let the size of the volume ∆v go to zero, we obtain
the local amount (scalar) of v that is “emerging” out of a point in space.

properties:

– the divergence of a homogeneous field v (i.e. v ≡ a) is zero, thus:
div v ≡ 0.

– the divergence is a unit source strength; it gives the amount of the
quantity that is newly generated (or removed for negative signs) per
unit volume and unit time.

• Curl curl v
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in Cartesian R
3:

curl v(x, y, z) =

(
∂v3
∂y
− ∂v2

∂z
,
∂v1
∂z
− ∂v3

∂x
,
∂v2
∂x
− ∂v1

∂y

)

in general:

curl v = lim
∆v→0

∮

Σ
dS × v

∆v

The intuitive meaning of this equation is the following: at every point on
the boundary of the volume ∆v, we compute the cross product between
the local vector field value and the outer unit normal on the volume’s
boundary Σ. This cross product will be maximum if v is tangential to Σ
and zero if v is parallel to dS. We then integrate this quantity over the
whole boundary, thus measuring the net amount of v that is “running
around” Σ. If we let the size of the volume go to zero, we obtain a vector
whose length is the point-wise local vortex strength or rotation of the
vector field v and whose direction indicates the axis of rotation.

properties:

– The curl of a vector field gives the vorticity per unit volume.

Notice that none of the above definitions depends on the shape of the test
volume ∆v.

Instead of using the symbolic names of the differential operators, they can
also be compactly written in terms of the

• Nabla operator ∇ (Notation, not a new operator!)

– in Cartesian R
3:

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)

The basic differential operators introduced so far can thus equivalently be
written as:

– grad f = ∇f
– div v = ∇ · v
– curl v = ∇ × v (Note that while this notation is always used, it does

not work to derive a formula in 2D, where the curl is actually a scalar.
There, an auxiliary dimension has to be introduced.)

This, for example, allows the compact definition of the important

• Laplace operator ∆ = ∇ · ∇ = ∇2 (scalar product)

in Cartesian R
3:

∆f =
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2

property : The Laplace operator of a scalar field is invariant to translation
and rotation of the coordinate system.

We can summarize the family of differential operators used in this lecture as:

Operator Symbol Nabla Argument Result Interpretation
gradient grad f ∇f scalar vector steepest ascent
divergence div v ∇ · v vector scalar source density
curl curl v ∇× v vector vector vortex strength
Laplace △f (∇ · ∇)f scalar scalar sources in potential field

3.2.1 Compute rules for differential operators

The following compute rules are handy when doing algebra with differential oper-
ators. All rules can easily be proven from the basic definitions of the operators as
given above.

(1) : grad(f1 + f2) = grad f1 + grad f2

(2) : grad(cf) = c grad f

(3) : grad(f1f2) = f1 grad f2 + f2 grad f1

(4) : gradF (f) = F ′(f) grad f

(5) : div (v1 + v2) = div v1 + div v2
(6) : div (cv) = c div v

(7) : div (fv) = v · grad f + f div v

(8) : curl(v1 + v2) = curl v1 + curl v2

(9) : curl(cv) = c curl v

(10) : curl(fv) = f curl v − v × grad f

(11) : div curl v = 0

(12) : curl grad f = 0

(13) : div grad f = △f

(14) : curl curl v = grad div v −△v

(15) : div (v1 × v2) = v2 · curl v1 − v1 · curl v2
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3.3 Flux (Φ)

In models of real-world systems, we are often concerned with the flow of things
between reservoirs or regions of space (see Section 2.7). The concept of flows is
mathematically formulated by fluxes and defined for a vector field v and a surface
S, where n is the outer unit normal onto S.
Question: be v the velocity field of a flow; how much fluid flows through S per
unit time in direction n?

⇒ split S into infinitesimal area elements dS. Because they are infinitesimal, the
dS are flat and v is homogeneous within a single dS. The total flow through a
single dS thus is:

dΦ = v · ndS .

The flux is the “sum” over all infinitesimal dS and thus given by the integral:

Φ =

∫

S

v · ndS .

n

Sv

dS
v

n

Often, we simplify the notation by writing: ndS = dS and Φ =
∫

S
v · dS.

3.4 Work (W )

Another fundamental quantity in modeling is the work (a flow of energy) done by
a vector field v along a line path L with beginning A and end B.

Question: be v a force field; how much work is done by v moving a point mass
along L from A to B?

⇒ split L into infinitesimal line segments dr. Because they are infinitesimal, the dr
are straight and v is homogeneous within a single dr. The work done by the force
v per line segment thus is:

dW = v · dr .

The total work is the “sum” along the complete path L, thus the integral:

W =

∫

L

v · dr .

A

B
L

v

dr

For parametric curves:

L : t 7→ r(t) ⇒ dr = ṙ(t)dt .

Example 3.4.1.

• Circulation is the work done by moving a unit mass in a velocity field.

• Voltage is the work done by moving a unit charge in an electric field.

3.5 Integral Theorems

The quantities of flux and work are linked through important integral theorems that
are due to Gauss and Stokes. The Gauss theorem relates surface fluxes to space
quantities and the Stokes theorem relates surface quantitites to line work. They
can be used to transform all quantitites in a model to space/surface quantitites in
order to derive the differential equation in that space. The theorems are:

• Gauss
Consider a vector field v that is defined and continuously differentiable in the
closed region B with boundary ∂B and outer unit normal n.

Gauss Theorem:
∮

∂B

v · ndS =

∫

B

div v dV
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∂B
B
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“The flux of v through ∂B from inside to outside is equal to the volume integral
of div v over the enclosed volume B.”

Intuitive: “What is produced inside B has to flow out.” This is a consequence
of the conservation of mass in a flow with velocity field v.

• Stokes
Consider a vector field v that is defined and continuously differentiable in a
region D. Consider further a bounded surface S that is entirely contained in
D and has the border line ∂S.
C is a path along ∂S such that its sense forms a right-hand screw with the
normal onto S.

Stokes Theorem:
∮

C

v · dr =

∫

S

curl v · ndS

∂S
n

S

“The work of v along the boundary path C is equal to the flux of curl v
throught the enclosed surface S.”

Intuitive: “The circular work invested is equal to the flux of rotational en-
ergy.” This is a consequence of the conservation of energy.

Based on these two fundamental integral theorems, others can be derived.
Green’s theorems are, for example, frequently used when deriving partial dif-
ferential equations that govern spatiotemporal models. They can be obtained
by applying Gauss to v = f1∇f2 and read:

• Green

1.
∫

B
(f1∆f2 +∇f1 · ∇f2)dV =

∮

∂B
f1∇f2 · dS

2.
∫

B
(f1∆f2 − f2∆f1)dV =

∮

∂B
(f1∇f2 − f2∇f1) · dS

3.6 Conservative Fields

The special class of conservative fields plays an important role in practical modeling
applications. It directly relates to physically conserved quantitites such as mass,
energy, impulse, or momentum, and it formalizes the concept of state variables that
we used for the reservoir levels in Section 2.7.

Definition 3.6.1. A vector field v(x) is called conservative if and only if the work
along all possible paths from P to Q is equal, for all (P,Q).

⇒ The work along a closed curve is always zero.
⇒ The work does not depend on the specific path chosen, but only on the starting
point and end point. These points (P and Q above) are hence states of the system,
which we earlier identified with the levels of the reservoirs. For a conserved quan-
tity, it does hence not matter how the level of a reservoir is reached, but only how
large it is. The concept of conservative fields formalizes this. The points P and Q
are then points in the state space of the model, i.e., each point corresponds to a
certain set of reservoir levels.

P

C1

C2

Q

The following facts about conservative fields are important:

• Each gradient field is conservative and vice versa. grad f is thus often called
“potential field” and f its “potential”.

• Each potential (gradient) field is vortex-free and vice versa, curl grad f ≡ 0
for all f .

• The work in a potential field only depends on the potential difference between
the end point and the starting point, f(Q − P ). These are thus the state
variables (reservoir levels) of the system and the expression should recall the
“activating level minus inhibiting level” form of flows between reservoirs (see
Section 2.8). We see now that this is true for all conserved quantities, which
earlier allowed us to formulate the balance equations for the reservoirs.

3.7 Differential Equations

Using the above conservation properties of differential operators, we can define two
basic partial differential equations that occur in many models. We can use these
equations as building blocks for models whenever the conditions they describe ap-
pear. The equations are:

• Laplace: ∆f = 0

– The solution of the Laplace equation is the potential of a conservative
field without sources (i.e. div grad f = 0⇔ ∆f = 0).

– The solutions are called “harmonic functions”.

• Poisson: ∆f = q(x)
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– The solution of the Poisson equation is the potential of a convervative
field with given source density q(x). This can be used as a model for the
potential whenever the source density is known.

– The solution is called the “Coulomb potential”.

The actual solutions of these equations depend on the shape of the system (do-
main) in which they are solved and on the boundary conditions. From this, the
entire field f inside the domain is determined, mathematically defining a boundary

value problem.
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Chapter 4

Modeling Spatial Effects

In this chapter:

• Eulerian and Lagrangian control volumes

• The Reynolds transport theorem for extensive quantitites

• Infinitesimal control volumes and PDEs

• An example: derivation of the diffusion equation

Learning goals:

• Know the Eulerian and Lagrangian descriptions

• Know material derivatives by heart and be able to explain
them intuitively

• Be able to formally define intensive and extensive quantities

• Know the Reynolds transport theorem

• Be able to apply the Reynolds transport theorem and con-
servation laws to derive PDEs

We now extend our modeling framework to spatiotemporal models, still using the
notion of reservoirs and flows. Recall the FLIP example of Sec. 2.8. In the one-
reservoir model we only knew the total fluorescent mass in the ER, but had no
information about how it is distributed. In the three-reservoir model we already
knew in which part of the ER a certain amount of fluorescent mass is, but still not
how it is distributed within each part (compartment). We can continue playing
this game and subdividing the reservoirs further. Every time we do so, we gain
more spatial resolution. Our modeling framework remains valid, but we will get
a very large number of ODEs. Writing balance equations for the time evolution
of the reservoir levels in all the control volumes leads to a spatiotemportal model
where the spatial resolution is defined/limited by the size of the control volumes.

Mathematically, we can let their size go to zero (and their number to infinity), in
which case we recover continuous PDE models. Such models are, however, only
valid for Kn → 0. In reality, the control volumes can thus not be smaller than λ.
In order to resolve all field gradients, they should, however, be smaller than L.
We rely on the mathematical tools from vector analysis and on numerical computer
simulations to formulate and solve such models. Also, as we continue subdividing
the reservoirs, they will not correspond to real-world compartments any more, but
are simply identified with subspaces of the modeled physical space. These subspaces
can be arbitrarily placed, they can be fixed in space or move, and they can be made
infinitesimally small. In the case of an infinite number of infinitely small reser-
voirs, we will recover the continuum limit of partial differential equations (PDEs).
Still, all modeling is based on formulating balance equations for conserved extensive
quantities.

4.1 Control Volume Methods

The “subspaces” mentioned above are formalized as control volumes:

Definition 4.1.1 (Control Volume). A control volume is a volume of integration,
contained in a field. It can be arbitrarily placed and shaped.
⇒Because a control volume has a defining boundary, it is a system in and by itself!

Let’s assume a scalar field f(x, t) (e.g. concentration) and a vector field
v(x, t).(e.g. flow velocity). There are two formulations of control volumes, depend-
ing on whether the control volume is fixed in space or moving:

Euler Lagrange

V (t) = V (t+ δt) V (t)

V (t+ δt)

• fixed in space w.r.t. system
boundary

• flux of v across the bound-
ary

• movig and deforming with
v. Only “sees” the tempo-
ral change when following a
set of particles

• always contains the same
set of particles, no flux of v
across the boundary.
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A Lagrangian control volume always contains the same set of particles and tracks
their motion in the velocity field v. Therefore, there is no flux of v across the
boundary of the control volume. There is, however, a flux of f across the boundary
as the control volume is traveling through the field f with velocity v.
As an example, consider the flow in a river. An Eulerian control volume is like a
basket that we hold into the water and we observe from the shore how the water
flows through it. Once we sit into the basket and let go of the shore, we travel
downstream with the flow and hence the basket became a Lagrangian control vol-
ume.

4.1.1 Derivatives in control volumes

What is the temporal change of f (not v!) that one “feels” in an Eulerian and a
Lagrangian control volume? Let’s say the water temperature in the river becomes
warmer as we go further downstream. What’s the temporal change of temperature
we feel in the basket that is anchored to the shore versus the basket that travels
with the flow? These will lead to the balance equations in the control volumes. The
temporal derivatives of the field quantity f in the two control volume formulations
are:

Euler
∂f

∂t

∣
∣
∣
∣
x=const

(x fixed !) (field derivative)
⇒change of f at a fixed point in space. In our example with the river, this
derivative would be local change in water temperature at the given, fixed
location, for example from the sun heating up the water.

Lagrange
∂

∂t
(f(x(t), t)

(x varying!)

=
∂f

∂x

∂x

∂t
︸︷︷︸

velocity v

+
∂f

∂t

=
∂f

∂t
︸︷︷︸

creation

+(∇f) · v
︸ ︷︷ ︸

flow

=
Df

Dt

(material derivative)
⇒change of f in a control volume that travels with velocity v. In the exam-
ple with the river, this derivative contains the change in temperature as the

basket gets convected down into warmer waters in addition to the sun locally
heating up the water. The former is captured by the second term on the
left-hand side, which describes the change due to moving through the field
gradient ∇f with velocity v.

Even though we have derived the expression for the material derivative purely math-
ematically, it intuitively makes a lot of sense. It states that the rate of change felt
when traveling with the control volume is composed of two terms: (1) the intrinsic
change in the field quantity f at the location where the control volume currently is
(∂f/∂t); (2) the change felt from moving along the gradient of f , i.e. moving into
regions of higher/lower f . The scalar product makes sense since moving perpendic-
ular to the gradient (along iso-lines) does not make you move into regions where f
is different.

Example 4.1.1 (Stepping out of the house). Consider the example of you stepping
out of the house. What is the temperature difference that you feel when doing so?
You are a Lagrangian control volume because you are moving with yourself. The
change in temperature that you experience has two components: (1) spontaneous
changes of the outside temperature at any fixed location, e.g. because a cloud is
occluding the sun causing the temperature to drop over time. (2) your motion in
the temperature gradient between indoors and outdoors. The first component is
∂f/∂t, the second one is (∇f) · v. The temperature gradient between indoors and
outdorrs is ∇f , and v is the velocity with which you are moving. The scalar prod-
uct tells that only the component of v along the gradient lets you feel a change in
temperature, and the velocity is there because moving faster lets you feel a more
rapid change.

For vector fields, the expressions look exactly the same with the vector gradient ∂vj

∂xi

and the matrix-vector product (∇v)v.

4.1.2 Reynolds transport theorem (Reynolds, 1895)

Now we know how to compute the time derivative of an intensive field quantity in
a moving (Lagrangian) control volume, namely by the material derivative

Df

Dt
=

∂f

∂t
+

=(v·∇)f
︷ ︸︸ ︷

v · (∇f) ,

which relates the temporal change in the traveling control volume (Df/Dt) to the
instantaneous local change of the field quantity f (∂f/∂t).

But how do we compute the material derivative of integral (extensive) quantities
ϕ =

∫

V
fdV in a control volume V ?
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Example 4.1.2.
An example for such an integral quantity is mass, defined as the volume integral
over the scalar density (concentration) field, thus: m =

∫

V
ρ dV .

Mass can of course be transported in space, so mass is in general not conserved
in an Eulerian control volume. In a Lagrangian control volume, however, mass is
conserved. Remember that a Lagrangian control volume always contains the same
particles. Conservation of mass thus mathematically means Dm

Dt = 0, rather than
∂m
∂t = 0 (!).

Now we can define:

Definition 4.1.2 (Conservation). An extensive quantity that remains constant
within a Langrangian control volume is called conserved.

In order to build models based on conservation laws (i.e. formulate the balance
equations for reservoirs), we thus need to express Dϕ/Dt in terms of derivatives of
f . We can express it in terms of Lagrangian (material) derivatives of f as:

Dϕ

Dt
=

D

Dt

∫

V

f dV =

∫

V

Df

Dt
dV

(Notice that the volume of integration does not change with time as we are sitting
inside the Lagrangian control volume and traveling with it. There is thus no relative
velocity bewteen the control volume and the volume of integration. There is thus
no change of the control volume with respect to the integration volume. Do not
confuse this with the change of the Lagrangian control volume with respect to the
embedding space!)

or in terms of Eulerian (field) derivatives of f as:

Dϕ

Dt
=

D

Dt

∫

V (t)

fdV (t)

=

∫

V (t)

Df

Dt
dV (t) +

∫

V (t)

f
D

Dt
[dV (t)]

︸ ︷︷ ︸

∂dV (t)

∂t
︸ ︷︷ ︸

= 0
︸︷︷︸

volume element

at same location

stays the same.

+(v · ∇)dV (t)

=

∫

V (t)

[
Df

Dt
+ f(v · ∇)

]

dV (t)

=

∫

V (t)





∂f

∂t
+ v · (∇f) + f(∇ · v)

︸ ︷︷ ︸

=∇·(fv): see compute rules




 dV (t)

=

∫

V (t)

[
∂f

∂t
+∇ · (fv)

]

dV (t) .

(Here, the volume of integration changes with time as we are watching the La-
grangian control volumes “flow by” at a fixed position.) Using Gauss’ theorem, we
obtain the Reynolds transport theorem:

Dϕ

Dt
=

∫

V (t)

∂f

∂t
dV (t) +

∮

S(t)

fv · ndS(t) .

The Reynolds transport theorem relates the Lagrangian derivative of an extensive
quantity to the Eulerian description of the corresponding intensive quantity. It
is therefore of great importance in modeling. Models are formulated in terms of
reservoirs and their (extensive) levels. PDEs, however, are formulated for the as-
sociated intensive field quantity. Reynolds provides the link and allows translating
Lagrangian, extensive conservation laws to Eulerian, intensive governing equations.
It holds for any control volume of any shape.
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V (t+ 2δt)

V (t+ δt)

V (t)

Intuitively, Reynolds makes sense: consider the example of a bank account. The
material derivative is the change in balance when “moving with the account”. It is
given by the integral of all field changes, such as fees or interest, plus all in and
out transactions, corresponding to the flux in the second integral. It is the balance
equation for a Lagrangian control volume.

Now that we have defined control volumes and know how to compute the time
evolution of extensive and intensive quantities inside them, we can define the two
types of quantities more formally:

Definition 4.1.3 (Extensive quantity). The value of an extensive quantity depends
on the size of the control volume. All integral properties are extensive (e.g. mass,
energy, impulse, . . . ).

Definition 4.1.4 (intensive quantity). The value of an intensive quantity is in-
dependent of control volume size. All field properties are intensive (e.g. density,
temperature,velocity, . . . ).

4.2 Infinitesimal Control Volumes

If we are interested in the spatial variations of a field, we can apply a great number
of very small (≪ L) control volumes that tile the space. Letting their size |V | → 0
leads to the mathematical continuum limit of partial differential equations. Notice
that this is only a mathematical limit and does not contradict the fundamental
particle nature of matter. In fact we still require Kn ≪ 1 and hence only consider
physical or biological length scales > λ. Within each infinitesimal control volume,
the modeling technique of Chapter 2 can be used. The Reynolds transport theorem
then allows translating the conservation laws to governing PDEs.
Finite-sized control volumes are used in finite volume methods to numerically
solve the equations by means of flux balance in each grid cell. The method of control
volumes thus directly relates to numerical simulations.

Example 4.2.1 (Diffusion).
Let’s see how the Reynolds transport theorem and infinitesimal control volumes
can be used to derive in four steps the governing PDE for diffusion processes:

1. What quantities do we want to track? In diffusion, the intensive property
of interest is the scalar concentration field u(x, t). The corresponding extensive
(integral) property is the mass m =

∫

V
u dV .

2. What is conserved? Mass is a conserved quantity, thus:

Dm

Dt
= 0 .

This already is the extensive Lagrangian formulation of the diffusion equation. Usu-
ally, however, we want a PDE that describes the spatiotemporal dynamics of the
concentration field u(x, t), so we need to translate this extensive Lagrangian for-
mulation into an intensive Eulerian one. We therefore apply Reynolds in a control
volume V and express the conservation law for mass as:

Dm

Dt
=

∫

V

∂u

∂t
dV +

∮

∂V

uv · ndS = 0 .

3. Formulate the algebraic equations for the fluxes. We need an expression
for the flux density uv. This is equivalent to the algebraic equations that we used
for the flows between reservoirs in Section 2.8. This algebraic equation for the flux
is called the constitutive equation and it is, in general, determined experimentally
or from dimensional analysis. Since the constitutive equation is empirical, it is not
universally valid. For diffusion, the constitutive equation is given by Fick’s law as:
uv = −D∇u.
D is the diffusion constant of dimension [D] = L2

T . Fick’s law states that in diffusion
mass flows against the concentration gradient. It has been found experimentally
(empirically), but it can also be derived from statistical mechanics over the mi-
croscopic description of diffusion as molecules undergoing Brownian motion due
to thermal fluctuations. Fick’s law provides the equation for the fluxes across the
control volume boundaries. Inserting the constitutive equation into the Reynolds
theorem yields:

⇒
∫

V

∂u

∂t
dV = −

∮

∂V

uv · ndS =

∮

∂V

D∇u · ndS
Gauss
=

∫

V

∇ · (D∇u) dV

⇒
∫

V

[
∂u

∂t
−∇ · (D∇u)

]

dV = 0 .

4. Take the limit to infinitesimal control volumes. This has to hold for all
V , independent of their size, location, or shape. We can thus, in our minds, let the
sizes of the control volumes go to zero (|V | → 0) and at the same time increase the
number of control volumes to infinity in order to ensure coverage of the complete
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space. The only way the above equation can then still hold for all of the infinitely
many (point-like) control volumes is if the integrand itself is zero, thus:

∂u

∂t
= ∇ · (D∇u) .

This is the PDE governing diffusion, the diffusion equation. Note how the model
was formulated in terms of reservoirs of mass and using the conservation law for
mass. The final equation, however, is formulated for the intensive concentration
field. The Reynolds transport theorem, independently applied to each of the in-
finitely many infinitesimal control volumes, allowed us to make this link.

