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1 INTRODUCTION

1 Introduction

In the last few decades, databases turned into powerful systems with a broad range
of functionality. While the race for new functionality and effective algorithms gains
momentum, the complexity of querying becomes an issue reducing their usability. This
issue has been extensively studied by Jagadish et al. [5], who defined four classes of
what users expect from databases: sophisticated querying, precise and complete ans-
wers, structured results, and creation and update of the databases. Any contradiction
of these expectations with the system behavior can frustrate users and distract them
from querying. One of the usability issues discussed by Jagadish et al. is the presence of
unexpected pains especially in terms of query results. If results differ from expectations,
users have to conduct try-and-error rewriting for failed queries to figure out what was
wrong. To support them in such situations, the database systems should be able to
provide explanations for unexpected results.

A group of database researchers came to the same conclusion in the Beckman re-
port [1]: “Explanation, provenance . . . crop up in all steps of the raw-data-to-knowledge
pipeline. They will be critical to making analytic tools easy to use. . . . We must build tools
and infrastructures that make the data consumption process easier, including the notions
of trust, provenance, and explanation . . . ”

The problem of unexpected results can arise in multiple scenarios involving data-
bases from the keyword search over relational data to online form-based querying of
web databases. In all cases, users can wonder why results differ from their expecta-
tions. Is the query wrong? Is some data in the database missing? Or is the answer
correct? To assist users in such situations, queried systems should be able to give ex-
planations about the reasons of unexpectedness and rewrite failed queries if necessary.
This functionality makes database systems more user-friendly and attractive especially
for inexperienced users.

In the related work, the problem of unexpected results is investigated in the form
of why-queries, which answer the question why retrieved result sets differ from user
expectations. Why-queries consider several types of unexpected results such as ab-
sence of expected answers [2], presence of unexpected results [14], empty [9], too
few [12], or too many answers [8]. Why-queries can be classified into content-based
and cardinality-based ones depending on the problems they solve. The first group
investigates missing expected and presenting unexpected results and is performed by
why-not and why-so queries. The second group inspects why the result size differs from
an expected cardinality and explores empty-answer, too-few- and too-many-answers
problems in the form of why-empty, why-so-few, and why-so-many queries.

Why-queries provide explanations for unexpected results and thus improve the usa-
bility of databases. However, most related work investigates this problem in RDBMS and
only limited attention is paid to other data models. For example, why-so queries are
investigated in the object-relational setup [15], why-not pattern matching is proposed
for multiple labeled graphs [4], why-empty queries can be defined for data in the RDF

format (Resource Description Framework) [11], and why-so-many queries consider
richly attributed graphs [10].

Referring to the usability study by Jagadish et al. [5], also new database types arise
including triple stores, NoSQL, etc. Graph databases implementing the property-graph
model belong to this novel development branch. They allow to store heterogeneous
information in the form of a directed multi-graph, where entities are represented by
vertices and edges describe relationships between them. Both edges and vertices can
be annotated with multiple diverse attribute values. These databases become powerful
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1.1 Contributions

tools allowing to keep information without defining a rigid schema and process com-
plex analytical queries based on graph algorithms. The property-graph data model is
implemented by modern graph databases such as NEO4J, SAP HANA, and ORACLE BIG

DATA SPATIAL AND GRAPH.
The usability issue described above becomes even more complicated in graph da-

tabases. On the one hand, there is no rigid schema, which would help to construct
queries. On the other hand, defining correct queries becomes even more complicated
for graph queries containing multiple query constraints. Therefore, the usability issue
requiring explanations as described by Jagadisch et al. [5] for query results is of high
priority for graph databases. Considering the lack of research for graph databases and
the complexity of graph queries, we focus on providing debugging support for graph
queries over property graphs in a form of why-queries in this thesis.