We have derived the diffusion equation in its most general, anisotropic and inhomo-
geneous form. If D does not depend on space and is a scalar (isotropic, homogeneous
diffusion), we can exploit the linearity of the Nabla operator to further simplify the
right-hand side of the diffusion equation to:

∇ · (D∇u) = D∇ · (∇u) = D∆u .
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Chapter 5

Simulating Spatiotemporal
Models Using Particle Methods

In this chapter:

• Function approximation using particles

• Operator approximation using particles

• Boundary conditions using the method of images

• Remeshing and moment-conserving interpolation in hybrid
particle-mesh methods

• Fast neighbor search algorithms

• Short-range particle interactions using symmetry

Learning goals:

• Be able to explain the duality between intensive and exten-
sive numerical simulation methods

• Know the particle function approximation by heart

• Be aware of approximation errors and the overlap condition

• Be able to explain and implement the method of images to
handle boundary conditions in a simulation

• Be able to explain the need for remeshing and moment-
conserving interpolation schemes

• Be able to implement cell lists and Verlet lists

Until now we have seen how to model dynamic systems in time and space. The
method of reservoirs and flows, together with the concept of control volumes and the
Reynolds transport theorem, can be used to derive the governing PDE of a system.

Dimensional analysis can help check correctness of the derived PDE (dimensional
homogeneity) and plan experiments to find the constitutive equations for the flows.
We now focus on how such models can be simulated in the computer. Mostly,
the equations can not be solved analytically, especially not in the complex-shaped
geometries of biological systems. Numerical solutions are thus an important tool.
Numerically solving a PDE relies on discretizing the equation in space and time. A
PDE has an infinite number of dimensions, corresponding to the reservoir levels in
the infinitely many infinitesimal control volumes. It can thus not be represented in
a computer, which always has finite memory. Out of the infinitely many dimension,
we thus select a finite number of “representative” ones. This amounts to selecting
certain control volumes (or points in space) for which we will explicitly track the
temporal evolution of the level variables. The assumption is that these represented
control points are close enough together such that the field does not significantly
vary between adjacent points and can be approximated by interpolation (i.e. the
distance between control points should be ≪ L). If this is not the case, then the
discretization is under-resolved and the results can not be trusted.
After discretizing a PDE in space by selecting a finite number of representative
discretization points, the number of degrees of freedom is finite and they can all be
explicitly tracked over time. This, however, also requires discretizing the equation
in time as we cannot compute the solution at every possible time point. Rather, we
fix a temporal resolution δt and compute the solution only at times kδt for integer
k. This reduces the number of time points to a countable number, and we can use
a time integrator (“time stepper”) to iteratively advance the solution from time step
k to k + 1. After the PDE has been discretized in space and time, the infinite-
dimensional problem is reduced to computing an approximation to the solution at
a finite number of discretization points in space and for a finite number of time
steps.
Depending on whether the chosen discretization points are positioned on a (regu-
lar or irregular) lattice or not, we distinguish grid-based and mesh-free discretiza-
tion schemes. The classical grid-based schemes are finite differences (discretization
along lines), finite elements (discretization over surface areas), and finite volumes
(discretization over sub-volumes). Mesh-free methods include particle methods (dis-
cretization on zero-dimensional points), where particles directly correspond to La-
grangian control volumes that can also move.
We will use mesh-free particle methods to numerically simulate spatiotemporal
models. In these methods, the representative control volumes are represented in
the computer by particles of finite volume. These particles thus directly correspond
to Lagrangian control volumes for which we will explicitly track the temporal evolu-
tion of the position and the level variables. It is intentional that I selected particle
methods rather than more classical, grid-based finite difference or finite element
schemes. The main reason for this choice is that particle methods naturally fit into
the framework described so far. The computational particles used in these numer-
ical methods correspond to Lagrangian control volumes that “contain” extensive
quantities. Particle methods are thus closely linked to the physical or biological
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processes underlying the model, which makes them intuitive and easy to under-
stand and implement. We will not need to talk about series expansions or Sobolev
spaces, making the topic much more accessible to a wide range of scientists. In
addition, particle methods have a number of unique favorable properties in com-
plex geometries and for simulating flows. Also the fact that they don’t require a
computational grid or mesh makes them easier to implement.

The fundamental data structure in particle methods are computational particles.
These are discretization elements and do not necessarily need to correspond to real,
physical particles. Particles, thus, do not directly represent molecules or atoms
(except in molecular dynamics simulations, which we will not cover), but rather
can be thought of as Lagragian control volumes.

Each particle is described by:

• its position xp(t),

• its extensive quantity ωp(t), sometimes referred to as the particle’s
“strength”,

• and its volume Vp(t).

Particle methods provide

→ a direct link to physics and modeling since they are formulated in terms
of extensive quantities (like the models)

→ relaxed stability limits because convection terms vanish in the La-
grangian description (there is no linear CFL condition in particle meth-
ods and the Navier-Stokes equations become linear in the Lagrangian
form; see Sec. 8.2.1 and 9.2).

→ easy treatment of complex-shaped and deforming geometries because
there is no need to generate a mesh, which is difficult in complex geome-
tries

→ universality: particle methods can simulate a wide range of models, in-
cluding discrete and continuous ones as well as deterministic and stochas-
tic ones.

→ a way of simulating models for which the governing PDE does not exist
or has not beed derived. We don’t necessarily need to take the “detour”
via Reynold’s theorem and an intensive representation, but we can di-
rectly identify particles with reservoirs or control volumes and let them
interact according to the flows between them. We hence remain in a
purely extensive description.

The drawbacks of particle methods are:

→ boundary conditons are harder to impose than in grid-based methods,
also because particles may not be available exactly at the boundary and
extrapolation must be used.

→ the computational cost of particle methods is usually higher, due to
neighbor-search algorithms and interpolations necessary. Also the irreg-
ular memory access patterns of particle methods (as opposed to grid-
based methods) also leads to more cache misses and is less coalescent.

→ ensuring that the problem remains well-resolved (i.e., the particles re-
main “representative” discretization points) is more difficult if particles
move.

In this course we focus on continuous models, always assuming that Kn ≪ 1 and
that we are only interested in length scales ≫ λ (no molecular or atomistic pro-
cesses). We will thus restrict our discussion to continuum particle methods, keeping
in mind that particles can also be used for discrete models (trivially). A particle is
hence represented by the tuple of its attributes:

(x, ω, V )p ,

where the extensive quantity ωp contained in particle p is related to the underlying
intensive field u through the particle volume as

ωp = Vpu .

This of course assumes that the value of u can be considered constant inside a parti-
cle. Hence, the particle sizes must be≪ L. The size of the particles thus defines the
resolution limit of the numerical method and we must always use enough particles
to resolve the spatial patterns that we are interested in.
The particle attributes xp and ωp depend on time and evolve so as to satisfy the
model PDE in a Langrangian frame of reference. Each particle property is thus
governed by an ODE:

dxp

dt
=

N∑

q=1

K(xp, xq, ωp, ωq)

dωp

dt
=

N∑

q=1

F (xp, xq, ωp, ωq) . (5.1)

In general, there can also be an equation of evolution for the particle volumes Vp,
but for now we will consider them constant for simplicity.

The right-hand sides of the above ODEs correspond to numerical quadrature (in-
tegration) of the kernels K and F . This comes directly from the fact that particles
carry extensive properties and we want to evaluate some integral over the control
volumes they represent. This is in contrast to other numerical methods that directly
discretize the derivative in the differential operator. These two way are illustrated in
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Fig. 5.1 for time as the independent variable for simplicity. The same also works in
space. In some numerical methods, the derivatives of u are discretized first, e.g. us-
ing finite differences, leading to algebraic equations. The resulting (linear) system of
equations is then solved numerically. In the first step, one must be careful to ensure
consistency of the method, i.e. ensuring that the discretized equations describe the
same dynamics as the original equation in the limit for the discretization step going
to zero. In the second step, we are worried about the numerical stability and the
accuracy of the solution of the algebraic equations. In other methods, alternatively,
we imagine solving the equation analytically by integration. This integral is then
solved numerically by quadrature with support points ti in time and quadrature
weights wi. Since the first step is exact and the second one is always stable (we
simply sum numbers), the solution accuracy is the only thing left to worry about.
While Fig. 5.1 illustrates this over time, the same also works in space, where the in-
tegral is over Green’s function of the differential equation. This analytical solution
always exists (if the equation has a solution at all), but may not be analytically
integrable. This is why numerical methods use quadrature. The whole “art” then
of course becomes to choose the quadrature weights such that the correct dynamics

are represented. This will be the main topic of the rest of the lecture.
The first class of numerical methods, using way (1), is called “collocation meth-
ods” or, in case the independent variable is space, “intensive methods”. The second
class of methods, using way (2), is called “Galerkin methods” or, in the spatial
case, “extensive methods” because they work with the integral quantity u. Particle
methods can be of both type (1) and type (2), depending on the formulation. In
the following, we will focus on type-2 methods where the particles cary integral
quantities.

Although particle methods have been around for decades and have many favorable
properties, they are not widely known and used. The reason is that evaluating the
right-hand sides of above ODEs amounts to solving an N -body problem, in which
each of the N particles interacts with all of the N − 1 others. This leads to a total
of O(N2) interactions to be evaluated, which quickly becomes computationally in-
feasible. Classical grid-based methods only need N interactions. Recent advances
in algorithms, however, allow reducing the computational cost of particle methods
to O(N) as well, making them a viable alternative to grid-based methods. We will
discuss these algorithms later in this chapter.

governing equation
du
dt = f

exact
//

discretization error consistency

��
++

(1)

(2)

$$

analytic solution
u =

∫
f(t) dt

accuracy quadrature error

��

un−un−1

δt = fn
discretized equation

accuracy

stability
//

un =
∑n

i=0 wif(ti)
un = un−1 + δtfn
discrete solution

Figure 5.1: Strategies to numerically solve a differential equation in time: (1) discretization of the differential equation followed by numerical solution of the discretized
equations, or (2) integral solution that is numerically approximated by quadrature.

5.1 Function Approximation by Particles

Any numerical method must do two things: approximate continuous field functions
discretely, and approximate differential operators on those functions. The goal of
particle function approximation is to approximate u(x) : Rd 7→ R by particles. This
can be developed in three steps:

• Integral Representation We use the Dirac-delta identity to write the field
u as an integral:

u(x) =

∫

u(y)δ(x− y) dy .

This is already a particle representation if we interpret the delta functions as
particles located at positions y. In point particle methods, this is what people
are doing. The problem is that the above integral is only exact for an infinite
number of deltas. In practice this can of course not be done and we will
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approximate the integral using a finite number of deltas. This then means,
however, that the value of u can only be recovered at particle locations and is
unknown in-between. Point particle methods thus amount to a mere sampling
of the field u rather than to a smooth function approximation.

• Mollification (Regularization) In order to obtain a smooth approxima-
tion whose value is defined everywhere in space, we replace the delta func-
tions by smooth kernels of a finite width ǫ. This amounts to regularizing δ as
ζǫ = ǫ−dζ(xǫ ) such that limǫ→0 ζǫ = δ. This obviously requires that

∫
ζ dx

!
= 1.

ζ is called the mollification kernel of characteristic width ǫ:

∼ ǫ

The pre-factor ǫ−d rescales the function such that its integral is always 1. In-
tuitively, ζ can be thought of as a cloud or blob of mass (or whatever extensive
property the particles carry) that the particle carries around. This leads to
the mollified (smooth) function approximation:

uǫ(x) =

∫

u(y)ζǫ(x− y) dy . (5.2)

The approximation is more accurate the more moments of the delta function
are conserved by the mollified kernel ζ. If ζ conserves the first r− 1 moments
of δ, the approximation is of order

uǫ(x) = u(x) +O(ǫr) .

This condition means that
∫

xsζ(x) dx
!
=

∫

xsδ(x) dx ∀s ∈ {0 . . . r − 1} .

This means that the moment of order s = 0 has to be 1, and all higher-order
moments have to be zero. Non-negative kernels can thus never be of an or-
der higher than 2, as only their first moment can vanish. In principle, any
smooth and local function can be used as a kernel. The most frequent choice
is a Gaussian, for which r = 2.

xp1 xp2

ω1

ω2ε

ζ ε

ζ ε

x

Two particles of strengths ω1 and ω2, carrying mollification kernels ζǫ.

• Discretization So far we have a smooth and continuous function approxima-
tion on infinitely many particles. We now discretize the approximation over
a finite set of particles. This amounts to selecting “representative” particles
which we want to explicitly represent in the computer. The problem dimen-
sion is thus reduced from infinity to a finite number. Discretizing the integral
in Eq. 5.2 is straightforward. We use N -point quadrature with the particle
locations as quadrature points:

uh
ǫ (x) =

N∑

p=1

ωh
p ζǫ(x− xh

p) ,

where xh
p and ωh

p are the numerical solutions of the particle positions and
strengths, determined by discretizing Eqs. 5.1 in time. The quadrature
weights ωh

p are the particle strengths. They are extensive quantities because
ωh
p = u(y)dy. The discretized value depends on the specific quadrature rule

used. For midpoint quadrature (the rectangular rule), we have:

ωh
p = u(xh

p)Vp .

The function approximation error now has two components: the mollification
error and the discretization (quadrature) error:

uh
ǫ (x) = u(x) +O(ǫr) +O

(
h

ǫ

)s

.

s is the number of continuous derivatives of ζ (for a Gaussian s → ∞),
and

h is the distance between particles.
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From this expression, we see that in order for the error to be bounded, we
have to require that

h

ǫ

!
< 1 .

This condition means that the kernel widths of the particles must be greater
than the distance between particles. The condition is thus frequently called
overlap condition because it states that “particles must overlap.” This makes
sense because otherwise the value of the function u at off-particle locations
could not be computed any more and we would be back to a point particle
method.

5.2 Operator Approximation

Now that we know how to smoothly approximate field functions over a finite
set of discrete particles that carry extensive properties, the question is how
we can evaluate differential operators on the particles. Depending on how
the operators are approximated, we distinguish between pure particle meth-

ods and hybrid particle-mesh methods. In pure particle methods, all operators
are directly evaluated on the particles, whereas hybrid particle-mesh methods
use an intermediate Cartesian mesh to evaluate some of the operators.

5.2.1 Pure particle methods

In order to evaluate differential operators on particles, we have to convert
them to equivalent integral operators. This conversion is of course not exact
and we end up with an approximate operator of a certain order of accuracy.
The integral operator is then again discretized as a sum over the particles,
leading to the sums on the right-hand side of Eqs. 5.1. The resulting operator
for a differential operator of order β is of the form

1

ǫ|β|

∑

q

Vq(u(xq)± u(xp))η
β
ǫ (xq − xp) , (5.3)

where the operator kernel ηβǫ (x) = ǫ−dηβ(x/ǫ) is suitably chosen (we will
see later what this means). The evaluation of such an operator amounts to
particle-particle interactions as governed by the integral kernel η(xp, xq) of
the operator. Notice that this kernel is not (necessarily) the same as the mol-
lification kernel ζ used in the function approximation! In general, ζ and η can
fulfill different moment conditions. We will see later how the kernels η look
for different operators. For now, let’s just distinguish between:

short-range operators where η has local, but not necessarily compact, sup-
port. In this case, only the neighbors within the kernel support of each
particle contribute to the sum and we have to compute O(N) interac-
tions. This is done by limiting particle-particle interaction to particle
pairs that are closer together than a cutoff radius rc. An example would
be the kernel for diffusion. Diffusion is a local process because its effect
is not immediately apparent at remote locations.

long-range operators where all particles contribute. This defines an N -
body problem because the kernel function η is not local. We potentially
have to evaluate O(N2) interactions, rendering such methods infeasible.
Fortunately, fast multipole algorithms are available to reduce the com-
putational cost to O(N) also in these cases. We will not discuss these
algorithms here, but rather focus on the simpler hybrid particle-mesh ap-
proach. Examples of long-range processes are found in hydrodynamics
or electrostatics, where a change in some part of the space has an imme-
diate (modeling the speed of light as fast dynamics) effect throughout
the entire domain.

5.2.2 Hybrid particle-mesh methods

Hybrid particle-mesh methods are available to efficiently compute the long-
range parts of an integral (sum) approximation of a differential operator. This
is done by introducing a regular Cartesian mesh that is superimposed over the
particles. It is sufficient to consider regular Cartesian meshes because small-
scale phemonema are still retained by direct particle-particle interactions and
there are no boundaries to be considered. In a hybrid particle-mesh method,
only the short-range parts of the operator are evaluated on the particles,
whereas the long-range parts are accounted for by solving the corresponding
PDE on the mesh. This requires:

– interpolating ωp from the particles to the mesh,

– solving the PDE1 on the mesh using finite differences in a multi-grid
method, or FFTs, and

– interpolating the solution back to the (not necessarily same) particles.

The equation that is solved on the mesh is called the field equation. Thanks
to the regularity of the Cartesian mesh, it can be solved efficiently. The com-
putational cost of multi-grid methods is O(M) and that of FFT solvers is
O(M logM), where M is the total number of grid points.

Example 5.2.1 (Fluid Flow). If we were to simulate fluid flow using a hybrid
particle-mesh scheme, we would solve for the velocity field on the mesh since

1Since most fields in real applications are gradient fields, this usually is the Poisson equation.
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this is a long-range interaction. The convection, however, would be done on
the particles (locally) by simply moving them. This preserves the favorable
stability (no linear CFL condition, see Sec. 8.2.1) of particle methods, but
allows taking advantage of efficient field solvers on the mesh.

The interpolation from particles to mesh can be done such that the conser-
vation laws underlying the model are respected. This requires special in-
terpolation schemes that conserve the moments of the represented extensive
quantity up to a certain order. The moments directly represent the physically
conserved quantities such as mass (zeroth-order moment), center of gravity
(fist-order moment), and moment of inertia (second-order moment). Exactly
conserving them when interpolating between particles and mesh constitutes a
clear advantage as the interpolation will not introduce inconsistencies in the
method.

Particles carry extensive quantities, but the mesh nodes store the values of
the corresponding intensive field. Interpolation converts between the two rep-
resentations. While moment-conserving interpolation schemes conserve the
moments in particle-to-mesh interpolation, they generally do not do so in
mesh-to-particle interpolation, unless the particles are themselves arranged
on a regular lattice. Nonetheless, the interpolation error in mesh-to-particle
interpolations decreases as a power of h, the mesh spacing. This power is
called the order of convergence of the interpolation scheme. It is important
not to confuse the order of convergence of the mesh-to-particle interpolation
with the order of the highest conserved moment in the particle-to-mesh inter-
polation!

During particle-to-mesh interpolation, the strength of each particle is redis-
tributed onto the surrounding mesh nodes. In the simplest case, the entire
strength is assigned onto the nearest mesh node. This obviously conserves
the zeroth-order moment (total mass), but no higher moments. Higher-order
schemes can be derived by solving a linear system of equations for the coef-
ficients of the interpolation polynomial, or by Fourier space methods. The
most frequently used interpolation scheme is the M ′

4 function:

h

M ′
4(s) =







1− 1
2 (5s

2 − 3s3) , 0 ≤ s < 1
1
2 (2− s)2(1− s) , 1 ≤ s ≤ 2

0 , s > 2

s = |x|
h |x| : distance of particle from mesh node

Its order of convergence is 3 and it conserves moments up to and including the
second moment (in particle-to-mesh interpolation). The M ′

4 scheme can be

used to interpolate from particles to mesh nodes and also vice versa. For each
particle, the two neighboring mesh nodes in each direction are considered. For
each of those mesh nodes, we compute the distance |x| between the particle
and the mesh node and normalize it with the mesh spacing h. Using this value
for s we then evaluate the M ′

4 function to compute the interpolation weight
W ≤ 1 for this specific particle-node pair. The portion Wωp of the particle’s
strength ωp is then added to the mesh node. Doing this for all particles yields
the complete field interpolated onto the mesh.

In higher dimensions, the interpolation kernels are Cartesian products of
the 1D kernels. We can thus simply use the above scheme in each direc-
tion independently and multiply the weights to get the final weight. In 3D,
for example, the weight for each particle-node pair would be computed as:
W (x, y, z) = Wx(x)Wy(y)Wz(z).

5.3 Remeshing

We have seen that the overlap condition requires the particles to always be closer
together than ǫ. If the particles move, it may, however, happen that they evacuate
from certain regions of space, where the overlap condition might then be violated.
In order to prevent this, the particles are periodically redistributed. This remeshing

step consists of:

• interpolating the particle strengths to a regular mesh of resolution h < ǫ,

• deleting the old set of particles, and

• creating new particles at the locations of the mesh nodes, carrying the node
weights as their new strengths.

Since we are using the above-described moment-conserving interpolation schemes,
remeshing does not harm the conservative properties of the method. Moreover, if
the order of convergence of the interpolation scheme is at least one higher than the
order of convergence of the operator approximation, the convergence properties of
the simulation remain unaffected as well.

5.4 Boundary conditions and the method of images

The operator approximations described above only apply in infinite domains. For
simulations in constrained geometries, they need to be modified in order to take into
account the prescribed boundary conditions. There are two basic types of boundary
conditions:
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• Dirichlet: In a homogeneous2 Dirichlet boundary condition, the value of the
function is zero at the boundary, thus u(boundary, t) = 0.

• Neumann: In a homogeneous Neumann boundary condition, the value of
the normal derivative is zero at the boundary, thus n · ∇u(boundary, t) = 0,
where n is the normal onto the boundary.

For short-range operators and homogeneous boundary conditions in the case of flat
(compared to the core size ǫ of the mollification kernel) boundaries, a straightfor-
ward method consists of placing mirror particles in an rc-neighborhood outside of
the simulation domain. Each of these mirror particles is the mirror image (mir-
rored at the boundary along the normal n) of a particle inside the domain. In
order to satisfy a homogeneous Dirichlet boundary condition, the strengths of all
mirror particles are set to the negative strength of the corresponding real particle.
This ensures that when evaluating the interaction kernel, the two strengths can-
cel at the boundary, leading to u(boundary, t) = 0. For homogeneous Neumann
boundary conditions, the strength of the mirror particles are set equal (without
sign inversion) to the strength of the corresponding real particle. This ensures that
the normal derivative (the gradient in the direction normal to the boundary) van-
ishes at the boundary. Due to the use of mirror particles, this method is called
the method of images. The method of images is a general concept that is valid
beyond particle methods. It can also be used to analytically solve differential equa-
tions in bounded domains by superposition of mirrored solutions. This, however,
only works if the equations are linear and the superposition principle is valid. An
intuitive interpretation of the method of images is given in Sec. 10.5 for waves.