Depending on the type of a query answer, two groups of graph queries can be distin-
guished: queries that deliver data subgraphs and queries that provide simple answers
consisting of a Boolean value or a number. The first group comprising community-
detection algorithms, pattern matching, and traversal queries represents the most ge-
neral query types which can suffer from all kinds of unexpected results investigated
by why-queries. The second group including shortest-path and reachability queries
is typically affected by content-based problems. In this thesis, we focus on the first
group of queries and consider as an example pattern-matching queries that return data
subgraphs matching the query graph. These are high-constrained queries, where const-
raints are represented not only by predicates for attribute values but also by the query
topology. For such queries, diverse explanations can be generated to resolve the same
problem, where some of them can be irrelevant to a user and should be avoided. There-
fore, generation of explanations has to be able to consider user interest in specific query
constraints in order to deliver meaningful explanations. To summarize, in this thesis
we investigate how to generate explanations for no, too few, or too many answers
and support user-integration strategies in graph databases implementing the property-
graph model.

1.1 Contributions

In order to increase the usability of graph databases via result explanations, we propose
cardinality-based why-queries for pattern matching and do the following contributions
in this thesis:

1. Extensive study of state-of-the-art debugging approaches for why-queries.
We survey recent literature on methods for why-queries in different data models,
classify them based on the explanation types they provide, and extract typical
features for each specific why-query type. These aspects are used to compile a
list of requirements that have to be fulfilled by the debugging tool for pattern
matching queries over property graphs.

2. Comparison metrics for explanations. Each debugging method can provide
several explanations. To support a user with the most appropriate explanations,
we propose a comprehensive comparison on three levels: query, cardinality, and
result levels. On the query level, we use a syntactic distance which describes
how different two queries appear to a user. On the cardinality level, we analyze
how the result size differs from an expected cardinality. On the result level, the
content of results for compared explanations is tested against the result set of
the failed query. This comprehensive analysis allows to fairly judge the proposed
methods.
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2 WHY-QUERIES IN GRAPH DATABASES

3. Subgraph-based explanations. The first question that has to be answered dur-
ing debugging is why the query failed to deliver the expected results. Referring to
the related work on why-not queries [2], we propose to generate a query-based
explanation called a subgraph-based explanation by traversing a query graph and
detecting a failed query part. For this purpose, we develop two algorithms DIS-
COVERMCS and BOUNDEDMCS for why-empty queries and why-so-few and why-
so-many queries, respectively. To reduce the amount of large intermediate results
and to improve the performance of these algorithms, we provide several opti-
mization techniques, which choose a traversal path along the query and reduce
the number of traversals.

4. Modification-based explanations for why-empty queries. Most approaches
from the related work try to remove the burden of query rewriting from the users
and produce refined non-failed queries. Following the same motivation, we pro-
pose a coarse-grained solution for rewriting why-empty pattern-matching queries
considering modifications of topology and predicates to derive non-empty results.
This approach does not consider the cardinality threshold and therefore is more
appropriate for solving why-empty queries. For efficiency reasons, we further in-
vestigate caching of already processed queries and their re-use. We also describe
several techniques to calculate and estimate cardinalities for parts of the original
query.

5. Modification-based explanations for why-so-few and why-so-many queries.
While why-empty queries can be rewritten by discarding some query parts, why-
so-few and why-so-many queries require a fine-grained model for query mod-
ification, because any change should deliver specific cardinality improvement,
which depends on a given cardinality threshold. Considering this fact, we pro-
pose the TRAVERSESEARCHTREE method for modifying queries delivering unex-
pected cardinality and allow fine-grained modifications on the predicate level.
This method constructs a modification tree at runtime, optimizes it by rejecting
and re-arranging its branches, and guarantees the propagation of changes along
the query.

6. User-integration models. To generate user-relevant explanations, we discuss
how user interest in specific query parts can be incorporated in the generation
process. We propose two user-integration models, namely: one for subgraph-
based and one for modification-based explanations. The first model derives the
most-relevant traversal path, which is adapted online during processing. This ap-
proach can also be re-used in modification-based explanations for why-so-few and
why-so-many queries as a strategy for re-arranging modification-tree branches.
The second model constructs a user-preference model during rewriting of why-
empty queries and adapts the modification process accordingly.

In the following sections, we will describe these contributions in detail. In Section 2,
we introduce the property-graph model and general debugging features extracted from
the related work in order to enable why-queries in graph databases.