5.5 Fast Neighbor Lists

Short-range interactions are directly evaluated on the particles and each particle
only needs to interact with its neighbors. This renders the method O(N), provided
the neighbors are known or can be found in at most O(N) time (recall that there is
no connectivity information on particles!). Fast neighbor list algorithms are avail-
able to find all neighbors within a cutoff radius rc of each particle in O(N) time.
There are two basic methods: cell lists and Verlet lists.

5.5.1 Cell lists
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In cell lists, the particles are
sorted into cells of edge length rc.
Each cell stores a list (or linked
list) of the particles that are in-
side it. Construction of these
lists for N particles is O(N):

For each particle p = 1, . . . , N at position xp = (xp, yp, zp):

1. Compute the index of the cell it is in as (i, j, k) =
(

⌈xp

rc
⌉, ⌈yp

rc
⌉, ⌈ zprc ⌉

)

. This
assumes that the cell numering starts from 1. If cells are numbered from 0,
the floor should be used.

2. Add the index p to the list of cell (i, j, k).

In 2D, the z component of the position and the index k are absent.

In order to compute all interactions of particle i with its neighbors, we have to
consider:

• all particles in the same cell as i, and

• all particles in all adjacent cells (8 is 2D, 26 in 3D).

The evaluation of the interactions of all particles i with all their respective neighbors
closer than rc is thus also O(N).

5.5.2 Verlet lists (Verlet, 1967)

For spherically symmetric interactions in 3D, cell lists contain up to 6 times more
particles than actually needed (ratio between the volume of the cube and the in-
scribed sphere of radius rc). Verlet lists reduce this overhead by storing an explicit
list of all interaction partners on each particle. This can speed up the evaluation of
particle-particle interactions by a factor of up to 6. In order not to have to rebuild
all lists whenever a particle has moved, we add a safety margin (called “skin”) to
the cutoff radius. The lists then only need to be updated once any particle has
moved farther than the skin thickness. This of course causes additional overhead,

2A boundary condition is called homogeneous if its right-hand side, i.e. the value imposed at the boundary, is zero. Imposing non-zero values leads to inhomogeneous boundary conditions that
are more difficult to treat.
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and makes the Verlet list at most 81/(4π(1 + skin)3)-times smaller than cell lists.
Verlet lists are efficiently constructed in O(N) time using intermediate cell lists.
In order to compute particle-particle interactions, we simply loop over all Verlet list
entries for each particle. This is also O(N).

5.6 Symmetry

The computational cost of evaluating short-range particle-particle interactions can
be reduced further by a factor of at most 2 when evaluating the particle-particle
interactions in a symmetric way. Most particle interaction kernels (resulting from
operator approximation) are symmetric, i.e., they only depend on the distance
between two particles and not on their absolute positions. This is a direct conse-
quence of the fact that our models are based on conservation laws. If particle i gives
a certain amount of its strength to particle j, particle j has to receive exactly that
amount. No strength (e.g., mass) is lost during an interaction. Instead of looping
over all particles when computing the interactions, it would thus be sufficient to
loop over all unique interaction pairs and directly attribute the computed change
to both interaction partners. In the cell list and Verlet list algorithms as outlined
above, each interaction is computed twice and the result only attributed to particle
i. We can exploit symmetry by:

• computing ηij , the influence of particle j on particle i, only once for each
unique pair (i, j),

• ωi ← ωi + ηij

• ωj ← ωj − ηij (or + for some quantities)

5.6.1 Symmetric cell lists

In order to ensure that each unique interaction is considered exactly once, cell-cell
interactions in cell lists have to be done symmetrically. In order to compute all
interactions of particle i that have not yet been accounted for elsewhere, we thus
consider:

• in the same cell where i is: only the particles (i+ 1)...Ncell

• all particles in half of the neighboring cells as shown below.
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The reader is encouraged to verify that this is sufficient and that indeed every in-
teraction is considered in this scheme. In 3D, the scheme remains unchanged in
the middle z-plane and we also consider all the interactions with all the cells on
the z-plane below (but exclude those above). Figure 5.2a–b summarize the cell-cell
interactions in asymmetric and symmetric cell list algorithms.

In Fig. 5.2c, diagonal interactions are introduced in order to further reduce the
memory overhead for the boundary layers by 33% in 2D and 40% in 3D. In parallel
implementations, the diagonal interaction scheme moreover has the advantage of
lower communication overhead. If the cells are numbered in ascending x, y, (z),
starting from the center cell with number 0, the symmetric cell-cell interactions are:
0–0, 0–1, 0–3, 0–4, and 1–3 in 2D, and 0–0, 0–1, 0–3, 0–4, 0–9, 0–10, 0–12, 0–13,
1–3, 1–9, 1–12, 3–9, 3–10, and 4–9 in 3D.

5.6.2 Symmetric Verlet list

Symmetric Verlet lists only contain the unique interactions in the first place, as
they are built using intermediate symmetric cell lists (either with or without the
diagonal interactions). They thus only contain half of the entries and there is no
change needed in the way particle-particle interactions are evaluated. The loop still
runs over the entire Verlet list.
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Figure 5.2: Cell-cell interactions in cell list algorithms. (a) For asymmetric inter-
actions, all adjacent cells have to be considered and the interactions are one-sided.
(b) In traditional symmetric cell list algorithms, interactions are required on all but
one boundary. (c) Introducing diagonal interactions (1–3), the cell layers for the
boundary conditions (light blue; cf. Sec. 5.4) also become symmetric. This reduces
the memory overhead and improves the efficiency of parallel implementations by
reducing the communication volume. The 2D case is depicted. See text for inter-
actions in the 3D case.
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Chapter 6

Diffusion

In this chapter:

• Terminology and the governing equation for diffusion

• A stochastic particle method for simulating diffusion: Ran-
dom Walk

• A deterministic particle method for simulating diffusion:
PSE

• Comparison of PSE and Random Walk

Learning goals:

• Be able to implement and use PSE and Random Walk

• Know about the convergence properties of the two methods

• Be able to correctly name different types of diffusion

Now that we know the modeling framework and the numerical simulation tool, we
look at various transport processes that are important in biological systems. For
each one, we derive the governing equation using the method of control volumes and
then we see how these equations can be simulated using particle methods. Since the
function approximation is the same for all cases, we mainly focus on the operator
approximation and see what the operator kernels η look like for the different cases.
We start with the important and fundamental process of diffusion, modeling passive
(not energy-dependent) transport in biology.

6.1 Governing Equation

We have already derived the governing equation for diffusion in its most general
form in Section 4.2:

∂u(x, t)

∂t
= ∇ ·

(
D(x, t)∇u(x, t)

)
.

Depending on the form of the diffusion tensor D we distinguish different cases:

• isotropic diffusion: The diffusion tensor does not depend on the spatial
direction and hence reduces to a scalar diffusion constant ν times the identity
matrix: D(x, t) = ν(x, t)1. In ansitropic diffusion, D(x, t) is a full matrix.

• homogeneous diffusion: The diffusion tensor does not depend on space
and has the same value at every point in space: D is not a funtion of x. In
inhomogeneous diffusion, the tensor amounts to a different matrix at different
locations.

• normal diffusion: The diffusion tensor D is constant over time and thus not
a function of t. If D depends on t, diffusion is called anomalous.

For isotropic, homogeneous diffusion, the diffusion equation simplifies to: ∂u
∂t = ν∆u

with the scalar diffusion constant ν.

This equation describes the spatiotemporal dynamics of the intensive concentration
field of a diffusing quantity. It is thus only valid on length scales ≫ λ and consti-
tutes a macroscopic description. On the microscale, diffusion amounts to Brownian
motion of the molecules or real-world particles. Each microscopic particle performs
a random walk by selecting the direction of its next step uniformly at random and
the length of the next step from a Gaussian distribution. Again, the microscopic
and macroscopic descriptions are related through an averaging operation (see Sec-
tion 2.3). If we average the number of Brownian particles in a control volume
for infinitly many, independent random walk trajectories, we recover the diffusion
equation for their density. This provides a second way of deriving the diffusion
equation, and even the constitutive equation for the flows (i.e., Fick’s law) can be
derived this way, hence confirming Fick’s experimental observations.

6.1.1 Anomalous diffusion

Anomalous diffusion processes play important roles in biology. It is thus worth-
while considering them in a bit more detail. Diffusion processes become anomalous
if, e.g.:

• the diffusing molecules engage in chemical reactions that limit their mobility,

• diffusion takes place in a small volume of confinement, such as in a cell
organelle, and the diffusing molecules constantly “feel” the presence of the
boundaries,
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• diffusion is combined with a superimposed deterministic drift or directed mo-
tion, e.g. from motor proteins.

While there can also be other reasons for anomalous diffusion, these are probably
the most frequent ones in biology. In all these cases, the diffusion tensor depends
on time.

This is probably best understood on the microscopic scale, resolving length scales
< λ. Let x(t) be the position along the trajectory of a diffusing particle or molecule.
In normal diffusion, the second moment 〈x(t)2〉 is related to the diffusion constant
and to time as 〈x(t)2〉 ∝ Dt. The angle brackets denote averages over a large ensem-
ble of independent trajectories of the microscopic diffusing molecules. Intuitively,
this result means that the area that can be covered by a Brownian walker grows
linearly with time.
In anomalous diffusion, the second moment is no longer linearly proportional to
time, but we rather have the more general form 〈x(t)2〉 ∝ Dtα with α 6= 1. This
can be decomposed as 〈x(t)2〉 ∝ Dtα−1t, such that we find the time-dependent
diffusion constant Γ(t) = Dtα−1 as the proportionality constant in a linear-time
law.
In real experiments, the values of α and D can, e.g., be determined by single-particle
tracking (tracking the motion of a single, fluorescently labeled molecule and explic-
itly computing the above averages). Depending on the value of the time-scaling
exponent α, we distinguish:

α < 1 ⇒ subdiffusion. Common reasons for the reduced molecular mobility
in subdiffusion are molecular crowding, complex confinement, compartmen-
talization, or binding reactions.

α > 1 ⇒ superdiffusion, mostly due to an overlayed active transport pro-
cess. Endocytic cargo vesicles in cells frequently behave superdiffusively as
their Brownian motion can be combined with intermediate stretches of active
transport along microtubules.

Superdiffusion

6.2 Simulations using Random Walk (RW)

The microscopic description of diffusion as Brownian motion can directly be used
to construct a first particle method to simulate the dynamics of diffusion processes
on the macroscopic scale: the method of Random Walk (RW). In RW, we explic-
itly simulate the Brownian motion of computational particles. But these particles
now live on the macroscopic scale and are thus not necessarily identical to the true
physical particles. Each particle carries a certain mass, which never changes (con-
servation of mass in a Lagrangian control volume). With respect to the function
approximation, RW is a point-particle method. Also, the operator discretization
only involves moving the particles, making RW a pure particle method (Chorin,
1973).

Since the particles carry mass, RW is an extensive method and, according to Fig. 5.1,
we start from the analytical solution of the diffusion equation:

u(x, t) =

∫

Ω

G(x, y, t)u0(y) dy ;x, y ∈ R
d .

In this analytical solution, the kernel G is called Green’s function. It always ex-
ists, even though it is unknown in most cases. For isotropic, homogeneous, normal
diffusion, however, the analytical form for G is know to be:

G(x, y, t) =
1

(4πνt)d/2
· exp

(

−
||x− y||22

4νt

)

.

This is Green’s function on the macroscopic scale. It can easily be derived from the
microscopic scale. Consider the process of Brownian motion of an individual, mi-
croscopic walker. If that particle is at location x0 at time t, what is the probability
of finding it at location x at a later time t + δt? Since Brownian motion involves
random steps sampled from a Gaussian distribution, this probability is given by the
Gaussian

P (x|x0, δt) =
1

(4πνδt)d/2
· exp

(

−||x− x0||22
4νδt

)

.

This is the transition density of the discrete stochastic process on the microscale.
If we let the number of independently moving Brownian particles go to infinity,
the transition density becomes identical to Green’s function on the continuous
macroscale. This follows from the central limit theorem of probability.

The numerical point-particle method of RW uses the above equivalence between the
microscale and the macroscale to simulate the continuous diffusion equation with a
randomized algorithm:

Particles
location xp(t)

strength ωp = Vpu0(x
0
p) = const ⇒mass
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Dynamics 





dxp

dt
= N (0, 2ν)

dωp

dt
= 0

According to the above argument, this probabilistic dynamics converges to the ana-
lytical integral solution of the diffusion equation for the number of particles N →∞.
RW thus amounts to a Monte Carlo integration of Green’s function solution.

Note that there are two different ways of sampling the next step in a random walk:
(a) sample the x, y, (and z) displacements separately, or (b) sample a random di-
rection and then a step length along this direction. In the first scheme, ∆x, ∆y,
(and ∆z) are independently sampled from a 1D Gaussian with variance 2νδt. In
the second scheme, the direction is uniformly sampled on the unit half-circle (by
uniformly sampling the polar angle between 0 and π) or the unit hemi-sphere (by
sampling polar and azimuthal angles as shown below). The step length is then sam-
pled from a 1D Gaussian with variance 2dνδt. Since the step length can be positive
or negative, the direction is only sampled on the half-circle (-sphere). Notice the
difference between the two schemes: in the second one, the space dimension d occurs
as a factor in the variance while it does not in the first one. How come? It is easy
to see from the Pythagorean theorem for right-angled triangles. Taking steps of
length (standard deviation)

√
2ν along every coordinate axis leads us a distance of√

2dν away from the origin. The algorithm below uses the second sampling scheme
since uniformly distributed random numbers are cheaper to generate on a computer
than Gaussian random numbers.

Algorithm Random Walk in space R
3 (“continous random walk”)

1. initialize

x0
p ← x0(p)

ω0
p ← Vpu0(x

0
p) ∀p = 1 . . . N

2. loop ∀p:

• choose a random direction from uniformly distributed points on the unit
semi-sphere :

ϕ = πU(0, 1); ϑ = asin(2 · U(0, 1)− 1) +
π

2

• choose the step lenght as s ∼ N (0, 2dνδt) for simulation time step size
δt

• move the particles: xn+1
p ← xn

p + s





sinϑ cosϕ
sinϑ sinϕ

cosϑ





3. Advance time by δt

4. Go to (2) until the final time is reached.

The RW method advances point particles that conserve their mass. In order to
reconstruct the approximate intensive concentration field, the particles need to be
binned. One subdivides the space into small volumes. The concentration in each
volume is then given by the total mass of all particles inside it, divided by the size
of the volume. These Eulerian binning control volumes have to be of a minimal
size in order to be in the continuum region and contain enough particles for a sta-
ble approximation of the average mass (concentration). This recovers a piecewise
constant approximation of the concentration field.
In 1D, the interval of solution could, for example, be subdivided into M disjoint
intervals of size δx = X/M and the RW particles are binned in these intervals as
follows: each interval j = 1, . . . ,M is assigned the sum of the strengths of all the
particles having positions between (j − 1)δx and jδx, thus

uRW((j − 1/2)δx, nδt) =
1

δx

∑

p

{
ωp : (j − 1)δx < xn

p 6 jδx
}

(6.1)

for j = 1, . . . ,M .

RW is the simplest method to simulate diffusion processes and as such it is widely
used and known. It is, however, important to be aware of its advantages and limi-
tations.

Advantages:

• RW is very easy to implement.

• RW readily extends to anomalous and anisotropic diffusion by changing the
step probability density from a normal distribution to a multivariate normal
distribution or to a distribution that depends on the location x.

• RW extends to diffusion on curved surfaces by projecting all step diplacements
onto the surface.

• RW extends to combined convection-diffusion problems by superimposing the
convective particle displacements and the RW displacements.

Disadvantages:

• Due to its Monte Carlo character, RW converges slowly. The simulation error
decreases with increasing particle number N as O(N−1/2). We thus need to
simulate a large number of trajectories in order to get reasonably close to
Green’s function solution. Notice that this slow convergence is imposed by
the variance of the central limit theorem. This theorem is the very foundation
of RW and there is no way to improve the situation.
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• The solution accuracy deteriorates with increasing ν as the sample variance
grows.

• The solution accuracy also deteriorates for small ν ≪ δx2/δt as the particle
motion becomes masked by the binning noise. This is a direct consequence of
RW being a point-particle method. In order to recover the concentration field
at the end of a simulation, we have to average over Eulerian control volumes.
For very small ν, however, particles would never move to another control
volume and the final solution would appear identical to the initial condition.

• If the particles move in a bounded domain, we must check for collisions with
the boundary at every time step and for each particle. This is computationally
expensive.

6.3 Simulations using Particle Strength Exchange
(PSE)

PSE is a deterministic pure particle method to simulate diffusion in the continuum
(macroscopic) description. The method was introduced by Degond and Mas-Gallic
in 1989 and it is based on a deterministic integral approximation of the diffusion
operator. Moreover, PSE uses a smooth particle function approximation, which
allows recovering the field values everywhere in space without the averaging (bin-
ning) needed in RW. Since PSE is a pure particle method, we look for an integral
operator approximation with a certain kernel η.

Isotropic Homogeneous Diffusion

We start with the simplest case of isotropic, homogeneous diffusion, where we want
to approximate the Laplacian on scattered particle locations such that mass is con-
served. For simplicity, we consider the 1D case. The derivation in n dimensions is
analogous.
In 1D, the diffusion equation is

∂u

∂t
= ν

∂2u

∂x2
.

We start by expansion of the concentration field u(y, t) into a Taylor series around
point x:

u(y) = u(x) + (y − x)
∂u

∂x
+

1

2
(y − x)2

∂2u

∂x2
+

1

6
(y − x)3

∂3u

∂x3
+ . . . .

We then substract u(x) on both sides, multiply with the kernel ηǫ and integrate
over the entire domain of solution Ω in order to arrive at an integral operator

approximation:
∫

Ω

(u(y)− u(x))ηǫ(y − x)dy =

∫

Ω

(y − x)
∂u

∂x
ηǫ(y − x)dy

+
1

2

∫

Ω

(y − x)2
∂2u

∂x2
ηǫ(y − x)dy

+
1

6

∫

Ω

(y − x)3
∂3u

∂x3
ηǫ(y − x)dy + . . .

The term we want is the ∂2u
∂x2 on the right-hand side. We thus design the kernel

ηǫ = ǫ−1η(x/ǫ) such that this term is the only one remaining on the right-hand
side, up to a certain order r. This requires that (we do the change of variables
z = (y − x)/ǫ in order to go from ηǫ to the scale-invariant η):

• η be even ⇔ all integrals over odd powers vanish

•
∫
z2η(z)dz

!
= 2⇔ second term becomes ∂2u

∂x2 · 12 · 2 · ǫ2

•
∫
zsη(z)dz

!
= 0 ∀ 2 < s ≤ r+1⇔ higher-order terms vanish up to order r+1

Using such an η, the only terms remaining are:

⇒
∫

Ω

(u(y)− u(x))ηǫ(y − x)dy =
∂2u

∂x2
ǫ2 +O(ǫr+2) .

The factor ǫ2 comes from the fact that we are computing a second derivative (com-
pare Eq. 5.3). We now solve this equation for the desired term, which is the righ-
hand side of the diffusion equation:

⇒ ∂2u

∂x2
=

1

ǫ2

∫

Ω

(u(y)− u(x))ηǫ(y − x)dy +O(ǫr) .

This is the integral operator approximation to the 1D diffusion operator. Any ker-
nel function η that fulfills the above three conditions (called “moment conditions”)
can be used.
The next step is to discretize this integral operator as a quadrature (sum) over
the set of N particles, thus:

∂2uh

∂x2
(xh

p) =
1

ǫ2

N∑

q=1

Vq(u
h
q − uh

p)ηǫ(x
h
q − xh

p) .

If all particles have the same volume, the difference in the first parenthesis can
simply be computed over the strengths ω. This is the discrete, extensive form of
the diffusion operator. In n dimensions, the operator looks exactly the same. Even
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the pre-factor ǫ−2 remains the same because it comes from the order of the ap-
proximated differential operator and not from the dimension. The only thing that
changes is that a different η has to be used, namely one that satisfies the above
moment conditions in nD, for the respective n.

If we assume that all particle volumes are the same, i.e., Vp = Vq = V , the final
PSE method can be formulated in terms of particle strength:

Particles:

location xp

strength ωp(t) = V u(xp, t)

Dynamics:






dxp

dt
= 0

dωp

dt
=

V ν

ǫ2

N∑

q=1

(ωq − ωp)ηǫ(xq − xp) .

If particles have different volumes, then they need to be explicitly carried as an ad-
ditional particle property and strengths accordingly normalized. This, however, is
rarely the case in applications where one usually places particles regularly/uniformly
for a PSE diffusion simulation.
PSE is dual to RW. While in PSE the particles do not move, but exchange strength
(hence the name), they move in RW, but keep their mass.
Duality to RW

RW

ωp = 6c
xp(t)

PSE
xp = 6c
ωp(t)

microscopic: Brown macroscopic: Fick

Both methods have an intuitive interpretation. While it was the microscopic Brow-
nian motion for RW, it is Fick’s law of diffusion for PSE. Fick’s law states that in
diffusion, mass is flowing against the concentration gradient. This is exactly what
the PSE operator does: the first parenthesis computes the concentration gradient
between a pair of interacting particles whereas the kernel η converts this gradient
into a flux of mass depending on the distance between the two particles.

The advantages and limitations of PSE are:

Advantages

• PSE can be arbitrarily accurate depending on how many moments of η vanish.

• Since diffusion is a short-range process, η has local support and the sum can
be evaluated in O(N) time using cell lists or Verlet lists.

• PSE can easily be extended to convection-diffusion problems by moving the
particles according to the convective velocity field.

• In the absence of convection, all geometry and boundary processing only needs
to be done once because the particles don’t move.

Disadvantages

• One needs to derive (“engineer”) good kernels η.

• The implementation is complicated by the need for cell lists or Verlet lists.

Example 6.3.1 (2nd-order accurate kernels).

ηǫ(x) =
1

2ǫ
√
π
e−

x2

4ǫ2 x ∈ R

η(x) =
15

π2

1

|x|10 + 1
x ∈ R

3

The first kernel is a Gaussian, which naturally follows from the transition density
(Green’s function) of diffusion being a Gaussian. The second example shows that
there can also be other kernels that fulfill the moment conditions. Polynomial ker-
nels such as the one here are computationally more efficient than Gaussians because
we don’t need to evaluate an exponential function.