2 Why-Queries in Graph Databases

In this section, we introduce general debugging features extracted from the related
work in order to deliver why-queries in graph databases implementing the property-
graph model. As an underlying graph model, we use a property-graph model [13]
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2 WHY-QUERIES IN GRAPH DATABASES
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Figure 1: Holistic support of different cardinality-based problems

as one of the most general graph models, which is commonly used in modern graph
databases like NEO4J, SAP HANA, SPARKSEE, and ORACLE BIG DATA SPATIAL AND GRAPH.
A property graph is a general graph model representing data in a form of a directed
graph, where vertices are entities and edges are relationships between them. Multiple
edges can exist between the same vertices. Each vertex and edge can be annotated
with properties, which are represented by key-value pairs. On the one hand, it allows
storing and processing complex graph relationships with multiple diverse properties
without a rigid schema. On the other hand, it provides us with the opportunity to
conduct complex graph queries over data.

In this thesis, we investigate a pattern matching query that is a fundamental graph
query. It describes a pattern to be discovered in a large data graph and retrieves data
subgraphs matching to it. A pattern itself represents a property graph, where edges
and vertices are defined with predicates for their properties.

To implement cardinality-based why-queries in graph databases, the following de-
bugging features have to be investigated: holistic support of different cardinality-based
problems, comprehensive comparison of explanations, explanation of unexpected re-
sults, query reformulation, and non-intrusive user integration.

Holistic Support of Different Cardinality-Based Problems During the debugging
and query rewriting, the size of the result can oscillate around the cardinality thresh-
old as presented in Figure 1, where the original query delivers too many results. Its
first refinement Q1 delivers no result, second one Q2 retrieves too many, and the third
one Q3 results in too few answers. In this case, the system has to be able to auto-
matically adapt the direction of the search and to provide holistic support for different
cardinalities as illustrated in this figure such that finally Q4 delivers expected answers.
For dealing with too few or too many results, a cardinality threshold Cthr is required.
Based on the result size and a given cardinality threshold, a debugging tool should
automatically decide which query has to be executed: a why-empty, why-so-few, or
why-so-many query.

Explanation of Unexpected Results and Query Reformulation One of the core
functionalities extracted from the state-of-the-art systems represents discovering the
reasons of unexpectedness and query refinement. This feature is represented by two
kinds of explanations such as query-based and modification-based explanations. The
first one describes why the query fails to deliver expected results in terms of a query
part which violates a cardinality constraint. Referring to the fact that a query in a
graph database implementing the property-graph model represents a property graph
itself, a query-based explanation is a subgraph-based one that describes which part of
a query graph in terms of its topology is responsible for an unexpected result. The
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2 WHY-QUERIES IN GRAPH DATABASES

second type of explanations, modification-based explanations, delivers a refined query
that was modified in such that it delivers results closer to the cardinality threshold
compared with the result of the original query. By modifying a query, its predicates and
topology can be changed. This is the most important functional property, which the
debugging tool should provide.

Comprehensive Comparison of Explanations Deriving an explanation for a query
delivering unexpected results depends on how a query is traversed and modified. Mul-
tiple explanations can be generated for the same query. To choose the best explana-
tion, we propose a comparison strategy, which considers specifics of the property-graph
model and integrates two aspects including query topology and predicates. It compares
explanations according to three characteristics: the content and the size of the results
and the syntactic difference between explanations.

Syntactic Distance This metric shows how familiar an explanation appears to a user
in reference to an original query. In order to calculate it as a set distance, we represent
an explanation and original query as sets consisting of vertices and edges, which are
sets of predicates, types, directions, in- and out-edges. The set-based representation of
a graph query has the advantage of expressing the syntactic dissimilarity of two graph
queries by a set-based distance and using well-studied set-based measures from related
work. To syntactically compare two explanations, the set distance has to be calculated
between them from the set distances of their subsets, which are derived according to
the modified Hausdorff distance [3]. The proposed metric provides a fine-granular
comparison in contrast to the graph edit distance. This is the first metric to qualify
explanations. However, it does not describe how good explanations are in order to
deliver a required cardinality.

Cardinality Distance The second level of comparing two explanations is the sizes
of their results. Therefore, we calculate a cardinality distance that describes which
explanation is closer to the cardinality threshold. For too-many- and too-few-answers
problems, this investigation can be easily done by calculating the deviation of the result
size from the cardinality threshold. For the empty-answer problem, the cardinality
threshold is not given. The only known fact is that the result should include at least
some answers. Therefore, the queries with smaller results are preferred.

Result Distance The comparison of the result content shows how the results of the
compared explanation differ from the results of an original query, which can be derived
from their overlapping parts. This measure allows to compare how many new results
are introduced or how many answers are removed from the original result. It can be
defined only for problems, where an original query delivers at least some answers.

To calculate a distance between two result sets, we calculate distances between
each pair of data subgraphs as a graph edit distance including deletion, insertion, and
substitution of vertices and edges. After calculating the distance for each pair of result
graphs, a total distance between two result sets can be derived. We model this com-
parison as the maximum generalized assignment problem [7], where workers are the
result graphs of the first result set and tasks are the result graphs of the second result
set. Any worker can be assigned to any task, this assignment is characterized by its
cost, which is modeled as a distance between two result graphs. The assignment of all
workers to tasks aims at maximizing the profit and therefore at minimizing the costs
of assignments, which means that the workers have to be assigned in such a way that
overall assignment costs (total dissimilarity) are minimal. We assign result graphs by
the Hungarian-based algorithm [6].
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3 EXPLAINING UNEXPECTED RESULTS

Non-Intrusive User Integration One additional aspect, which has to be considered
during the development of a debugging tool, is user intention. Without its considera-
tion, a user can potentially receive a non-interesting explanation. Therefore, the de-
bugging tool should be able to integrate user interest into a debugging process, which
can be realized for example as importance of some query subgraphs. Considering a
graph query as a highly constrained problem, it is necessary to not overwhelm a user
with decisions on how to process a query. User interest in a particular query subgraph
has to be derived and configured based only on a feedback, showing how important,
(ir)relevant some aspects of a query are to the user.

In this section, we discussed the core functionality that has to be considered in order
to support cardinality-based why-queries in graph databases, namely holistic support
of different cardinality-based problems, explanation of unexpected results and query
reformulation, comprehensive comparison of explanations, and non-intrusive user in-
tegration. Before describing these features, we introduced the property-graph model
and supported graph-query types. We also discussed in detail one of these proper-
ties, comprehensive comparison of explanations, and proposed three similarity met-
rics, namely: a syntactic difference between an original query and an explanation, size
and content of result sets in reference to a cardinality threshold and a result set of
an original query. The evaluation revealed that the syntactic and result distances are
slightly correlated such that stronger differences in a query description lead to larger
result distances. Moreover, the result distance is influenced by the number of results of
the original query. By relaxing a query, the result information will be reduced, which
leads to higher result distances. By extending the query, the original information is
still presented in the result of the modified query, and therefore, the result distance is
small. These measures are used in this thesis for quantifying the quality of generated
explanations.

In the following sections, we will consider core debugging features: how to discover
the reasons of a query failure and how to rewrite a query in order to deliver better
results.

3 Explaining Unexpected Results

One of the important properties in the set of extracted features refers to the core debug-
ging functionality, explanation of unexpected results and query reformulation. In this
section, we start description of this property and reveal its first requirement, explana-
tion of unexpected result. By dealing with graph queries, the reason of unexpectedness
can be described in terms of a query subgraph, which is responsible for violation of a
cardinality constraint. Therefore, we call this type of explanations subgraph-based ex-
planations. For why-empty queries, a responsible subgraph is not represented in a data
graph. For why-so-few or why-so-many queries, this subgraph forces a result cardinality
to drop below or to exceed a cardinality threshold. To generate subgraph-based expla-
nations, we propose two algorithms, DISCOVERMCS and BOUNDEDMCS, and several
optimization techniques, which allow to improve the quality of explanations and per-
formance of their generation. We also consider a model for integrating user preferences
in generation of subgraph-based explanations, which allows to derive preference-aware
explanations.

To understand, which part of a query corresponding to a cardinality constraint,
can be found in a data graph and which part violates a cardinality constraint, the
maximum common connected subgraphs (MCSS) between data and query graphs must
be found and their differential graphs must be calculated. For too-many- and too-
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club club

nationalitynationality

(a) Original query

Gareth Bale

Wales

Real Madrid
club

nationality

(b) Discovered MCS

club

nationality

Real Madrid
!Wales
!Gareth Bale
!Real Madrid

Wales

(c) Differential graph

Figure 2: Original query delivering empty result and its subgraph-based explanation: which two vertices
are from same country and play in same club?

few-answers problems, a maximum common connected subgraph is represented by
a cardinality-bounded MCS describing such query subgraph, which does not violate a
cardinality constraint. Cardinality-bounded maximum common connected subgraphs
(BMCSS) show discovered partial results, before the resulting cardinality has exceeded
or dropped below the cardinality threshold.