As a side note, it is instructive to see that PSE is not the only possibility of deriving
an integral operator approximation for the Laplacian. Another possibility would
be to simply take the smooth particle function approximation

uh
ǫ (x) =

N∑

p=1

ωh
p ζǫ(x− xh

p)

and compute the righ-hand side of the (1D) diffusion equation directly as

∂2uh
ǫ (x)

∂x2
=

∂2

∂x2

N∑

p=1

ωh
p ζǫ(x− xh

p) =

N∑

p=1

ωh
p

∂2ζǫ
∂x2

(x− xh
p) .

This operator approximation is older than PSE and is known as Fishelov’s scheme.
While it might seem more straightforward than the PSE method, the resulting op-
erator approximation is not conservative. The additional freedom in PSE to choose
a different kernel η for the operator approximation than the kernel ζ used for the
function approximation allows conserving mass exactly. In light of the fact that our
models are based on conservation laws, this is a clear advantage.
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In order to understand this, consider two particles p and q. In PSE, the amount of
mass transferred from p to q is given by

∆ωp→q = (ωp − ωq)ηǫ(xp − xq)

and the amount of mass transferred from q to p is

∆ωq→p = (ωq − ωp)ηǫ(xq − xp) .

Since the kernel η is symmetric, it is ∆ωp→q = −∆ωq→p. Hence, the mass given
by particle p to particle q exactly equals the amount of mass received by particle q
from particle p. Mass is thus conserved as nothing is lost or created. The interac-
tions are symmetric. As shown in Sec. 5.6, this can also be exploited to reduce the
computational cost of the simulation algorithm by a factor of 2.
In Fishelov’s scheme, we have

∆ωp→q = ωq
∂2ζǫ
∂x2

(xp − xq)

and

∆ωq→p = ωp
∂2ζǫ
∂x2

(xq − xp)

and hence ∆ωp→q 6= −∆ωq→p. Not all the mass given away by particle p is thus
received by particle q and vice versa. The scheme does not conserve mass because
the interactions are not symmetric. This also prevents the use of fast symmetric
cell or Verlet lists.

Anisotropic Inhomogeneous PSE

So far we have focused on isotropic and homogeneous diffusion for simplicity. The
same derivations, however, can also be made for anisotropic and inhomogeneous
diffusion, where D is a full matrix. We then need to find an integral approximation
to the operator ∇ · (D∇) rather than the Laplacian ∆. In n dimensions, this leads
to the integral operator approximation:

∇ · (D∇u) ≈ Qǫu(x, t) = ǫ−2

∫

Ω

(u(y)− u(x))σǫ(x, y, t)dy

(we skip the details of the derivation because there is nothing conceptually new)
and the PSE scheme remains







dωp

dt
=

Vp

ǫ2

N∑

q=1

(ωq − ωp)σǫ(xp, xq, t) for Vp = Vq

dxp

dt
= 0 .

The operator kernel σ is now a bit more complicated and has the form

σǫ(xp, xq, t) = ǫ−2ηǫ(xp − xq)
︸ ︷︷ ︸

isotropic part

d∑

ij=1

M
ij
(xp, xq, t)(xp − xq)i(xp − xq)j

︸ ︷︷ ︸

anisotropic

While the isotropic part of the operator (NOT of D!) looks analogous to isotropic
PSE, there is a second part, which depends on the space directions i and j. It
contains the mapping tensor M , which maps distance to strength in a direction-
dependent way (before this was just the scalar η). In order for the method to
conserve mass, M must be symmetric, such that M(xp, xq) = M(xq, xp) for any
pair of interacting particles p and q. The simplest way to ensure this is to set:

M(xp, xq, t) =
1

2
(m(xp, t) +m(xq, t)) ,

where m is related to the diffusion tensor as:

m(x, t) = D(x, t)− 1

d+ 2
Tr(D(x, t)) · 1 .

Subtracting the trace of the diffusion tensor from itself leaves the anisotropic part.
This is correct because the isotropic part has already been accounted for in the
pre-factor to the sum in σ.

Example 6.3.2 (radially symmetric isotropic kernel η(r)).

ηǫ(xp − xq) =
4

ǫ3π
√
π
e−

||xp−xq||22
ǫ2 in R

3 .

This kernel is second-order accurate as it fulfills the moment conditions for r = 2.

6.4 Comparison of PSE and RW

We compare the accuracy of the RW and PSE methods using a benchmark case
of isotropic homogeneous diffusion on the one-dimensional (d = 1) ray Ω = [0,∞),
subject to the following initial and boundary conditions:

{

u(x, t = 0) = u0(x) = xe−x2

x ∈ [0,∞), t = 0
u(x = 0, t) = 0 x = 0, 0 < t 6 T .

The exact analytic solution of this problem is

uex(x, t) =
x

(1 + 4Dt)
3/2

e−x2/(1+4νt) .
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Both RW and PSE simulations of this benchmark case are performed with varying
numbers of particles in order to study spatial convergence. The boundary condition
at x = 0 is satisfied using the method of images (see Sec. 5.4).
For the PSE we use the 2nd order accurate Gaussian kernel

ηǫ(x) =
1

2ǫ
√
π
e−x2/4ǫ2 , (6.2)

which fulfills the moment conditions in one dimension to order r = 2. The con-
centration values at particle locations xp and simulation time points tn = nδt are
recovered as

uPSE(xp, t
n) = ωn

p ·N/X .

For RW, the binning described in Eq. 6.1 is used to recover the intensive concen-
tration field.

Figure 6.1 shows the RW and PSE solutions in comparison to the exact solution at
a final time of T = 10 for N = 50 particles and a diffusion constant of ν = 10−4.
The accuracy of the simulations for different numbers of particles is assessed by
computing the final L2 error

L2 =

[

1

N

N∑

p=1

(uex(xp, T )− u(xp, T ))
2

]1/2

for each N . The resulting convergence curves are shown in Fig. 6.2.
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Figure 6.1: Comparison of RW (a) and PSE (b) solutions of the benchmark case.
The solutions at time T = 10 are shown (circles) along with the exact analytic
solution (solid line). For both methods N = 50 particles, a time step of δt = 0.1,
and ν = 10−4 are used. The RW solution is binned in M = 20 intervals of δx = 0.2.
For the PSE a core size of ǫ = h is used.

log10 N

lo
g
1
0
L
2

Figure 6.2: Convergence curves for RW and PSE. The L2 error versus the number
of particles for the RW (triangles) and the PSE (circles) solutions of the benchmark
case at time T = 10 are shown. For both methods a time step of δt = 0.1 and
ν = 10−4 are used. The RW solution is binned in M = 20 intervals of δx = 0.2 and
for the PSE a core size of ǫ = h is used. The machine epsilon is O(10−6).

For RW we observe the characteristic slow convergence of O(1/
√
N). For PSE,

a convergence of O(1/N2) is observed, in agreement with the employed 2nd order
kernel function. Below an error of 10−6, machine precision is reached (the simu-
lations were done in single precision, which yields 23 bits of significant precision).
It can be seen that the error of a PSE simulation is several orders of magnitude
lower than the one of the corresponding RW simulation with the same number of
particles. Using only 100 particles, PSE is already close to machine precision. It is
evident from these results that large numbers of particles are necessary to achieve
reasonable accuracy using RW in complex-shaped domains.
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Chapter 7

Reaction-Diffusion

In this chapter:

• The governing equation for reaction-diffusion

• Stochastic and deterministic simulation of chemical reactions

• Moving fronts and Turing patterns in reaction-diffusion sys-
tems

Learning goals:

• Be able to simulate reaction-diffusion systems using PSE
and Random Walk

• Know about the existence of Turing patterns and their
importance in biology

• Know the deterministic and stochastic (SSA) way of simu-
lating chemical reactions

• Be able to derive dimensionless groupings for reaction-
diffusion systems

Reaction-diffusion systems are particularly important in biology as most molecular
processes amount to biochemical reactions in some spatial compartment and the
reactants and products of the biochemical reactions are mostly transported by dif-
fusion. This means that the concentration fields of different chemical species are
coupled via species conversion by the reactions.

7.1 Governing Equation

The governing equation for N different species with respective concentration fields
ui and diffusion tensors D

i
is given by a diffusion equation with a source term:

∂ui

∂t
= ∇ · (D

i
∇ui) + fi(u) ∀i = 1 . . . N .

The source terms fi describe the rate of creation/consumption of species i by reac-
tions. Note that since each concentration field ui is governed by such an equation
(with possibly different reaction terms fi), this describes a system of coupled PDEs.
This equation is called the Fisher-KPP equation, named after R.A. Fisher and A.N.
Kolmogorov, I.G. Petrovsky, and N.S. Piskunov, who independently formulated the
same theory in 1937.

7.2 Simulation

Since the spatial part of the Fisher-KPP equation is a diffusion equation, we can
use the methods of the previous chapter to simulate it using particles.

Particles: locations xp(t)
strengths ωp(t); ωp,i = Vpui

Since we are now solving a system of coupled PDEs, the particle strengths are vec-
tors with one entry for each of the N chemical species. We observe the following
properties:

• Diffusion of all components ui is independent;

• Reactions are source terms in the corresponding diffusion equation.

This means that the methods of PSE and RW work unchanged for each ui. In PSE
we only need one set of particles since each particle supports the concentration
values of all species in a vector ωp. If we used different sets of particles for the
different species, we would need to evaluate the smooth particle function approxi-
mation whenever we need to recover the entire concentration vector u at any point
in space in order to evaluate the reaction term fi(u) there. In RW, we need to
use different sets of particles for the different species if they have different diffusion
constants, so different particles can move differently. The binning takes care of
reconstructing concentration values at coinciding locations so we can execute the
reactions locally in each bin. This means that binning is required after each time
step when using RW to simulate diffusion in a reaction-diffusion model.

We also observe that the reaction terms fi(u(xp)) only depend on u at the loca-
tion of the corresponding particle. Reactions are thus purely local operations if all
concentrations are stored in the same strength vector. This is a direct consequence
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of the fact that particles correspond to infinitesimal control volumes and as such
constitute homogeneous reaction spaces with no spatial gradients within a single
particle. (Recall that the sizes of the particles are ≪ L.)

7.2.1 Evaluating the reaction terms

The reaction (source) terms fi can be evaluated using either:

• continuous models (based on chemical mass-action kinetics) → ODE

• or stochastic models (based on molecular collisions) → SSA (Stochastic Sim-
ulation Algorithm, D. T. Gillespie, 1976).

While the continuous model is generally simpler to compute, it is only valid if
the number of molecules of each species is large (comparable to or larger than
Avogadro’s number) within each particle. Otherwise there might not be enough
molecules of each species inside the control volume that corresponds to the particle
and the discrete nature of individual molecules becomes important.

We now describe how to evaluate the reaction terms using either of the two methods:

using ODEs:
Inside a particle there is no diffusion since particles constitute homogeneous reaction
spaces. On each particle, we thus have the temporal reaction dynamics

dui

dt

∣
∣
∣
∣
p

= fi(u(xp, t)) ,

where fi is a known explicit algebraic function. We can thus evaluate fi on each
particle using the local value of u (or ω) and add this change to the δω from PSE.
In order to do so, the intensive change in concentration given by fi must first be
translated to a change in the extensive strength (mass) of the particle. This is
done by multiplying with the volume of the particle. In PSE, we can then use the
same time integrator for both the diffusive part of the change of strength and the
reactive part, which means that we have to pay attention to the time step stability
condition!

using SSA:
SSA operates on molecule numbers (note that this is an extensive quantity). In or-
der to convert the mass carried by particles to molecule number, we use the molar
mass of the chemical species:

1. compute the “molecular weight” M as the number of molecules per unit mass
([M ] = #

M ).

2. convert mass (strength) to number of molecules using this factor

3. apply SSA to compute the local change in molecule number

4. convert back to obtain the corresponding change of mass (strength).

The change of mass is then added to the δω from PSE. Alternatively, the parti-
cles could also directly store the molecular population in a vector of integers, since
this is an extensive quantity, too. But then the conversion needs to appropriately
happen for the PSE step.

7.2.2 SSA in a nutshell

Gillespie’s SSA amounts to an exact sampling of trajectories from the chemical
master equation and is, as such, rigorous. It is based on two quantities:

h: the number of possible collision pairs between the reactant molecules. For a
binary reaction of species a and b, this is: h = XaXb, where Xi denotes the
number of molecules of species i that are inside the current particle. This
number is called the “reaction degeneracy”.

c: the probability that a reaction occurs given a collision has occured. This
is called the specific probability rate of the reaction and it is connected to
the reaction’s kinetic rate constant k as: k = MV c, where V is the particle
volume. The specific probability rate is a constant property of the reaction
that can be measured or looked up in tables.

The product a = hc is called the reaction propensity. It is defined for each reaction
µ and changes over time as the molecule numbers X change. The propensity of a
reaction is proportional to the probability of that reaction happening. In addition,
the expected waiting time until that reaction happens next is given by an exponen-
tial distribution with exponential time constant 1/a (the higher the propensity of a
reaction, the lower the expected time until it happens again). This is a fundamental
result from statistical physics. SSA uses these facts in order to advance the reaction
system from reaction event to reaction event. This is done in two steps: first, the
index µ of the next reaction is determined, i.e., which reaction out of all possible
ones will occur next inside a given particle. Then, the time τ until this next reaction
is sampled. Since SSA is a stochastic method, both steps involve random numbers.
Gillespie’s original Direct Method (DM) consists of the following steps:

1. at t ← 0, initialize X, aµ, and the total propensity a =
∑

µ aµ

2. Sample µ: generate a random number r1 from a uniform distribution U(0, 1)
and determine µ as the smallest integer satisfying r1 <

∑µ
µ′=1 aµ′/a

3. Sample τ : generate a random number r2 from U(0, 1) and compute τ as the
real number satisfying r2 = 1− exp(−aτ), thus τ = −a−1 ln(r2)

4. Update: X ← X + νµ, where νµ is the stoichiometry of reaction µ, i.e., the
change in molecule numbers caused by this reaction; recompute all aµ and a
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5. t ← t + τ , go to step 2

The algorithm contains several sums over all reaction indices µ and every time a
reaction has fired, all propensities are recomputed. It is thus easy to see that the
computational cost of the algorithm is linearly proportional to the total number of
reactions in the system one simulates. Step 2 amounts to a search for the reaction
to happen next. Since the probability of each reaction happening is proportional to
its propensity, one can imagine a collection of boxes, each of which having floor area
aµ and representing one reaction. These boxes are arranged in an array of total
area a =

∑

µ aµ, the total propensity of the whole reaction network. Sampling the
next reaction can then be visualized as throwing a ball into the array of boxes. The
probability for the ball to land in a given box is proportional to how much of the
total area this box occupies, hence aµ/a. Step 2 of the algorithm now states that
one should visit boxes until one has found the one containing the ball (symbolized
by the random number r1). The simplest algorithm to do so is linear search, where
the boxes are visited one after the other until the one containing the ball has been
found.
Alternatively, one could also first compute the expected waiting times for all re-
actions, τµ = −a−1

µ ln(r2) using independent random numbers for each reaction.
Then, one could sort these times and pick the reaction with the shortest waiting
time to happen next. While this algorithm is formally equivalent with the one above
(it samples from the same chemical master equation), it is in general less efficient.
The reason is that is uses as many random numbers as there are reactions in the
system, whereas the algorithm above only uses 2 random numbers.

7.2.3 Overall algorithm

The overall algorithm for simulating reaction-diffusion systems using particles and
PSE as a diffusion solver thus becomes:
∀ time steps n = 1 . . . T , compute:

1. δωn
1 due to reactions (using ODE or SSA) on the current strengths ωn. Do

not forget to properly convert strength to molecule numbers or concentrations,
and back.

2. compute δωn
2 due to diffusion using PSE on the current strengths ωn.

3. compute the total change of strength δωn = δωn
1 + δωn

2 .

4. time integration: ωn+1 ← ωn + F (δωn). Use time step δt if using ODEs for
the reactions, else use SSA time step τ .

When using SSA, the simulation advances in an event-driven manner from reaction
to reaction, where a reaction can only happen in one particle at a time. There is,
thus, no fixed time step δt as when using ODEs. Instead, the time step τ is different
in each iteration. When advancing the particle strengths and positions forward in

time, the same time step must be used. SSA only executes a single reaction (the
one with the minimum τ) in one of the particles at each iteration. This is then
followed by a diffusion step across all particles using the time step τ of the exe-
cuted reaction. Then, SSA selects another reaction in possibly another particle. In
order to select which particle hosts the reaction to be executed next, we use SSA
over the total propensities of the particles, i.e., the sum of all reaction propensities
within each particle. We thus first use an SSA sampling step to find the particle
in which the next reaction will occur, then use SSA inside that particle to find out
which reaction occurs, then execute the reaction in that particle, and then advance
diffusion on all particles by the same τ of that executed reaction. In cases where
diffusion is slow compared to the reactions, it is also possible to execute many SSA
steps, over multiple particles, before then doing a single diffusion step over the sum
of the τ ’s.
While technically all 4 combinations of ODE–SSA/PSE–RW are possible, not all of
them are equally valid in all situations, and the above algorithm would need to be
extended by binning (remeshing) in each time step when using RW for diffusion).
Which combination one should use depends on the length scales in the model. The
combination ODE–PSE amounts to a pure continuum deterministic model. It is
thus valid for scales ≫ λ and for abundant molecule numbers (when the notion
of concentration makes sense). The combination SSA–RW is a discrete stochastic
model and should be used when molecules occur with low copy number or a concen-
tration field cannot be defined (discrete model). The combination ODE–RW defines
a continuum stochastic model, where the diffusion of the continuous concentration
fields is simulated using RW as a Monte Carlo integrator for the governing diffu-
sion equation. It is valid for length scales ≫ λ and abundant molecules. Due to
its stochastic character, it is, however, usually less accurate than the combination
ODE–PSE (see also Section 6.4), but easier to generalize to complex geometries and
diffusion types. Finally, the combination SSA–PSE relies on the existence of smooth
concentration fields where the diffusion equation is valid (hence length scales≫ λ),
but allows for small numbers of molecules within each particle. This is a computa-
tionally expensive combination. Since particles can mostly not be empty (otherwise
PSE is not a good choice), reactions happen frequently and hence the time steps
are small. At the expense of an additional error, diffusion steps can also be done
only every n reactions with n > 1. This is particularly a good approximation if the
time scale of the reactions is much faster than the time scale of the diffusion in the
system.

7.3 Physical Behavior

Much of the biophysical significance of reaction-diffusion systems comes from the
fact that they can exhibit two types of non-trivial behavior:

1. traveling concentration fronts (similar to waves)
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2. inhomogeneous stationary concentration distributions (“Turing patterns”).

In particular Turing patterns have attracted great attention both from experimen-
talists and theoreticians. They are counter-intuitive. Diffusion tends to average
out concentration differences such that one would expect complete homogeneous
mixing for infinitely long times. In the presence of reactions, however, the station-
ary solution at infinite time may exhibit stable spatial patterns that are created
by a non-equilibrium steady state of the diffusion and the disturbances from the
reactions (concentration constantly being produced at certain locations and then
diffusing from there). In biology, Turing patterns and traveling waves are used to
model phenomena such as:

• morphogenesis

• pattern formation (e.g., animal fur coats or butterfly wing patterns)

• cell motility

• signaling

For most of these pattern-forming processes, a reaction-diffusion system can be
found that exhibits these patterns as its steady-state solution. In most cases, how-
ever, these models are phenomenological. This means that they generate correct-
looking patterns, but the chemical species and reactions in the model do not nec-
essarily correspond to real, experimentally identifyable molecules and reactions.
Nonetheless, such models are valuable to study the general principles of pattern
formation or to generate biologically-looking patterns that are then used in other
models.

7.3.1 An example with moving fronts

Consider the simple binary reaction a + b
k→ 2a. Identify the concentration of a

with the variable u = [a]. Notice that we only need one variable since [b] = 1 − u
due to conservation of mass if we initially normalize the total amount of mass in
the system to 1. From mass-action kinetics we can derive the reaction term as:
f = ku(1 − u) = ku

︸︷︷︸

production

− ku2
︸︷︷︸

consumption

. The species a is thus both produced and

consumed, albeit at different rates. Let us also assume that a and b diffuse isotropi-
cally and homogeneously with identical diffusion constant D. The overall governing
equation then becomes:

∂u

∂t
= D∆u+ ku− ku2 .

Use SSA
If we simulate the reactions using SSA, we define:

Xa,b: the number of molecules of a and b, respectively, contained in any given par-
ticle

Ma,b: “molecular weights”, i.e. the number of molecules per unit mass for each of
the species. For simplicity we assume that Ma = Mb = M .

Setup: We simulate the system in a cube of edge length r, initially filled with a in
one half and b in the other half.
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As the reaction-diffusion process evolves, b will gradually be “eaten up” by a. At
steady state, the whole cube will be filled with a and all of b will have been con-
sumed. The plane that separates a and b will move into the domain that is initially
filled with b and thus form a moving reaction front:

u(x, t) = U(x · n− st)

with speed of propagation s and direction of propagation n normal to the front.
Reactions only occur at the front, where a and b meet, and the front thickness
increases over time due to diffusion. Without diffusion, no reactions would ever
happen, since a and b don’t mix. In order to better understand this dynamics we
perform a dimensional analysis.

Dimensional analysis

Independent dimensions: 3 (L,M, T )
Variables: 7 (D, s,M, k, r, V, u)
⇒we need 7− 3 = 4 dimensionless groupings.

⇓
L M T

D 2 0 −1 diffusion constant
⇒ s 1 0 −1 front propagation speed

M 0 −1 0 “molecular weight”
k 3 −1 −1 reaction rate constant
r 1 0 0 cube edge length
V 3 0 0 particle volume
u −3 1 0 concentration of a

The dimensions of the reaction rate constant can be seen from the expression for
the reaction term: f = ku(1 − u). Both u and (1 − u) have the dimensions of
concentration and the overall expression has the dimensions of concentration/time
(corresponding to the left-hand side of the governing equation), thus:

k(conc)2 =
conc
T

⇒ k =
1

conc · T =
L3

MT
.
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We follow Taylor’s method to find the dimensionless groupings:
⇓

L M
D/s 1 0

⇒ M 0 −1
k/s 2 −1

r 1 0
V 3 0
u −3 1

⇓
L

D/s 1
k/(sM) 2

⇒ r 1
V 3

uM −3

L
D/(sr) 0

k/(sMr2) 0
V/r3 0
uMr3 0

The four dimensionless groupings completely describing the dynamics of the prob-
lem thus are:

Π1 = D
sr dimensionless diffusion constant

Π2 = k
sMr2 " reaction rate

Π3 = V
r3 " particle volume

Π4 = uMr3 " concentration

The simulation results are shown in Fig. 7.1. They were done using PSE and SSA
with M = 10 and two different diffusion constants of D = 0.1 and D = 1.0. Fig-
ure 7.1(a) shows the time evolution of the total mass of a and b in the cube and,
as a dashed line, the location of the reaction front, defined as the plane where
[a] = [b] = 0.5. Figure 7.1(b) shows the dimensionless front propagation speed
(slope of the dashed line in (a) before saturation) as a function of the dimension-
less specific probability rate. As expected, the two curves for the two different
diffusion constants collapse into one when using dimensionless groupings. Using
this dimensionless representation, we could now design experiments to measure the
front propagation speed and identify a law of how it depends on the reaction rate.
The dependence on the diffusion constant is clear from the dimensional analysis.
Figure 7.1(a) also illustrates the three regimes that a reaction-diffusion system can
be in. For small times, the slope of the dashed curve (front position) is smaller
than for later times. This early stage is called the “diffusion-limited regime”. Here,
diffusion is slower than the reactions since it has not yet fully developed. The reac-
tants are thus not delivered fast enough for the reaction to work at its full kinetic
speed. Once diffusion has sufficiently mixed the two sides of the cube (i.e., created

a sufficiently diffuse interface), the reaction can go at full speed and the front moves
faster. This is the “reaction-limited” regime where diffusion is no longer the rate-
limiting process. Finally, b gets depleated so much that the reaction again slows
down as there is not enough “fuel” for it any more. This is the “resource-limited
regime” where the front speed rapidly breaks down.
Despite the simplicity of this example problem, it has attracted a great deal of at-
tention in both theory and experiment. The questions of how the front propagation
speed depends on the diffusion constant and the reaction rate, and under which
conditions such traveling fronts exist has been addressed by numerous scientists.
The theoretical prediction for the front speed in the present example problem is:

s∗ = 2
√

f ′(0) . (7.1)

The dashed line in Fig. 7.1(b) shows this theoretical prediction. Compared to our
simulations we see that the prediction is good only for larger reaction rates. This is
consistent with the theory assuming a reaction-dominated system, where reactions
are fast compared to diffusion. Using numerical simulations, however, we can also
explore the other regimes.
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Figure 7.1: (a) Evolution of the total mass of a and b (solid lines) for M = 10
molecules per unit mass. The location of the reaction front is shown by the dashed
curve. The reaction front moves into the region of b until all of b is consumed; then,
it collapses. (b) Dependence of the front speed s on the specific probability rate c.
In dimensionless numbers, the two curves for D = 0.1 (open circles) and D = 1.0
(filled triangles) collapse into one. The theoretical scaling according to Eq. (7.1) is
indicated by the dashed line.
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7.3.2 Examples of Turing patterns

Besides moving fronts, reaction-diffusion systems can also exhibit inhomogeneous
stationary concentration distributions. These patterns were first described by
A. M. Turing in his seminal work “The chemical basis of morphogenesis”, which
was published in 1952. Since then, the body of literature on Turing patterns has
become vast and we will only give a few examples here.

Turing patterns can exist under the following conditions:

• the diffusion constants of the different species are very different from each
other (usually several orders of magnitude)

• there is a local self-enhancement (auto-catalysis) in the reaction system

• there is a long-range inhibition (supressor) in the reaction system.

There are many well-known examples of pattern-forming systems. In his classi-
cal 1952 paper, Turing proposed the following reaction-diffusion system, known as
Turing’s spot-forming system:

∂a

∂t
= s(16− ab) +Da∆a

∂b

∂t
= s(ab− b− β) +Db∆b .

It consists of two species, a and b, that diffuse isotropically and homogeneously with
diffusion constants Da and Db, and react. Through the reaction, a enhances b and
b inhibits a. In addition, there is a local self-inhibition of b, a is produced at a con-
stant rate of 16s, and b is consumed at a constant rate of βs. This reaction-diffusion
system creates a stationary spot pattern at steady state.

Another spot-forming system was later described by Hans Meinhardt in 1982. It is
given by the equations

∂a

∂t
= s

(

ap1 +
0.01aia

2

b
+ p3

)

+Da∆a

∂b

∂t
= s

(
bp2 + 0.01aia

2
)
+Db∆b

for the two species a and b. The pattern created by this system when starting from
a uniformly random distribution of a and b on the unit sphere is shown in Fig. 7.2.

Figure 7.2: Steady-state pattern created by the Meinhardt spot-forming system on
the unit sphere. The simulation started from a uniformly random distribution of a
and b and was done by Michael Bergdorf (CSE Lab, ETHZ) using particle methods.
The lines in the plot show the time evolution of the maximum concentration of a
(c1) and b (c2) during the formation of the pattern.

Figure 7.3: Bifurcation instability in the Meinhardt spot-forming system when
starting from the initial condition shown on the left. The system first generates
large, connected spots, but becomes unstable after some time due to numerical
noise. After some oscillations, it then falls into a second pattern of more compact,
smaller spots. The second steady state is stable and the system will stay there. The
transient oscillations are clearly visible in the time evolution of the concentrations
shown by the lines in the plot.

The patterns that are generated by a reaction-diffusion system depend on the initial
condition one starts from. This is illustrated in Fig. 7.3, where the initial random
perturbations are limited to a narrow band around the equator of the sphere. The
rest of the sphere is homogeneously filled. The pattern that is generated differs from
the one shown in Fig. 7.2, even though it still consists of spots. More interestingly,
also the transient behavior changes. While the system in Fig. 7.2 directly converges
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to the final pattern, the equator-local initial perturbations lead to a bifurcation
instability. The system first forms the spot pattern shown in the middle panel of
Fig. 7.3. After some time, this pattern becomes unstable and begins to oscillate.
This causes the system to converge to a different steady state as shown in the right
panel. This steady state is stable and the pattern will remain for all times.
In the same 1982 paper, Meinhardt also described the classic stripe-forming system

∂g1
∂t

=
cs2g

2
1

r
− αg1 +Dg∇2g1 + ρ0

∂g2
∂t

=
cs1g

2
2

r
− αg2 +Dg∇2g2 + ρ0

∂r

∂t
= cs2g

2
1 + cs1g

2
2 − βr

∂s1
∂t

= γ(g1 − s1) +Ds∇2s1 + ρ1

∂s2
∂t

= γ(g2 − s2) +Ds∇2s2 + ρ1 .

Figure 7.4 shows the steady-state pattern created by this system when starting from
a uniformly random distribution of a and b on the unit sphere.

Figure 7.4: Steady-state pattern created by the Meinhardt stripe-forming system
on the unit sphere. The simulation started from a uniformly random distribution of
a and b and was done by Michael Bergdorf (CSE Lab, ETHZ) using particle meth-
ods. The lines in the plot show the time evolution of the maximum concentration
of a (c1) and b (c2) during the formation of the pattern.

Pattern-forming reaction-diffusion systems are frequently used to model morpho-
genesis. This can be done by letting the surface deform according to the concentra-
tion of one of the species. This species models a growth factor or growth hormon

that leads to local proliferation in the modeled tissue. Figure 7.5 shows an ex-
ample using the classical Turing spot-forming system on the unit sphere where the
sphere deforms according to the local concentration of a. Where a is more abundant
(highlighted by the red color in Fig. 7.5), the surface moves radially outward. The
deformation velocity of the surface is thus given by Can, where C is a constant and
n the outer unit normal onto the surface. The deformation of the surface influences
the behavior of the reaction-diffusion system on it by changing the local surface
area and curvature. This coupled interplay between growth and reaction-diffusion
ultimately leads to the creation of the shape shown in the right panel of Fig. 7.5.

Figure 7.5: Turing’s spot-forming system on the unit sphere with surface deforma-
tion proportional to the local concentration. The simulation was done by Michael
Bergdorf (CSE Lab, ETHZ) using particle methods and a level-set surface represen-
tation. The left panel shows the initial condition, the middle panel an intermediate
time point, and the right panel a later time point.

Figure 7.6: Simulation of the morphogenesis of a coral by Kaandorp et al., Proc.
R. Soc. B, 2005. The left panel shows the initial shape, a sphere. As the reaction-
diffusion system evolves and drives the deformation of the shape, it gradually de-
velops into a coral-like structure. The middle panel shows the simulation result at
an intermediate time point, the right panel at a later time point.

One can now look for reaction-diffusion systems that, when simulated on a sphere
or another geometric shape, lead to the growth of shapes as they are found in na-
ture. One example is shown in Fig. 7.6. Kaandorp et al. found a reaction-diffusion
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system which leads to the growth of coral-like shapes. The system phenomenologi-
cally reproduces typical coral shapes. However, it is a different story to biologically
interpret the meaning of the different chemical species and reactions, and to identify
them with specific growth factors and biochemical pathways. Simulation, however,
provide guidance about where one should look for these reactions and what kind
of mechanisms and networks could be responsible for the control of morphogenesis.
This is still an active area of research in many fields of biology.
But Turing patterns are not only used in biology. Another important area of ap-
plication is computer graphics. There, Turing patterns are used to create textures
on 3D objects in virtual worlds. Figure 7.7 shows two examples: the fur coat
of a giraffe and a zebra. Both are steady-state solution of specifically engineered
reaction-diffusion systems. The applications of this technique range from computer-
animated movies to video and computer games.

Figure 7.7: Application of Turing patterns in computer graphics: the fur coats of a
giraffe and a zebra as computed from the steady-state solution of pattern-froming
reaction-diffusion system. These two examples are taken from the work of Greg
Turk (Georgia Tech)

.
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Chapter 8

Advection-Diffusion

In this chapter:

• The governing equation for advection-diffusion

• Advection-diffusion simulations using particles

• Stability of the discretization

• Incompressibility conditions

• Remeshing and a hierarchy of moment-conserving interpola-
tion schemes

Learning goals:

• Be able to simulate advection-diffusion systems using PSE
and Random Walk

• Be able to define compressible and incompressible advection
mathematically

• Know the advection stability condition and the Lagrangian
CFL condition

• Know what incompressibility means and how it simplifies
the governing equation

• Know why and when remeshing is needed and be able to
implement it

• Be able to explain the particle cloud and assignment function
interpretations of interpolation

• Know the first three members of the hierarchy of moment-
conserving interpolation schemes

Moving to larger length scales, flows become an important transport phenomenon
in biology. Examples include the flow of blood in the blood vessels or the flow of
air in the lungs. But also external flows such as the flow of water around swimming

fish or corrals pose interesting modeling problems. In flows, we distinguish between
advection and convection. In advection, the velocity field of the flow, i.e., the ve-
locity of the fluid elements at each position in space and time, is explicitly given
or known. In convection, this velocity field is itself an emergent property of the
flow. We first consider the simpler case of advection and introduce the important
concept of incompressibility. In the next chapter, we generalize to convection.

8.1 Governing Equation

In a combined advection-diffusion problem, the transport of a quantity by advection
with a given velocity field v is overlaid with diffusion. The governing equation can
be derived using the method of control volumes and conservation of mass. It is:

∂u

∂t
+

advection
︷ ︸︸ ︷

∇ · (vu)
=v·(∇u)+u(∇·v)

=

diffusion
︷ ︸︸ ︷

∇ · (D∇u) .

Depending on the form of the first term, we distinguish two cases:

• incompressible advection with a divergence-free velocity field, i.e., ∇ · v = 0.
In this case, the governing equation simplifies to

∂u

∂t
+ v · (∇u) = ∇ · (D∇u)

• compressible advection, where ∇ · v 6= 0 and the governing equation remains
in its full form.

Derivation

In order to derive this governing equation, consider a finite Eulerian control volume
V with boundary ∂V and outer unit normal n.
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n
∂V

V

This control volume forms a reservoir for the extensive quantity (“mass”):
∫

V
u dV .

Formulating the balance equation, we relate the temporal change of mass inside
the control volume to the fluxes across its boundary. Since the normal n onto the
boundary is positive in the outward direction, influxes have a negative sign. There
are two fluxes: the one due to diffusion across the boundary and the one due to
advection, thus:

∂

∂t

∫

V

u dV = −(diffusive flux)
(1)

− (advective flux)
(2)

.
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For the diffusive flux density (flux per unit area), we use Fick’s law j = −D∇u, such
that the total diffusive flux (in direction of the normal) across the whole boundary
of the control volume is given by

−
∮

∂V

(D∇u) · ndS .

The scalar product with the normal ensures that we only account for the normal
component of the flux that is actually crossing the boundary of the control volume
(see Section 3.3 for the mathematical form).

In order to derive an algebraic expression for the advective flux (2), we consider an
infinitesimal surface element dS on the boundary of the control volume. Because
the surface element is infinitesimal, it is flat and the advection velocity v is constant
and homogeneous across it. The total flux (in direction of the normal) through this
boundary element is given by the normal component of the flow velocity multiplied
with the size of the surface element. This can be interpreted as the volume that
is pushed across the boundary by the flow per unit time (shaded area in the figure
below). The fluid volume is traveling with a normal velocity of v · n through the
area dS. The total volume transported per time thus is:

v · ndS .
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dS n

v

The quantity u that is transported by the flow is also homogeneously distributed
along the infinitesimal surface element. The total mass moving across the boundary
is given by the transported volume (above) times the concentration u, thus:

uv · ndS .

Again, we integrate over the whole boundary of the control volume and obtain the
total advective flux in direction of the normal:

∮

∂V

uv · ndS .

Substituting the two algebraic expressions for the diffusive and advective fluxes, the
balance equation becomes

∫

V

∂u

∂t
dV =

∮

∂V

(D∇u) · ndS −
∮

∂V

uv · ndS .

This equation contains both a volume integral on the left-hand side and surface
integrals on the righ-hand side. We therefore apply Gauss’ theorem to convert all
integrals to volume integrals and take all terms together under the same integral:

∫

V

∂u

∂t
dV =

∫

V

∇ · (D∇u)dV −
∫

V

∇ · (vu)dV
∫

V

[
∂u

∂t
−∇ · (D∇u) +∇ · (vu)

]

dV = 0 .

This has to hold for all possible control volumes V and the only way this can be
satisfied is for the integrand to be zero. This recovers the governing equation for
advection-diffusion processes as stated above.

8.2 Simulation

We discretize the advection-diffusion equation using particles that correspond to
Lagrangian control volumes, carrying mass as their extensive strength. As the par-
ticles move with the flow (i.e., with the advective flow velocity), the only change of
mass they experience is the one due to diffusion. For divergence-free velocity fields,
the Lagrangian form of the governing equation thus becomes:

Du

Dt
= ∇ · (D∇u)

dx

dt
= v .

(Compare the material derivative for u to the left-hand side of the governing equa-
tion!) In general, we also have to account for the term u(∇·v). This is the divergence
of the velocity field of the flow or, in other terms, the source strength of the velocity
field. If the velocity field has a local source, this means that all velocity vectors are
oriented to point radially away from that location. This means that any particle
containing that point will be “inflated” (recall that particles are Lagrangian control
volumes and as such always contain the same set of fluid elements), hence the name
compressible advection. In the compressible case, we thus have to add an evolution
equation for the particle volumes that is proportional to the local source strength
(divergence) of the velocity field, thus:

dV

dt
= (∇ · v)V .

These are the equations describing the evolution of the particle attributes over time,
namely the:

locations xp(t)
strengths ωp(t)
volumes Vp(t).
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The time evolution of the particle positions xp is only governed by the advection
velocity. The strengths ωp evolve according to diffusion only, and, in the com-
pressible case, the volumes Vp only feel the effect to the dilation (inflation). In the
Lagrangian description, the three phenomena are thus nicely decoupled and can be
treated separately. This was not the case in the Eulerian formulation, but provides
an important advantage: our simulations become modular! We can independently
implement (and test) solvers for diffusion (e.g., using PSE), particle motion, and
volume dilation and can later connect them together in any way to perform a sim-
ulation. The modules for diffusion, advection, flow, or chemical reactions can thus
be freely combined, enabling modular and flexible software architectures.

Converting from concentration u to strength ω and using a discretized form ∇h of
the Nabla operator (e.g., using PSE), the final simulation scheme becomes:







dωp

dt
= Vp∇h · (D∇hu(xp, t))

dxp

dt
= v(xp, t) = vp

dVp

dt
= Vp∇h · v(xp, t) (**).

For incompressible advection, the particle volumes remain constant and the third
equation disappears.

In this scheme, diffusion can be done using either PSE or RW and advection simply
amounts to moving the particles with the local flow velocity. When using PSE
for the diffusion part, the righ-hand side of the evolution equation for ω above is
evaluated over the neighboring particles using isotropic or anisotropic PSE kernels
(depending on the shape of the diffusion tensor D). If one uses RW, the particle
strengths do not change and we add the RW contribution to the advective particle
velocity v before moving the particles.

8.2.1 Stability

It is instructive to see under which conditions the above simulation scheme is numer-
ically stable. This highlights one of the advantages of particle methods in advective
problems. We first consider the simpler case of incompressible advection and then
generalize.

Incompressible advection: In incompressible advection, the evaluation of the
right-hand side of equations (**) (i.e., the spatial discretization) is always
stable. There is no linear stability condition from the space discretization.
For homogeneous velocity fields, particle methods even yield exact solutions.
This is an important difference to mesh-based numerical methods, where the
linear stability condition imposes that the flow must never travel farther than

a certain number (called the CFL limit number) of mesh cells per time step.
In particle methods, there is no such condition on the time step for linear sta-
bility. The time integration scheme, however, will still impose stability limits
on the time step!

Compressible advection: In compressible advection, stability requires that any
two particle trajectories do not cross within a time step. This imposes the
time step limit δt < C||∇⊗ v||−1

∞ (Bergdorf & Koumontsakos, SIAM J. MMS
5, 2006), defining a Lagrangian CFL number

LCFL := δt||∇ ⊗ v||∞

such that LCFL
!
< C. This is the time step limit coming from the spatial

discretization using Lagrangian particles and is in addition to the time step
limit of the time integration scheme. The infinity norm of the outer product of
∇ and v is the largest (by absolute value) component of the velocity gradient
in any spatial direction.

8.3 Incompressibility

Let’s look at the physical meaning of incompressibility and how this can be used to
understand the above stability results. The condition that incompressible advec-
tion has a divergence-free velocity field makes intuitive sense: recall that divergence
describes a source density. If there were sources in the velocity field, then the La-
grangian control volumes (i.e., the particles) would inflate as described above. Since
a Lagrangian control volume always contains the same set of fluid elements, their
density would decrease because the control volume inflates, but the total mass inside
it remains constant. This is in contradiction to the requirement of incompressibil-
ity. Something that is incompressible has to have a constant density. Sources (or
sinks) in the velocity field can therefore not exist in an incompressible fluid. The
two conditions of incompressibility, ρ = 6c and ∇ · v = 0, are thus equivalent.

This also provides an intuitive explanation for the absence of a time step limit. If
we model a fluid as incompressible, we neglect sound waves (density fluctuations)
and we are only interested in the bulk transport properties of the flow. This is a
good approximation if the maximum advection velocity is small compared to the
speed of sound, thus |v|max ≪ csound. This is a direct consequence of selecting the
relevant time scales for the model. When simulating flows with relevant velocities
that are much smaller than the speed of sound, we treat sound waves as fast dy-
namics and do not include them explicitly (sound is assumed to instantly propagate
throughout the entire domain). While this is not a definition of incompressibility,
it can be used in practice to decide whether or not to model a given flow as in-
compressible and hence be allowed to neglect particle volume changes. This can
sometimes be counter-intuitive. While air is mostly percieved as compressible in
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our everyday experience (imagine, for example, a manual bicycle tire pump), we
would still model it as incompressible when simulating air flow in the lungs. This
is because the maximum flow velocity during breathing is much smaller than the
speed of sound in air. Since we are not trying to resolve sound waves, we don’t need
a time step limit that guarantees that we resolve their dynamics. Incompressible
advection can thus not be used to model fast (compared to the speed of sound)
flows. To simulate acoustics or shock waves, we need compressible advection with
variable density (particle volumes).

8.4 Remeshing

The motion of the particles with the advection velocity field can lead to irregular
particle distributions. In particular, there can be regions where the particles spar-
sify and eventually violate the overlap condition introduced in Section 5.1. In order
to maintain the integrity of the smooth function approximation, the particle distri-
bution is therefore periodically regularized by remeshing the particles. As already
introduced in Section 5.3, remeshing consists of the following steps:

• interpolation of the particle strengths onto a regular Cartesian grid of resolu-
tion h ≤ ǫ;

• creation of a new set of particles at grid nodes where the field value is non-zero
(in practice: larger in magnitude than machine epsilon);

• resetting the particle volumes to hd in R
d in the case of compressible advection

(this is new compared to Section 5.2.2).

Interpolation is done using moment-conserving schemes as introduced in Section
5.2.2. We take this opportunity to revisit the topic of interpolation schemes and
provide some more details below.
Remeshing also provides a consistent way of inserting or removing particles from
the simulation where needed (adaptivity, another important advantage of particle
methods). In areas where particles tend to cluster the simulation becomes wasteful
as the function could also be represented using much less particles there. Remesh-
ing will reduce the number of particles there to match the given resolution h. In
areas where new particles are needed because the field starts to develop, they are
created by remeshing.
In simulations of compressible advection, remeshing in addition resets the volumes.
This also prevents particles from becoming arbitrarily large or small.

Interpolation

Good interpolation kernels have to fulfill the following properties:

1. at particle separations ≫ h, fluctuations should be negligible ⇒errors should
be localized.

2. if we interpolate a field from particles to a mesh, the result should vary
smoothly as particles move across mesh cells ⇒fluctuations should be small
in close vicinity.

3. moments of the interpolated function in particle-to-mesh interpolation should
be conserved up to a certain order.

These quality requirements can directly be used to construct good interpolation
kernels in a systematic way:

1. restricts the mathematical form of the interpolation kernels to functions with
local support,

2. enforces smooth interpolation kernels,

3. allows determining the coefficients of the interpolation kernel.

In Section 5.2.2, we have introduced particle-to-mesh interpolation as a weighted
distribution of particle strength onto the surrounding mesh nodes, where the weight
is determined by the interpolation kernel as a function of the distance between the
particle and the mesh node. We will now adopt a more visual view. This can be
done in two ways:

• Particle clouds: In the particle cloud interpretation of interpolation, we
imagine that the particles carry clouds S of finite size. These are not to
be confused with the mollification kernels used in smooth particle function
approximations. The clouds here are just a way of visually interpreting inter-
polation schemes. The fraction of strength assigned from particle p at xp to
mesh node m at xm is given by the overlap of the cloud with the mesh cell,
thus:

W (xp − xm) = Wm(xp) =

∫ xm+ 1
2h

xm− 1
2h

S(x′ − xp)dx
′ .
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xm

S(x− xp)

xp
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• Assignment functions: Again, we imagine that the particles carry func-
tions A, but this time the fraction of strength assigned from particle p at xp

to mesh node m at xm is given by the function value at xm, thus:

W (xp − xm) = A(xm − xp) .

xp

xm

A(x− xp)

The two interpretations are related through:

W = A(xm − xp) =

∫

Ω

Πm

(
x′

h

)

S(x′ − xp)dx
′ ,

where Πm is the top-hat indicator function on mesh cell m, i.e., the function that
is 0 everywhere outside of the mesh cell centered at node m and 1 inside. For even
cloud functions S, this amounts to a convolution: A = Π(xh ) ∗ S(x). The assign-
ment function and the cloud function of any interpolation scheme are thus related
through a convolution with the top-hat function over the mesh cell. This can be
intuitively illustrated:

����
����
����
����
����
����

����
����
����
����
����
����

xm

Πm

8.4.1 A hierarchy of interpolation schemes

Since every assignment function is also a valid cloud function when normalized by
1
h (not easy to see), the above relationship between cloud functions and assign-
ment functions defines a recursion that can be used to systematically construct a
hierarchy of interpolation schemes that fulfill the quality criteria listed above. The
hierarchy starts from the simplest local, moment-conserving interpolation scheme:
assign all strength of the particle to the nearest mesh point. This scheme is called
NGP (nearest grid point) interpolation and obviously conserves the moment of or-
der 0, i.e., the total mass. However, no higher-order moments are conserved, and
the interpolated values change discontinuously when particles move from one mesh
cell into a neighboring one. The cloud function of the NGP scheme is S(x) = δ(x)

and the assignment function can be determined by convolution with the top hat,
thus:

A(x) = Π
(x

h

)

∗ δ(x) = Π
(x

h

)

.

The cloud and assignment functions of the NGP interpolation scheme are shown
in Fig. 8.1. This scheme is of order 0 (in the sense of the order of the highest
conserved moment of the extensive quantity, not the order of convergence of the
intensive quantity) and yields a piecewise constant interpolated field.

xpp− 1 p+ 1

S

pp− 1 p+ 1

A

x

Figure 8.1: Particle cloud (top) and assignment function (bottom) of the nearest
grid point (NGP) interpolation scheme.

It is easy to see that the normalized top hat function 1
hΠ
(
x
h

)
can also serve as a

cloud function. The normalization is makes the cloud conserve mass. This will
still conserve the 0 order moment, but in addition also the moment of order 1.
The resulting interpolation scheme is called CIC (cloud in cell) interpolation. Its
cloud function now has a support of 2 mesh cells in each direction and the assign-
ment function (again computed by convolution with the top hat) is triangular (see
Fig. 8.2). The CIC scheme is of order 1 and yields a piecewise linear interpolated
field.
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Figure 8.2: Particle cloud (top) and assignment function (bottom) of the cloud in
cell (CIC) interpolation scheme.
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Figure 8.3: Particle cloud (top) and assignment function (bottom) of the triangular
shaped cloud (TSC) interpolation scheme.

This triangular function can then be used as the cloud function of the next higher
scheme, the 2nd-order accurate TSC (triangular shaped cloud) scheme, and convo-
lution with Π

(
x
h

)
yields the new assignment function as shown in Fig. 8.3. TSC

yields an interpolated field that is smooth in the value and continuous in the first
derivative.
The next higher-order PQS scheme is smooth up to the second derivative and is of
order 3. This hierarchy can be iterated as far as needed. The first 4 schemes are
summarized in Table 8.1.

Scheme Order Support Cloud Assignment
function

Field

NGP 0 1d δ Π Stepwise
CIC 1 2d Π

∧
= Π ∗Π Continuous piecewise lin-

ear
TSC 2 3d

∧
Π ∗Π ∗Π Continuous value and first

derivative
PQS 3 4d

∧ ∗Π Π ∗Π ∗Π ∗Π Continuous value, first,
and second derivative

Table 8.1: Summary of the first 4 members of the hierarchy of interpolation schemes
and the order of the highest conserved moment in particle-to-mesh interpolation.

Since the result of an NGP interpolation is piece-wise constant, its first derivative is
not defined (the gradient is infinite at mesh cell boundaries). Higher-order schemes
yield successively smoother results with the CIC scheme having continuous val-
ues, the TSC scheme continuous values and first derivatives, and the PQS scheme
continuous values as well as first and second derivatives.
It is important to always use an interpolation scheme that yields results that are
smooth up to the degree of the highest derivative that occurs in the model. Oth-
erwise, the numerical approximation of the derivative can diverge. If we want to
simulate, e.g., diffusion, we have to evaluate a discretized second derivative. We
thus have to use an interpolation scheme that provides results that are smooth up to
and including the second derivative (such as PQS). The smoothness of an interpo-
lation scheme can be increased using Richardson extrapolation without increasing
the order of the highest conserved moment (Monaghan, 1985). This has the advan-
tage of yielding sufficient smoothness in the interpolated result without requiring
a larger support (computational cost). The M ′

4 scheme introduced in Section 5.2.2
provides continuous values as well as first and second derivatives (just like PQS).
But it only conserves the moments up to and including the second in particle-to-
mesh interpolation (like TSC). In mesh-to-particle interpolation, however, its order
of convergence is 3.
Conservation of moments in particle-to-mesh interpolation can be best understood
in the particle cloud interpretation, which reflects the re-distribution of each par-
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ticle’s extensive strength onto the surrounding mesh nodes. Mesh-to-particle in-
terpolation of the intensive values stored on the mesh is best understood in the
assignment function interpretation. Here, no extensive strength is re-distributed,
but the interpolation weights are determined by evaluating the assignment function
of the interpolation scheme at a certain distance. This does, in general, not conserve
the moments of the interpolated extensive quantity (but recall that we have to use
the same interpolation kernel to go both ways). The error introduced by mesh-to-
particle interpolation decreases with a certain power of h. This power (order of
convergence) is usually chosen at least one larger than the order of convergence of
the operator approximation. The interpolation error is thus not visible in the final
result, as it is dominated (masked) by the operator error. The interpolation schemes
presented here only conserve moments if the target (mesh or particles) of the inter-
polation is regularly spaced with some spacing h. Notice also that remeshing only
requires particle-to-mesh interpolation and hence always conserves the moments.

Attention:
While these interpolation kernels conserve successive moments of the interpolated
field function, they do not conserve energy! A different set of kernels is available
for that, but not discussed here. Also, these interpolation schemes only conserve
moments when interpolating to regular Cartesian meshes. On irregular or non-
uniform meshes, the moments are not conserved. In order to conserve moments
also there, one would have to use different interpolation kernels for each mesh point
(i.e., locally adapt the kernels to the resolution and geometry of the mesh).

In multiple dimensions

So far, we have only talked about interpolation in 1D. In R
d, the kernels of this

hierarchy are Cartesian products of the 1D kernels. We can thus compute the in-
terpolation weights in each direction separately and then multiply them together,
thus:

W (x) = W1(x1) ·W2(x2) · . . . ·Wd(xd)

= Πd
i=1Wi(xi) .

Example 8.4.1 (CIC in 2D: areas).
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Chapter 9

Incompressible Flow

In this chapter:

• The governing equations for flow

• Flow simulations using particles (the vortex method)

• The algorithm for vortex methods

• Properties and characteristics of vortex methods

Learning goals:

• Have seen the governing equations for fluid flow

• Know by heart how circulation induces velocity

• Be able to implement a hybrid particle-mesh flow simulation

• Know the advantages and disadvantages of vortex methods
compared to grid-based methods

In convective flow, the velocity field is implicitly defined by the physics of the flow
and the forces applied to the fluid, and it is not an imposed given. Convective flow
thus describes the natural motion of fluids such as liquids and gases driven by some
external force and hence plays an important role on macroscopic length scales. Af-
ter reviewing the governing equations of convective flow, we will extend our particle
simulation framework to include also this case for incompressible flows. The main
difference to advection is that we now have to compute the velocity field from the
particle attributes at every time step. We will see how this can be efficiently done.

9.1 Governing Equations

In convective flow, the flow field is described by the velocity v(x, t), the pressure
p(x, t), and the density ρ(x, t) (we called the density “concentration” before, but
I will now switch to the terminology commonly used in fluid mechanics). All of
these quantities are field functions of time and space. The governing equations
are derived in an infinitesimal control volume from conservation of mass and im-
pulse. Conservation of mass leads to the continuity equation (for the derivation
see the self-test questions of lecture 5), conservation of impulse to the so-called
Navier-Stokes equation. Together, these two equations govern the spatiotemporal
dynamics of flow.

• Conservation of mass
∫
ρ dV : Continuity equation

∂ρ

∂t
︸︷︷︸

accumulation

of mass

+ ∇ · (ρv)
=v·∇ρ+ρ∇·v
︸ ︷︷ ︸

advection of mass across bound-

ary with advection velocity v

= 0

Diffusion is neglected, as one assumes that in a flow, advection is the dominant
transport mechanism on the macroscopic scale. As there is no diffusion, the
continuity equation then simply formulates the mass balance in the control
volume with the only flow of mass due to advection across the boundary. It
thus amounts to a simple advection equation (see Chapter 8).

• Conservation of impulse
∫
ρv dV : Navier-Stokes equation

ρ
∂v

∂t
+ ρv · ∇v

︸ ︷︷ ︸

Lagrangian

derivative

of impulse

= −∇p
︸ ︷︷ ︸

pressure force

+ µ∆v
︸︷︷︸

viscous force

+ ρfv
︸︷︷︸

body force
︸ ︷︷ ︸

sources/sinks of impulse

.

The left-hand side gives the change of impulse felt by a Lagrangian fluid ele-
ment per unit volume. According to Newton’s law of mechanics, the temporal
change of the impulse is given by the sum of all forces acting on the control
volume. The first component on the right-hand side is the force per unit
volume due to pressure differences across the control volume. If the pres-
sure on two sides of the control volume differs, the volume feels a force that
is opposed to the gradient. It is “sucked” to the side of lower pressure (or
pushed away by the high pressure). The second force is the friction against
neighboring control volumes. The quantity µ is the dynamic viscosity of the
fluid (see Section 2.2). It is a constant material property that characterizes
the “fluidity” of the fluid and it can be looked up in books or tables. Finally,
ρfv is the specific force that is applied to the fluid from external. If the fluid
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is, e.g., experiencing gravity, it would be fv = −gez with g the acceleration
of gravity. Here, also other driving forces of the flow can be included.

We thus have two governing equations for the two unknown field quantities ρ and
v. The pressure will be of no importance, as we will see later.

9.2 Simulation using Particles: the Vortex Method

While the continuity equation is a compressible advection equation (without the dif-
fusion part) that can easily be simulated by moving the particles and adapting their
volumes, the Navier-Stokes equation is a bit more difficult. It is a non-linear (in v)
equation for the intensive properties ρ and v (subdividing a control volume leaves
the velocity unchanged). While the corresponding extensive quantity of the density
ρ is mass, the extensive quantity that corresponds to the velocity v has no useful
conservation properties. In order to represent the dynamics of the Navier-Stokes
equation on particles, we thus have to use a trick to introduce another extensive
quantity. The trick is to take the curl of the entire equation, which converts the
velocity v to the vorticity ω = ∇× v. Vorticity has an associated extensive quan-
tity, namely the circulation Γ =

∫
ω dV , relating to the rotational energy stored

in a fluid element. Circulation is a conserved quantity (Kelvin’s theorem), which
enables us to use our familiar control volume method for modeling and particles for
the corresponding simulations. Taking the curl of the Navier-Stokes equation, we
obtain:

∇×
(

ρ
∂v

∂t

)

+∇× (ρv · ∇v) =
=0 (rule 12)
︷ ︸︸ ︷

−∇× (∇p)+∇× (µ∆v) +∇× (ρfv)

ρ∇× ∂v

∂t
− ∂v

∂t
×∇ρ

︸ ︷︷ ︸

(rule 10)

+ρ∇× (v∇v)− v∇v ×∇ρ = µ∇× (∆v) + ρ∇× fv .

This equation can be simplified by restricting ourselves to incompressible flows.
In incompressible flows, the velocity field is divergence-free, thus ∇ · v = 0 (see
Sec. 8.3). This is equivalent to saying that the density does not vary, thus ρ = 6 c.
This is a good approximation for most liquids as well as for gases that move at
velocities much smaller than the speed of sound (e.g., air in the lungs). Setting
ρ = 6c, and dividing the whole equation by ρ, we obtain:

∇× ∂v

∂t
+∇× (v∇v) = ν∇× (∆v) +∇× fv .

The quantity ν is the kinematic viscosity of the fluid, defined as ν = µ/ρ. It is the
ratio of viscous forces to inertial forces and defines the diffusion constant for the
impulse transport due to internal friction in the fluid. Expanding the second term

and grouping the curls of the velocity field, we find:

∂

∂t
(∇× v) + v · ∇(∇× v) + (∇× v) · ∇v = ν∆(∇× v) +∇× fv .

Substituting the vorticity ω = ∇× v leads to the reformulated governing equation:

∂ω

∂t
+ v · ∇ω + ω · ∇v

︸ ︷︷ ︸

vortex stretching

= ν∆ω
︸︷︷︸

Vorticity diffu-

sion due to vis-

cous friction

+∇× fv ,

the Navier-Stokes equation in vorticity form. The first two terms of this governing
equation for the vorticity field ω are the material derivative. We can thus easily
formulate the equation in Lagrangian form:

Dω

Dt
+ ω · ∇v = ν∆ω +∇× fv . (9.1)

Notice that by definition: ∇ · ω = ∇ · (∇× v) ≡ 0 (rule 11).

The Navier-Stokes equation in vorticity form still describes the same physical sys-
tem as the incompressible Navier-Stokes equation in velocity-pressure form, since
all we did was applying the same mathematical operations to both sides of the
equation. Notice, however, that the pressure term has vanished. This is natural,
since in an incompressible fluid the pressure is not an independent quantity and can
always be computed from the velocity field. Also notice that the Eulerian form of
the Navier-Stokes equation is non-linear in v, whereas the above Lagrangian formu-
lation is linear. The non-linearity in the system is gone! This might seem surprising
or impossible, but there are in fact no “physical” non-linearities in incompressible
flows. The mathematically non-linear form of the velocity-pressure form of the
Navier-Stokes equation comes from the fact that this formulation is also valid for
compressible flows, which are indeed non-linear (see equation before assuming in-
compressibility). The above vorticity formulation is only valid for incompressible
flows and is hence linear. This allows, e.g., using the superposition principle for solv-
ing problems. Due to its general formulation, the velocity-pressure form allows also
compressible solutions. When simulating incompressible flows, much effort needs
to be devoted to projecting them out again at the end. The vorticity formulation
does not require this.

Neglecting for now the vortex stretching term, the incompressible Navier-Stokes
equation in vorticity form is an incompressible advection-reaction-diffusion equa-
tion for the vorticity ω. It can thus be simulated using our existing particle frame-
work, where here the particles carry circulation as their extensive property and are
advected with velocity v. But how to determine v?
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Computing v on the particles

The circulation that the individual particles carry can be thought of as a rotational
energy that is associated with the local vorticity. Recall from Section 3.2 that the
curl of a field is the vortex strength density. The circulation of a particle induces
a rotational velocity field about that particle, as if the particle would spin around,
whirling the fluid around it. This induces a tangential velocity on all other parti-
cles. Since every particle is doing this simultaneously, and the problem is linear, the
total velocity field of the flow is given by the superposition of all these rotational
components.

P2

P1

v12

Γ1

r̂12

r12

The velocity induced by the circulation Γ1 of
particle 1 on particle 2 is:

v12 = (Γ1 × r12/||r12||) /||r12||2 .

The total velocity of particle 2 is then given by
the influences from all other particles, thus:

v2 =
N 2∑

p=1

Γp × rp2/||rp2||
||rp2||2

.

The resulting sum is known as the “Biot-Savart
law”, which also occurs in electromagnetism

when evaluating Coulomb interactions.

Since this velocity has to be evaluated for all particles, and not only for particle
2, we have an N -body problem. For each of the N particles we have to sum the
velocity contributions from all other N − 1 particles, leading to a total of O(N2)
interactions that are to be computed. Since the potential is not local, we cannot
restrict the sum to the nearest neighbors as we could, e.g., in diffusion. Even parti-
cles far away contribute significantly to the velocity and must be accounted for. We
thus have to solve the full N -body problem. It was this high computational cost
that has long prevented the use of particle methods for flow problems. Since the
mid-1980’s, however, fast N -body solvers are available to reduce the computational
cost to O(N), albeit with a large pre-factor. These methods include the Barnes-
Hut algorithm and the Fast Multipole Method (FMM). Alternatively, one can use
a hybrid particle-mesh approach to render the computations more efficient. Hybrid
particle-mesh simulations are also viable since the mid-1980’s with the availability
of moment-conserving interpolation schemes. We will follow this approach since the
implementation of fast N -body solvers is involved and their computational perfor-
mance is inferior to hybrid particle-mesh methods. Moreover, hybrid particle-mesh

methods provide at least the same accuracy as fast N -body solvers and we anyway
need a mesh for remeshing (see Section 8.4), so we can directly use the same mesh
also for evaluating the long-range part of the operator, i.e., computing the velocity
field, without needing any additional data structures.

Computing v on the mesh

In order to compute the velocity field on the mesh, we transform the problem to the
corresponding PDE that can then be solved on the mesh in O(N) time. Consider
the definition of ω:

∇× v = ω .

Taking the curl of the whole equation, and applying compute rule 14 for differential
operators, we obtain:

∇× (∇× v) = ∇× ω

∇(∇ · v)−∆v = ∇× ω (rule 14) (∗) .

So far, we have only used the Navier-Stokes equation in deriving our particle sim-
ulation scheme. Now it is time to look also at the continuity equation. Expanding
it using compute rule 7 for differential operators, we have:

∂ρ

∂t
+∇ · (ρv) = 0

∂ρ

∂t
+ v · ∇ρ+ ρ∇ · v = 0 (rule 7) .

Since we have already made the assumption of incompressibility when deriving the
vorticity form of the Navier-Stokes equation, we can also simplify the continuity
equation by setting ρ = 6c, yielding:

ρ∇ · v = 0

∇ · v = 0 .

The continuity equation for incompressible flows thus reduces to the condition that
the velocity field has to be divergence free. That’s why the two definitions of in-
compressibility are equivalent (i.e., linked through conservation of mass).

Using ∇ · v = 0 in equation (∗), we find

∆v = −∇× ω . (9.2)

This is a Poisson equation that links ω and v. Solving this equation for v on the
mesh thus allows computing the flow velocity field from the vorticity field. Notice
that this velocity equation implicitly contains the condition ∇ · v = 0. All solu-
tions will thus automatically be divergence free. This is in contrast to grid based
methods, where additional effort has to be devoted to ensuring divergence-freeness
of the solution.

63



9.3 Algorithm

The present hybrid particle-mesh method to simulate incompressible flows is called
“vortex method” since it is based on the vorticity form of the Navier-Stokes equation.
For the compressible case, other particle methods are available, such as smoothed
particle hydrodynamics (SPH) or moving least-squares (MLS), to numerically ap-
proximate the solution of the compressible Navier-Stokes equation. Since in biology
flow velocities close to the speed of sound do not frequently occur, we limit our
discussion to incompressible flows.
Simulating incompressible convection amounts to simulating advection-reaction-
diffusion of vorticity (Eq. 9.1) with a velocity field that is determined by solving a
Poisson equation (Eq. 9.2). The simulation algorithm thus proceeds as follows:

Initialize particles at locations x0
p with circulations Γ0

p.
Do the time steps n = 0, . . . , T − 1:

• interpolate ω from the particles onto the mesh

• solve ∆v = −∇×ω for v on the mesh using a fast Poisson solver (e.g. multigrid
or FFT1 that can be found in most scientific computing libraries. For M mesh
points, the time complexity of a multigrid solver is O(M) and that of FFTs is
O(M logM). FFTs provide the exact solution (to machine precision), whereas
multigrid algorithms provide an approximate solution. Multigrid algorithms
can efficiently be parallelized on large multi-processor machines, whereas the
scalability of FFTs is limited due to the global communication that is neces-
sary.)

• interpolate v from the mesh back to the particles ⇒ vnp

• compute vortex stretching ω · ∇v on the mesh using, e.g., finite differences

• interpolate the vortex stretching result from the mesh to the particles as a
change of vorticity

• compute vorticity diffusion ν∆ω (isotropic and homogeneous) on the particles
using PSE (or RW) (alternatively this can also be computed on the mesh and
interpolated back), add this vorticity change to the one from the stretching
term, and update the particle circulation. Also add the curl of the body force,
∇× fv, if present. ⇒ Γn+1

p

• move (advect) the particles with velocity vnp and update their positions, leav-
ing the particle volumes unchanged since advection is incompressible. ⇒ xn+1

p

• remesh if needed. If remeshing is done at each time step, the mesh-particle
interpolation of the quantities computed on the mesh can be skipped and di-
rectly new particles generated. Generate particles only at mesh nodes where
|ω| > 0.

end time step.

Compared to pure particle methods that use Fast Multipole Methods, hybrid
particle-mesh approaches have the following advantages:

• easy treatment of the vortex stretching term on the mesh

• no loss of accuracy since the interpolation kernels are moment-conserving and
remeshing is needed anyway

• they are orders of magnitude faster than fast multipoles (both are O(N), but
FMM have a larger pre-factor)

• they are efficiently parallelizable (FMM requires a global tree data structure)

9.4 Properties of Vortex Methods

In the above algorithm, we do not need any new subroutines to simulate incom-
pressible flows. All we need are the advection-reaction-diffusion solver from the last
chapters, a mesh-based Poisson solver (that can be found in any standard scientific
computing library), and the moment-conserving interpolation schemes.

Vortex methods have a number of unique properties:

• Particles are only needed where |ω| > 0 (⇒use an epsilon cutoff after remesh-
ing!). This makes the method inherently adaptive. In mesh-based methods,
a grid is usually required throughout the computational domain and it does
not track the flow.

• There is no linear CFL condition, but only the Lagrangian CFL condition
(see Sec. 8.2.1).

1Solving the Poisson equation with FFT (exact to machine precision):

∂
2
u

∂x2 = f
F
→ (ik)2û = f̂

f
F
→ f̂

↓ 1
(ik)2

u
F−1

← û
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• The governing equation for ω is linear, whereas the Navier-Stokes equation
for v and p is non-linear. This is a direct effect of the Lagrangian formulation.

• Divergence-freeness of the velocity field is automatically guaranteed, such that
only physical solutions are possible. This largely eliminates the need for pro-
jection schemes that are required in some mesh-based methods.

• The implementation of vorticity boundary conditions is difficult. In com-
plex geometries we need, e.g., immersed boundaries, Brinkman penalization,
Boundary Element Methods, or vortex sheets in order to satisfy the bound-
ary conditions. This is more involved than the simple boundary condition
handling that is possible in mesh-based methods.
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Chapter 10

Waves

In this chapter:

• The governing equations for waves

• The general wave solution and properties of waves

• Definitions of wave-related terms

• The behavior of waves at boundaries

• Standing waves and oscillations

• Simulating waves using particles

Learning goals:

• Know the governing equation and its general solution by
heart

• Be able to define wave terms and know how they are
interrelated

• Know how waves are reflected at boundaries and be able to
explain this using the method of images

• Understand oscillations as standing waves

• Be able to solve the wave eqution using particle methods

After having seen how to model and simulate diffusion, reaction, advection, and
convection processes, we now consider waves as the last of the biologically rele-
vant transport phenomena discussed in this course. But there is one fundamental
difference to the phenomena considered so far: Waves transport energy are not asso-
ciated with any transport of mass. One has to be careful not to confure waves with
traveling fronts in reaction-diffusion systems as discussed in Chapter 7. Biological
phenomena that transport mass, such as Calcium waves in muscle cells or cAMP
waves in cell signaling, are usually traveling reaction-diffusion fronts and not waves.

Nevertheless, they are frequently termed “waves” in the biological literature. Care
is needed not to postulate the wrong model then. Waves are also intimately realted
to the concept of oscillations, as we will see in this chapter.
In biological systems, the following types of waves frequently play a role:

• electro-magnetic waves in neurons

• elastic waves in membranes, tissues, and bones

• acoustic pressure waves in the air

In addition, there can of course also be other waves not listed here.

10.1 Governing Equation

The governing equation for waves has the same right-hand side as the diffusion
equation, but a second-order time derivative on the left-hand side:

∂2u

∂t2
= c2∆u(x, t) .

This is the general wave equation in n dimensions. Everything that is described
by this equation is by definition considered a wave. In most practical applica-
tions, waves travel along a certain direction. We are thus often interested in the
one-dimensional wave equation formulated along the direction x of propagation:

∂2u

∂t2
= c2

∂2u

∂x2
(∗) .

Another very important case are spherically symmetric waves originating from a
point source. Also in this case the wave equation becomes one-dimensional with
the only space coordinate being the radial distance r:

∂2u

∂t2
= c2

(
∂2u

∂r2
+

2

r

∂u

∂r

)

.

This equation follows by expressing the Laplace operator in spherical coordinates.

10.2 General Solution

The one-dimensional wave equation can be solved analytically. This provides the
important advantage of being able to understand the general behavior of the solu-
tions in all cases (numerical simulations only give information about the solution
in one particular situation). Numerical simulations then often directly implement
the analytical solution.

There are several ways of analytically solving the wave equation. Here, we use
Fourier transforms to do so. This is along the same lines as the use of Fourier
transforms to solve the Poisson equation as discussed in the previous chapter. In
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general, Fourier transforms reduce the order of all mathematical operations by one:
multiplications in real space become additions in frequency space, convolutions and
derivatives become multiplications, integrals become divisions, ODEs become alge-
braic equations, and PDEs become ODEs. Frequency space methods are thus very
powerful for both numerical and analytical solution of equations. While the Fourier
transform is the simplest frequency space transformation, there are also others such
as the Laplace transform (for dissipative systems) or the z-transform (for discrete
systems). The Fourier transform of (∗) in x is:

c2(ik)2U(k, t)− ∂2U(k, t)

∂t2
= 0 ,

where U is the Fourier-transformed field u, i.e. the spectrum of spatial frequencies
in u, i is the imaginary unit, and k the frequency. The temporal evolution of each
Fourier mode (frequency) is thus governed by the following ODE (not a PDE any
more!):

−c2k2U − U ′′(t) = 0 .

This ODE is linear, homogeneous, and has constant coefficients. It can thus be
solved for each k analytically and the general solution is:

U(k, t) = C1e
ickt + C2e

−ickt .

Determining the values of the integration constants C1 and C2 requires initial con-
ditions that specify the initial wave form and the initial speed of the wave as:

U(k, 0) = F (k)

U ′(k, 0) = G(k) .

The integration constants then are:

U(k, 0) = C1 + C2 = F (k)

U ′(k, 0) = ickC1 − ickC2 = G(k)

C1 =
1

2

(

F +
1

ick
G

)

C2 =
1

2

(

F − 1

ick
G

)

.

Substituting these constants into the general solution yields the final, analytical
solution of the wave equation in frequency space:

U(k, t) =
1

2

(

F +
1

ick
G

)

eickt +
1

2

(

F − 1

ick
G

)

e−ickt .

The solution in real space is found by inverse Fourier transform. For this backward
transform we need the Fourier translation identity:

F{f(a(x+ b))} = 1

a
F

(
k

a

)

eibk .

Terms of the form eicktF (k) in our analytical solution correspond to the right-hand
side of the Fourier translation identity with a = 1 and b = ct. We can thus directly
transform these two term back as:

F−1{eicktF (k)} = f(x+ ct)

F−1{e−icktF (k)} = f(x− ct) .

The terms containing G are similar, but contain in addition a division by the wave
number (ik). Divisions by the wave number in frequency space correspond to inte-
gration in real space. We can thus transform these terms back as:

F−1

{
1

c

1

ik
Geickt

}

=
1

c

∫ x

−∞

F−1{Geickt}dt

=
1

c

∫ x

−∞

g(τ + ct) dτ .

The integral can be further simplified using the substitution z = τ + ct, yielding:

1

c

∫ x+ct

−∞

g(z) dz .

For the back-transform of the second G term, we find analogously:

F−1

{

−1

c

1

ik
Ge−ickt

}

= −1

c

∫ x−ct

−∞

g(z) dz .

The first term amounts to an integral over the initial wave velocity from −∞ to
x+ ct. From this, the second term subtracts the integral from −∞ to x− ct. What
remains thus is the integral from x− ct to x+ ct, such that the analytical solution
in real space reads:

u(x, t) =
1

2
f(x+ ct) +

1

2
f(x− ct) +

1

2c

∫ x+ct

x−ct

g(z)dz ,

with initial conditions: u(x, 0) = f(x)
ut(x, 0) = g(x).

This solution can be interpreted as follows: the function f is the wave form. Half
of it then travels along the x axis (the direction of propagation) with speed c, the
other half travels in the opposite direction with the same speed. The integral is over
the entire part of the domain that the waves have already visited, i.e. from x− ct to
x+ ct. This region is called the domain of dependence of the wave and it comprises
all points in space where the wave has already been “felt”. The function g is the
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rate at which the values of f change, i.e. the velocity (in time) of the deflection
of the wave at any fixed position x. By definition, a wave preserves its shape as
it travels. In order for this to be possible, the total increase and total decrease in
deflection have to be equal, i.e. the area under f is conserved as the wave travels.
As we integrate over the entire domain of dependence, the integral has to vanish
and we find the final general solution of the wave equation as:

u(x, t) =
1

2
f(x+ ct) +

1

2
f(x− ct) .

The general solution of the one-dimensional wave equation thus is the superposition
of a wave of shape f traveling to the left and to the right along the direction of
propagation. Both partial waves travel with the same speed c:

f(x+ ct)
︸ ︷︷ ︸

to the left

+ f(x− ct)
︸ ︷︷ ︸

to the right

f(x+ ct) f(x) f(x− ct)

x

u

10.3 Properties of Waves

Knowing the analytical solution of the wave equation allows us to discuss some
general properties of waves. The most important observation is that a wave travels
without deforming. The initial spatial distribution (deflection) is given by the func-
tion f(x). After a time ∆t, the very same spatial distribution is found at position
±c∆t. In energy-transporting waves, the actual material particles (molecules, etc.)
are not advected, but undergo oscillatory deflections, which give the “visual impres-
sion” of a traveling wave. This is analogous to waves on water, where the water is
not advected, but the undulations of the water surface create the impression of a
traveling wave. Depending on the direction of deflection of the material particles,
we distinguish longitudinal waves and transversal waves.

In longitudinal waves, the particles are deflected in the same direction as the wave
propagates. The oscillatory motion of the particles and the direction of wave

propataion are thus parallel. This is illustrated in Fig. 10.1. Each particle period-
ically oscillates around its center position in x. The phase shift between particles
creates the impression of a traveling density wave. At any given time t, particles
are more dense in some regions of space and less dense in others. This density
fluctuation travels according to the wave equation. Figure 10.1 shows the locations
of particles in a 1D example over time t. Over a full periode τ of the oscillations, a
given density minimum (highlighted by the arrow) travels a distance that is equal
to the wavelength λ.
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Figure 10.1: Longitudinal wave: the particles oscillate in the direction of wave
propagation x. Each particle periodically oscillates around its center position. The
phase shift between neighboring particles creates the impression of a traveling den-
sity wave.

Example 10.3.1 (sound waves in air).
Sound waves in air are pressure waves. The air molecules oscillate in the direction of
sound propagation. This causes a traveling density wave because air is compressible
at these speeds. Sound waves thus are longitudinal waves.
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x

deflection

In transversal waves, the deflection of the particles is orthogonal to the direction
of wave propagation. (Picture for example the hands of spectators in the stadium,
doing “the wave”. People do not actually displace, but the coordinated up-down
motion of their hands creates the impression of a traveling wave.) Transversal waves
are illustrated in Fig. 10.2 on the example of a sine wave. Even though the physical
particles do not move in x, but oscillate only in y, the phase shift between particles
creates the impression of a traveling waveform. The figure shows the wave form at
different times t over a full periode τ of the oscillations. It is clearly visible that the
wave form behaves according to the wave equation. The arrow marks a particular
maximum of the wave form, the distance between consecutive maxima is equal to
the wavelength λ.
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Figure 10.2: Transversal wave: the particles oscillate in a direction perpendicular
to the wave’s direction of propagation. Even though the particles do not move
in x when they oscillate, the phase shift between neighboring particles creates the
impression of a traveling wave.

Example 10.3.2 (electromagnetic waves).
In electromagnetic waves, the electric and magnetic fields oscillate in directions
perpendicular to the direction of wave propagation. In addition, the electric and
magnetic field vectors are orthogonal to each other such that they span the plane
normal to the direction of wave propagation.
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deflection

10.4 Definitions

We define a few commonly used terms and expressions pertaining to waves:

Wave front: The wave front is the location where the temporal oscillations of all
particles are in phase, i.e., {x : u(x, t) = K for fixed t}). For isotropic media,
where the wave propagation speed c is constant and does not depend on the
location x, the wave fronts of point sources are:

• concentric circles in 2D

• concentric spheres in 3D

Ray: The ray of a wave is the path along which the wave travels. The ray is always
perpendicular to the wave front at every point in space and time.

Phase velocity: The phase velocity is the velocity with which an observer would
have to travel in order to always see the same function f . It is the velocity c
in the governing equation.

Wavelength: The wavelength is the spatial period of the wave form f . It is usually
denoted by the symbol λ.

Frequency: The frequency ν is the number of oscillations the particles undergo
per unit time, which is equal to the number of maxima in u(x, t) that travel
through a fixed point x per unit time. The frequency and wavelength are thus
linked to the phase velocity as c = λν .

Amplitude: The amplitude A is the maximal deflection of the wave, i.e. the max-
imum absolute value of f(x).

Intensity: The intensity of a wave is related to the amount of energy that is stored
in the wave. It is given by the square of the amplitude, thus: I = A2.

Harmonic wave: A harmonic wave is characterized by a sinusoidal wave form,
thus f(x) = A sin(kx+ ϕ).

Spherical wave: A spherical wave propagates spherically symmetric in radial di-
rection, thus: u(r, t) = 1

2rf(r − ct) + 1
2rf(r + ct). The damping factor 1

r that
is not present in linear 1D waves is needed for conservation of energy. As the
wave front propagates outward from the point source, its surface area grows
with r2. The energy that is stored in the wave is given by the intensity times
the wave front area. The intensity thus has to decrease as 1

r2 with increasing
distance from the source. This translates to a 1/r decay in amplitude. This
quadratic decay in intensity with distance from the source is, by the way, the
reason why radio stations can not be heard arbitrarily far, or light becomes
dimmer farther away from the candle.

10.5 Boundary Conditions

Dirichlet: rope anchored in the wall. Neumann: rope end slides along pole.

So far we have only considered waves traveling through open space ad infinitum
without ever being disturbed by a boundary. This is of course not realistic, and
we will now see how waves behave when they hit a boundary. There are two
types of boundaries: absorbing ones and reflecting ones. In many applications, the
boundary condition is a mixture of these two types, characterized by a reflectivity
coefficient and an absorbance coefficient. The two parts can be treated separately
and then superimposed as a weighted sum since the wave equation is linear. If
a wave hits an absorbing boundary, it disappears. This is the same as imagining
the wave to “run through” the boundary and continue behind it, never coming
back. At a reflective boundary, the wave is reflected. Reflective boundaries can be
either Dirichlet or Neumann boundaries (cf. Sec. 5.4). Dirichlet boundaries model
hard (solid) walls where the wave is reflected with a phase shift of π, and Neumann
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boundaries model soft (mobile) walls where the wave is reflected without phase shift.

10.5.1 The method of images

Reflective boundary conditions can be implemented and intuitively understood us-
ing the method of images (cf. Sec. 5.4). We imagine the wave to travel through
the boundary without feeling its presence. We further imagine that another wave
emerges from behind the boundary (i.e. crosses over from the other side). This will
form the reflected wave. Since the wave equation is linear, the two waves can be
superimposed by adding their deflections everywhere.

In order to satisfy u(boundary, t) = 0, the wave emerging from behind the bound-
ary has to be a mirrored version of the incident wave. Then the two waves always
have the same deflection magnitude at the boundary, but with opposite sign. This
is where the phase inversion comes from.

For a homogeneous Neumann boundary condition, the emerging wave has to be
an exact copy of the indicent wave, without phase inversion. Then the two waves
always have opposite gradients at the boundary.

10.6 Standing Waves and Oscillations

In open space, a wave travels along its direction of propagation without changing
its shape. If a wave is reflected at a boundary, however, it will travel back into the
domain, where it is superimposed with the indicent wave. The final wave we see is
the sum of the incident wave and the reflected wave.

Consider a harmonic incident wave uA = A cos(kx− ωt) with phase velocity c = ω
k

that is reflected at a Dirichlet wall. The reflected wave is

uR =
phase jump
− A cos(kx+ ωt)

and travels in the opposite direction. In the domain, we thus see the superposition

u = uA + uR = 2A sin kx
︸ ︷︷ ︸

space

sinωt
︸ ︷︷ ︸

time

,

where we have used the trigonometric identity cosα − cosβ = −2 sin α+β
2 sin α−β

2 .
The first sine factor of the sum of the two waves is a space-dependent amplitude,
whereas the second factor is a purely temporal oscillation. The resulting wave thus
appears stationary with all maxima and minima remaining fixed in space! This is
called a standing wave and amounts to apparent spatiotemporal oscillations. Stand-
ing waves only exist with Dirichlet walls, not with Neumann boundaries.
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Figure 10.3: A wave bouncing back and forth between two Dirichlet walls that are
a distance of nλ/2 apart for integer n leads to a standing wave with group velocity
zero. At times t = 0 and t = 1

2τ , the incident wave and the reflected wave are
shifted by exactly π in phase. They thus cancel each other and the amplitude of
the resulting sum wave is zero everywhere. At times t = 1

4τ and t = 3
4τ , the wave

and its reflection are in phase and the amplitude of the sum wave is double the
amplitude of the incident wave. This gives rise to a standing wave that does not
seem to move and has an amplitude of zero at the nodes (N) and of 2A at the
maxima (A).

If a wave is trapped between two Dirichlet walls, then it keeps bouncing back and
forth between them, giving rise to a permanent standing wave if the distance be-
tween the two walls (i.e. the length of the domain) is an integer multiple of half the
wavelength, thus nλ

2 with integer n > 0 (Fig. 10.3). Observing oscillations in an

experimental system thus already tells us that domain length must be nλ
2 for some

positive integer n. This is the case for the MinC-MinD system in E. coli, and also
for the growth factor gradients in Drosophila embryos.

If the domain is not of length nλ
2 , the zeros and maxima of the resulting wave move

with a group velocity (velocity of the wave packets) that is < c. The group velocity
increases with increasing deviation of the domain length from nλ

2 . As the domain
length approaches nλ

2 for the next integer n, the group velocity decreases until the
wave stands still again.

Example 10.6.1 (Wheels). Sometimes in movies, the wheels of cars seem to spin
backward. This is the case if the frame rate of the movie is not an integer multiple of
the angular velocity of the wheel. What we see in the movie is the apparent group
velocity, which can be negative, instead of the phase velocity (the true angular
velocity of the wheel).

10.7 Simulation using Particles

So far, we have focused on the one-dimensional wave equation with constant and
homogeneous phase velocity, its analytical solution, and the properties of the so-
lutions. If we want to solve the full n-dimensional wave equation, or waves with
inhomogeneous or anisotropic phase velocities,

∂2u

∂t2
= c2∆u ,

then we have to resort to numerical simulations. Since the spatial part of the wave
equation is identical to that of the diffusion equation, we can simply discretize ∆u
using the isotropic, homogeneous PSE scheme. The only difference to simulating
diffusion is that we now have to use a 2nd order time integrator such as, e.g., a
velocity Verlet algorithm.

10.7.1 Numerically evaluating the general solution

Frequently, we are not interested in a full n-dimensional simulation of the wave
equation, but we rather want to simulate the propagation and superposition of
waves. This can be done by numerically evaluating the general analytical solution
of the wave equation. In a one-dimensional domain of solution, this amounts to
(linear) advection of the wave form f(x) (supported on computational particles,
not material particles!) with constant velocity c. All this requires is moving the
particles on which the function u is represented. If we want to simulate waves in
two- or three-dimensional spaces, we also have to keep track of the direction of
propagation, i.e. the ray vector. When a wave is reflected at a boundary, the direc-
tion of propagation changes. We thus need a ray-tracing algorithm and then advect
the particles along this ray.
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10.7.2 Discretization of arbitrary differential operators on
particles

While the right-hand side of the wave equation in Cartesian coordinates is identi-
cal to the isotropic, homogeneous diffusion operator, the radially symmetric wave
equation also contains a term ∂u/∂r. This can also be discretized numerically using
PSE, since the PSE scheme is not limited to diffusion operators. It can be applied
to any differential operator of any order (div, grad, . . . ). Let

Lβ =
∂|β|

∂xβ1

1 ∂xβ2

2 , . . . , ∂xβd

d

∈ R
d

with β = (β1, β2, . . . , βd) and |β| = ∑
βi be an arbitrary (even mixed) differen-

tial operator of order |β|. The PSE approximation (operator approximation on
particles) for Lβf(x) then is:

L
β

hf(xp) =
1

ǫ|β|

N∑

q=1

Vq(f(xq)∓ f(xp))η
β
ǫ (xp − xq) ,

where the kernel η
β
ǫ (x) =

1
ǫd
ηβ
(x
ǫ

)
is chosen according to Eldredge et al., J. Com-

put. Phys. 180, 2002. This is exactly the form of the general integral operator
approximation presented in Section 5.2.1. The sign in the sum is negative for even
orders |β| (e.g. the Laplacian) and positive for odd orders |β| (e.g. the gradient),
in order to kill the correct terms in the Taylor expansion. Near boundaries, special
one-sided kernels are available in order to satisfy the boundary conditions. Since
all of these generalized PSE kernels are local, we can use cell list or Verlet list to
evaluate them in O(N) time.

We now give a set of example kernels. They give an impression of what such gen-
eralized PSE kernels look like and they can also directly be used in simulations to
evaluate first derivatives on particles. We denote by

η(β1,β2,...,βd)

the kernel that approximates the βth
1 derivative in the x1-direction, the βth

2 deriva-
tive in the x2-direction, and so on. We then have the following kernels (taken from
the paper by Eldredge et al.) for different orders of accuracy:

One-dimensional first derivatives, full space

η(1)(x) =
x√
π
e−x2 ×







(−2), second order,
(−5 + 2x2), fourth order,
(− 35

4 + 7x2 − x4), sixth order,
(− 105

4 + 63
4 x2 − 9

2x
4 + 1

3x
6), eighth order.

One-dimensional first derivatives, left sided

ηL,(1)(x) =
x√
π
e−x2 ×







(−4), first order
(−16 + 8x2), second order
(−40 + 44x2 − 8x4), third order
(−80 + 144x2 − 56x4 + 16

3 x6), fourth order

(Right-sided kernels are identical to left-sided ones.)

One-dimensional second derivatives, full space

η(2)(x) =
1√
π
e−x2 ×







(4), second order
(10− 4x2), fourth order
( 352 − 14x2 + 2x4), sixth order
( 1054 − 63

2 x2 + 9x4 − 2
3x

6), eighth order

Two-dimensional first derivatives, full space

η(1,0)(x) =
x1

π
e−|x|2 ×







(−2), second order
(−6 + 2|x|2), fourth order
(−12 + 8|x|2 − |x|4), sixth order
(−20 + 20|x|2 − 5|x|4 + 1

3 |x|6), eighth order

(The (0, 1) derivative is approximated using the same kernels with the x1 factor
replaced by x2.)

Two-dimesional first derivatives, left sided

ηL,(1,0)(x) =
x1

π
e−|x|2 ×







(−4), first order
(−20 + 8|x|2), second order
(−60 + 52|x|2 − 8|x|4), third order
(−140 + 196|x|2 − 64|x|4 + 16

3 |x|6), fourth order

(Again, these kernels are identical to their right-sided counterparts, and they can
be adapted for use in approximating the (0, 1) derivative by replacing x1 by x2.)

Two-dimensional Laplacian, full space

ηlap(x) =
1

π
e−|x|2 ×







(4), second order
(12− 4|x|2), fourth order
(24− 16|x|2 + 2|x|4), sixth order
(40− 40|x|2 + 10|x|4 − 2

3 |x|6), eighth order

Kernels for any other derivatives or differential operators in any dimensions and
for any order of accuracy can be systematically derived using the scheme given by
Eldredge et al.
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Chapter 11

Partial Differential Equations
(PDE)

In this chapter:

• Definition and classification of PDEs

• The superposition principle for linear PDEs

• Analytically solving PDEs using Fourier transforms

• Analytically solving PDEs by separation of variables

• Analytically solving PDEs using the method of characteris-
tics

Learning goals:

• Be able to classify a given PDE with respect to its type and
order

• Know what an ill-posed problem is

• Be able to attribute a linear PDE of second order to the
proper sub-class

• Know what side conditions are needed to solve linear,
second-order PDEs from each sub-class

• Be able to use the methods of Fourier transforms and sepa-
ration of variables to solve simple PDEs

Partial differential equations play a central role when modeling spatiotemporal sys-
tems on the continuum scale and they are of key importance in many fields of
physics, engineering, and biology. All governing equations that we have considered
so far were partial differential equations, and the particle simulation method we

have developed is a general numerical solution strategy for PDEs.
We therefore conclude our little journey of spatiotemporal modeling and simulation
methods by looking at PDEs from a more general, mathematical point of view and
address questions like: How is a PDE formally defined? What types and classes of
PDEs exist? How can they be solved analytically? We give a high-level overview
of the topic and describe the three most important methods to analytically solve
PDEs.
We do, however, not study arbitrary PDEs, but focus on those classes of PDEs
that have a real-world meaning, i.e., that are dimensionally homogeneous and obey
the laws of thermodynamics. Examples of such PDEs include those derived from
conservation laws (as in the previous chapters), transport theorems (such as the
Reynolds transport theorem), and kinetic equations (for chemical reactions).

11.1 Definition

Definition 11.1.1. A partial differential equation (PDE) is an equation that re-
lates partial derivatives of an unknown function u : Ω → R

n in multiple variables.
Ω is an open subset of Rd; d > 1.

This is in contrast to ordinary differential equations (ODE) that relate total deriva-
tives of a function of only one single variable. If we erase the word “partial” in the
above definition, and set d = 1, we thus obtain a definition for ODEs.

11.2 Classifications of PDEs

In order to gain an overview of the diversity and commonalities of PDEs, we start
by giving the standard “taxonomy”. PDEs can be classified according to a number
of properties, including:

by order: The order of a PDE is defined as the highest occurring degree (in any
variable) of the derivatives in the equation.

Example 11.2.1. The diffusion equation is second order since the highest
derivative is of degree 2 and occurs in the variable x.

PDEs of order >4 hardly occur in modeling practice. The most important
(physical) PDEs are second order. There are, therefore, special sub-classes
defined for second-order PDEs (see below).

by type:

linear PDEs only contain linear combinations of the unknown function and
its derivatives.
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nonlinear PDEs also contain non-linear combinations (e.g., products) of the
unknown function or its derivatives. In the class of non-linear PDEs, we
further distinguish:

quasi-linear PDEs that are linear in the highest occuring derivative
over all terms.

Non-linear PDEs are a difficult topic since no closed theory exists for this class
of equations. They are notoriously difficult to solve and numerical simulations
frequently suffer from instabilities and ill-posedness. Due to the lack of the-
ory, the existence of solutions is often unclear, which hinders the development
of better numerical simulation methods.

homogeneous PDEs where all terms (summands) contain the unknown
function or one of its derivatives.

inhomogeneous PDEs where at least one summand is independent of the
unknown function and its derivatives.

constant-coefficient PDEs where all pre-factors of the unknown function
and its derivatives are independent of the independent variables (e.g.,
space or time).

varying-coefficient PDEs where the coefficients themselves are functions of
at least one of the independent variables (e.g., space or time).

by solvability: (classification due to Hadamard)

solution existence: PDEs for which a solution exists. Solution existence is
mostly proven by showing that the assumption that no solution exists
leads to a contradiction.

solution uniqueness: PDEs that have only one, unique solution. If a solu-
tion is found, one knows that it is the only possible solution.

solution stability: In PDEs with stable solutions, small perturbations in the
initial or boundary conditions only lead to small (bounded) variations in
the solution.

PDEs that do not fulfill all 3 of the above conditions are called “ill-posed” and
are hard or impossible to solve numerically.

Example 11.2.2 (deconvolution as an ill-posed problem). Deconvolution is
a central problem in image processing (undoing the blurring introduced by
the microscope), signal processing, and linear systems theory. Although it
is not a PDE, we still use it here as a simple illustrative example of an ill-
posed problem. In deconvolution, the task is to find a function g such that
g ∗K = f for a given function f . If the kernel K contains low frequencies in
its spectrum, computing the deconvolution is unstable because we divide (in
frequency space) by numbers that are close to zero. Small changes in f (or
noise!) are thus amplified and lead to arbitrarily large deviations in g.

Example 11.2.3 (In order to develop some intuition, we give a few examples of
classifications of PDEs with respect to their order and type. Classification with
respect to solvability is much more involved and we will not consider it here).

1. ∂u
∂t = D∆u ⇒2nd order, linear, homogeneous, with constant coefficients
(homogneous isotropic diffusion equation)

2. ∂2u
∂t2 = c2∆u ⇒same as above (wave equation)

3. ∆u = f ⇒2nd order, linear, inhomogeneous, with constant coefficients
(Poisson equation)

4. ∂u
∂t − 6u∂u

∂x + ∂3u
∂x3 = 0 ⇒3rd order, quasi-linear, homogeneous, constant

coefficients (Korteweg-deVries equation describing waves on shallow waters)

5. ∂2u
∂x2

∂2u
∂y2 −

(
∂2u
∂x∂y

)2

= f ⇒2nd order, non-linear, inhomogeneous, constant

coefficients (Monge-Ampère equation describing surface shapes of given cur-
vature f)

6. ∆∆u = 0 ⇒4th order, linear, homogeneous, constant coefficients (plate
equation describing mechanical waves in thin plates and membranes)

7. ∂u
∂t = ∇ · (D(x)∇u) ⇒2nd order, linear, homogeneous, varying coefficients
(inhomogeneous, anisotropic diffusion equation. Notice that even though the
physical process that this equation models is called inhomogeneous diffusion,
the mathematical form of the PDE is homogeneous.)

8. a(x)∂u∂t + b(x)∂u∂x = g ⇒1st order, linear, inhomogeneous, varying coeffi-
cients (geographic population dynamics)

11.2.1 Sub-classes of linear PDEs of second order

Linear PDEs of second order occur most frequently when modeling real-world sys-
tems in physics, engineering, or biology. For this class of PDEs, there exists, there-
fore, a finer classification into sub-classes. These sub-classes are very useful when
numerically simulating a second-order linear PDE in the computer because PDEs of
different sub-classes require different simulation algorithms. The classificaton into
sub-classes is solely based on the homogeneous part of the equation. For inhomoge-
neous PDEs, the inhomogeneous terms are simply removed before determining the
sub-class as they do not influence sub-class membership.
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General form of the homogeneous part

For every linear, second-order PDE, the homogeneous part can be written as a
linear combination of second-order, first-order, and zeroth-order derivatives of the
unknown function, thus:

d∑

i,j=1

aij
∂2u

∂xi∂xj
+

d∑

i=1

bi
∂u

∂xi
+ cu = 0

with symmetric coefficients aij(x) = aji(x), and coefficients bi(x) and c(x). The
symmetry of the coefficients aij implies that all Eigenvalues of the matrix (aij) are
real. If a PDE contains asymmetric coefficients in the second-order derivatives,
they can always be symmetrized by splitting the term into two equal halfs, since
partial derivatives commute (i.e., their order does not matter), e.g.:

3
∂2u

∂x1∂x2
=

3

2

∂2u

∂x1∂x2
+

3

2

∂2u

∂x2∂x1
.

Based on the (symmetric) matrix A = (aij) of the second-order coefficients, linear
second-order PDEs are then classified into:

Elliptic Equations

In elliptic PDEs all Eigenvalues λi of A are strictly positive (>0). This means that
the matrix A is positive definite. Equations with a negative definite A can always
be made elliptic by replacing A with −A.

Hyperbolic Equations

In a hyperbolic PDE, all Eigenvalues λi of A are positive, except one. The matrix
A thus has exactly one λi < 0 and all (d− 1) other λi > 0.

Parabolic equations

Parabolic PDEs are those that contain second-order derivatives in all variables ex-
cept one, and where all Eigenvalues λi of A are >0 (elliptic A). Parabolic equations
can be written in the general form:

d−1∑

i,j=1

aij
∂2u

∂xi∂xj
+

∂u

∂xd
+ cu = 0 .

Remarks

• For PDEs with varying coefficients the sub-class may depend on the
point in space. They can, e.g., be elliptic in some regions of space, but
become hyperbolic in others.

• The sub-classification of a PDE is invariant to coordinate transforma-
tions.

• Certain numerical simulation methods are limited to specific sub-classes
of PDEs. This is for example the reason why simulating the wave equa-
tion is fundamentally different from simulating diffusion, reactions, or
flows.

• In order to solve an elliptic PDE, we need to specify boundary conditions
(“boundary value problem”).

• Solving parabolic PDEs requires both boundary conditions and initial
conditions for the value of u (“initial boundary value problem”).

• Hyperbolic PDEs need boundary conditions and initial conditions for
both the value of u and for its derivative u′ (see, e.g., the wave equa-
tion).

Example 11.2.4 (We give examples of the sub-classification of linear second-order
PDEs, along with the corresponding system matrix).

1.
∆u = 0
∆u = f

}

→ elliptic (Laplace/Poisson eq.) ∂2u
∂x2+

∂2u
∂y2

⇒ A =

(
1 0
0 1

)

⇒ λi = (1, 1) > 0.

2. ∂2u
∂t2 = c2∆u → hyperbolic (wave equation) A =





c2 0 0
0 c2 0
0 0 −1





3. ∂u
∂t = D∆u → parabolic (diffusion equation); the left-hand side is the
only non-second-order derivative and the right-hand side is elliptic with ma-
trix

A =

(
D 0
0 D

)

and Eigenvalues λi = (D,D) > 0 for D > 0. For negative diffusion constants
D, the equation has unstable solutions and therefore is ill-posed, because
it violates thermodynamics (the entropy then spontaneously decreases over
time!).

11.3 The Superposition Principle

The superposition principle is valid for all linear, homogeneous PDEs and is a very
powerful tool in modeling and simulation. It allows one, for example, to decompose
a solution into elementary solutions or to combine found solutions to new ones. The
superposition principle is based on the following theorem:
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Theorem 4. Are u0, u1, . . . solutions of the same linear homogeneous PDE (for the
same homogeneous boundary and initial conditions), then any linear combination

u =
∑

i

αiui; for any αi ∈ R

is also a solution.

The superposition principle is of central importance in practical modeling and sim-
ulation. It is due to this theorem that we could simply add the incident and the
reflected waves when discussing boundary conditions for the wave equation. Since
both the incident wave and the reflected wave are solutions of the wave equation,
the superposition principle guarantees that also their sum is a valid solution. The
same is also the reason why the method of images for boundary conditions in sim-
ulations works. Another application of the superposition principle we have seen
when discussing smooth particle function approximations where the particles carry
mollification kernels. The superposition principle guarantees that if the kernels are
valid basis functions (solutions to the governing equation, such as Gaussians for
the diffusion equation), then also their weighted sum over all particles is a valid
solution. The coefficients αi then correspond to the particle strengths ωp.
The superposition principle is also used to analytically solve inomogeneous PDEs.
There, a frequently used method is to first find a set of solutions for the homo-
geneous part (the so-called “basic solutions”) and then try to find a linear combi-
nation of them such that also the inhomogeneous part of the equation is fulfilled
(the “particular solution”). For 2nd-order inhomogeneous PDEs, the basic solutions
ui frequently are sines and cosines. The particular solution can thus efficiently be
found using the Fourier transform.

11.4 Solution by Fourier Transform

As already seen in the previous chapter, the Fourier transform is a powerful tool
to solve PDEs, both analytically and numerically. This is based on the fact that
in frequency space the order of all mathematical operations is reduced by one. We
have already used this technique when describing fast Poisson solvers on the mesh
in hybrid particle-mesh simulations in section 9.3 and to solve the wave equation
analytically in section 10.2. We will now formalize this technique and also give a list
of useful and frequently used compute rules for the Fourier transform. The general
solution strategy for both numerical and analytical solutions is to:

1. transform the PDE to frequency space,

2. solve the resulting ODE (if possible), and

3. transform the solution back to real space.

In order to compute the forward and backward Fourier transforms analytically, the
following compute rules might be useful (for an example of use see section 10.2).
Capital letters denote the Fourier transforms (i.e., spectra) of the corresponding

lower-case functions and F−→ denotes the Fourier transform. The variable x is the
real-space location and k the frequency in Fourier space. We then have:

f(a(x+ b))
F−→ 1

a
eikbF

(
k

a

)

eixbf(x)
F−→ F (k − b)

f(x) ∗ g(x) F−→ F (k)G(k)

∂f/∂x
F−→ (ik)F (k)

∫ x

−∞

f(x̃)dx̃
F−→ 1

ik
F (k)

1
F−→ δ(k)

af(x) + bg(x)
F−→ aF (k) + bG(k) ⇒ linearity of F−→

These compute rules can help determine the analytical Fourier transform (or its
inverse) of a PDE.

11.5 Solution by Separation of Variables

Another powerful technique to solve PDEs analytically is by separation of variables.
This, however, only works for homogeneous, linear PDEs (can also be used to find
the basic solutions when solving an inhomogeneous PDE) for which the variables
are multiplicatively separable. While the first prerequisite is easy to check, the
separability of variables is not always obvious and in practice we simply try and
see whether it works. A PDE in the two variables x and t is separable if (and only
if) its solution u(x, t) can be written as X(x)T (t). This can be used to analytically
solve the PDE as follows:

1. assume that the solution u is multiplicatively separable,

2. substitute the product form into the PDE,

3. (try to) separate the variables by algebraic manipulations,

4. solve the corresponding ODEs analytically and multiply their solutions.

Similar to the method of Fourier transforms, separation of variables also tries to
reduce the PDE to ODEs that can then perhaps be solved. While the method of
Fourier transforms works for both analytical and numerical solution, separation of
variables is a purely analytical technique.
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Example 11.5.1 (Diffusion equation in 1D). We illustrate the use of the method
of separation of variables to analytically solve the diffusion equation in 1D. The
governing equation is:

∂u

∂t
= D

∂2u

∂x2
.

We assume that the solution u(x, t) can be written as the product X(x)T (t) of two
unknown function X and T . Substituting this assumption into the PDE yields:

u(x, t) = X(x)T (t) ⇒ X(x)Ṫ (t) = DX ′′(x)T (t) ,

where the superset dot denotes the (full) dervative with respect to t and a prime a
full derivative with respect to x. Dividing the entire equation by X(x)T (t) separates
the variables as:

Ṫ

T
︸︷︷︸

only depends on t

= D
X ′′

X
︸ ︷︷ ︸

only depends on x

.

The only way the two sides can be equal for all x and t is for them to be constant,
thus:

1

D

Ṫ

T
=

X ′′

X
= −λ2 = constant .

The name of the constant (−λ2) is arbitrarily (but cleverly) chosen. Setting both
sides of the equation independently equal to −λ2, we find the two ODEs:

{

Ṫ = −λ2TD (1)
X ′′ + λ2X = 0 (2)

that are both linear, homogenous, and with constant coefficients. They can thus be
solved analytically and we obtain the solutions:

(1) ⇒ T (t) = Ae−λ2Dt

(2) ⇒ X(x) = B1 sin(λx) +B2 cos(λx) .

Multiplying the solutions for X(x) and T (t), we find the set of basic solutions for
the product u(x, t) = X(x)T (t) as:

u(x, t) = (C1 sin(λx) + C2 cos(λx)) e
−λ2Dt .

In order to determine the values of the two integration constants C1 and C2, we
would need to prescribe a boundary condition and an initial condition (the diffusion
equation is parabolic; see above!).

11.6 Solution by the Method of Characteristics
(Optional Material)

Even though hyperbolic PDEs can also be solved using Fourier transforms (see
chapter 10.2 for an example), there is a special technique particularly for hyperbolic
equations. This technique is called the method of characteristics. “Characteristics”
are curves in space-time that correspond to the trajectories that the particles follow
if their spatiotemporal dynamics is governed by the hyperbolic PDE in question.
For the wave equation, the characteristics are the rays (directions of propagation)
of the waves. Re-writing a hyperbolic PDE along its characteristics renders it solv-
able. Finding the symbolic expressions for the characteristics can be quite involved.
For PDEs of only two variables, however, a general recipe exists and the method of
characteristics always works. We first give this general recipe and then apply it to
the example of the 1D wave equation. The method consists of the following steps:

1. Write the hyperbolic PDE in the general form

a(x, y)
∂2u

∂x2
+ 2b(x, y)

∂2u

∂x∂y
+ c(x, y)

∂2u

∂y2
= e(x, y) .

2. Formulate the associated quadratic PDE:

a(x, y)

(
∂z

∂x

)2

+ 2b(x, y)
∂z

∂x

∂x

∂y
+ c(x, y)

(
∂z

∂y

)2

= 0 .

3. Determine λ and µ as the two solutions of the quadratic algebraic equation
ax2 + 2bx+ c = 0 and re-write the associated quadratic PDE as:

(
∂z

∂x
− λ(x, y)

∂z

∂y

)(
∂z

∂x
− µ(x, y)

∂z

∂y

)

= 0 .

4. Since the original PDE is hyperbolic, µ and λ are real and distinct. We thus
get two linear PDEs of first order:







∂z

∂x
− λ(x, y)

∂z

∂y
= 0

∂z

∂x
− µ(x, y)

∂z

∂y
= 0 .

5. Solve these first-order linear PDEs analytically. The two solutions v(x, y) = 6c
and w(x, y) = 6c are the characteristics of the original PDE.

6. Write the original PDE in the new coordinates along the characteristics, thus
apply the coordinate transform:

ξ = v(x, y)

η = w(x, y) ⇒ “canonic form”.

78



7. Solve the canonic form using the Riemann integration method.

8. Transform the solution back to original variables.

Example 11.6.1 (1D Wave equation). We perform the individual steps of the
above recipe for the 1D wave equation in order to determine its general analytic
solution.

1. The general form of the wave equation in 1D is:

∂2u

∂t2
− c2

∂2u

∂x2
= 0 .

This corresponds to the generic form above with constant coefficients a = 1,
b = 0, c = −c2, and variables x = t and y = x.

2. The associated quadratic PDE is:
(
∂z

∂t

)2

− c2
(
∂z

∂x

)2

= 0 .

3. The quadratic algebraic equation in this case is linear and reads x2 − c2 = 0.
The two solutions thus are: λ = −c, µ = c.

4. Using these solutions, we can re-write the associated quadratic PDE as:
(
∂z

∂t
+ c

∂z

∂x

)(
∂z

∂t
− c

∂z

∂x

)

= 0 .

5. The two linear first-order PDEs corresponding to the two factors in parenthe-
ses thus are: 





∂z

∂t
+ c

∂z

∂x
= 0

∂z

∂t
− c

∂z

∂x
= 0 .

6. Solving these two equations yields the characteristics

v(x, t) = x− ct = 6c
w(x, t) = x+ ct = 6c .

7. Transforming the original PDE into the new coordinates ξ = x − ct and
η = x+ ct (i.e., writing it along the characteristics), it becomes:

4c2ũξη = 0 .

8. Solving this canonical form using Riemann integration yields the solution

ũ(ξ, η) = f(ξ) + f(η) .

9. Transforming back to original variables by substituting the expressions for
the characteristics, we find the final general solution:

u(x, t) = f(x− ct) + f(x+ ct) .

This is the same solution that we have already found in section 10.2 using Fourier
transforms. In contrast to the Fourier solution, however, there is no spurious inte-
gral term (that is zero anyway). This is because the method of characteristics is
closer to physical reality (characteristics have the real-world meaning of trajecto-
ries). The integral term was, thus, an artifact of the use of Fourier transforms.
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Appendix A

Answers

Answer 1. For a spherical droplet, both curvature radii are identical, thus
R1 = R2 = R, and the pressure difference between the inside and the outside
of the droplet due to surface tension is ∆p = 2σ

R .

Answer 2. The maximum pressure difference is attained when the membrane is
maximally curved in both directions, i.e. R1 = R2 = 20nm = 2 · 10−8 m. With the
given value of σ, the pressure difference due to surface tension thus is 3 · 106 N/m2.
Since 1 Pascal is equal to 1 N/m2, this amounts to about 30 bar. Across a cell
membrane, we can thus sustain pressure differences of almost 30-fold atmospheric
pressure! This is needed in order for the cell to balance the immense osmotic pres-
sure from the large differences in salt concentration between the intra-cellular and
extra-cellular spaces. Only thanks to this huge surface tension cells do not burst
under the osmotic pressure.

Answer 3. Each term in the Navier-Stokes equation has dimensions M
L2T 2 . The

Navier-Stokes equation is thus dimensionally homogeneous and fulfills Theorem 1.

Answer 4. The model equations for the temporal dynamics of the ecosystem are:

dnA

dt
= βA(ǫnAnB)nA − δAnA

dnB

dt
= βBnB − δBnB − ǫnAnB ,

where nA is the number of animals of species A and nB the number of animals of
species B. The birth rate βA(·) is a function of the argument in parentheses in
order to model the effect of nutrition on proliferation. The corresponding causality
diagram is:

death

δB

+
deathbirth birth

eaten

δA βB

+ −−

ǫ

nA nB

Note that all inputs to the causality diagram need to be causally independent. βA

is thus not an input as it depends on ǫnAnB !

The above solution is not the only one possible. Other valid solutions would, for
example:

• formulate the equations in terms of population densities instead of absolute
numbers, or

• explicitly represent the multiplication nAnB as a node in the causality dia-
gram.
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