The DISCOVERMCS Algorithm To discover the reason of the empty answer, it is nec-
essary to determine maximum existing and minimum failing query parts. The first part,
a maximum common subgraph, represents that part of the graph query, which exists in
the data graph. The second part, a minimum failing query, describes the missing query
part. To determine them, we propose DISCOVERMCS that conducts a depth-first search
along the query and considers only those data edges and vertices, which match the
query predicates. To ensure that the algorithm finds all MCSS, it can be launched from
all query vertices as multiple starting points and traverse all possible edge sequences.
The discovery process continues until all investigated data subgraphs are processed and
marked as complete. Afterwards, differential graphs can be calculated for them.

Example Assuming we search for two soccer players originating from the same
country and playing in the same club as illustrated in Figure 2a. A possible answer
to this why-empty query would consist of an MCS as shown in Figure 2b, and a dif-
ferential graph as depicted in Figure 2c, which is the missing part of the query with
constraints. The first part includes all discovered instances of edges and vertices like
Gareth Bale, Real Madrid, and Wales. The second part consists of instances of discov-
ered adjacent vertices Real Madrid and Wales, missing query vertices and edges (gray),
and constraints for vertices (gray).

To conclude, the DISCOVERMCS algorithm considers discovered data subgraphs in-
dividually and traverses them differently from each other. As a result, discovered data
subgraphs can vary in size and the algorithm outputs only the largest one. This pro-
perty does not allow to re-use this algorithm for why-so-few and why-so-many queries,
which have to consider the number of output data subgraphs, which have to be isomor-
phic to the same query subgraph. Therefore, in the following section we present the
BOUNDEDMCS algorithm, which overcomes these drawbacks and delivers BMCS with
respect to the given cardinality threshold.

The BOUNDEDMCS Algorithm To discover the reasons of too few or too many ans-
wers, it is necessary to determine maximum cardinality-compliant and minimum cardi-
nality-violating query parts. The first part, a maximum cardinality-compliant subgraph,
describes that query part called BMCS which delivers less or more data subgraphs in
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4 COARSE-GRAINED WHY-EMPTY QUERY MODIFICATION

reference to a cardinality threshold for the too-many- and too-few-answers problems.
The second part, a minimum cardinality-violating subgraph, represents that query part
which makes the number of data subgraphs violate the cardinality threshold.

Similar to DISCOVERMCS, the discovery process considers only those data vertices
and edges which match query predicates. To ensure that the algorithm finds BMCSS,
it is launched from all query vertices as multiple starting points. The core of the algo-
rithm extends each discovered data subgraph with a new edge. If the size of extended
set of discovered data subgraphs satisfies the cardinality constraint, then the edge is
accepted and the traversal process continues. Otherwise, the edge is rejected and the
last extension of data subgraphs is undone. After conducting the discovery process for
each start vertex, the largest BMCSS are stored and delivered to a user.

DISCOVERMCS and BOUNDEDMCS have similar properties and therefore the same
optimizations are applied for them such as online selection of a traversal path, con-
struction of a spanning tree, and search restart. The first optimization, online selection
of a traversal path, determines a next edge and vertex to process at runtime, which
allows to traverse the query graph only once and to prevent discovery of duplicated
MCSS (BMCSS). The evaluation results show the advantageous of using minimal-
cardinality strategy for choosing a traversal path, which delivers the best results among
all evaluated queries. To consider user intention in specific query elements, a heuristic
for integrating user interest is discussed which can be used as a strategy for selecting a
traversal path. The second optimization, construction of an all-covering spanning tree,
allows to discover larger MCSS (BMCSS) by considering a query graph as weakly-
connected. According to the experiments, it can improve the quality of detected MCSS

and deliver larger subgraphs. The third optimization, restarting the algorithms, fa-
cilitates the discovery of MCSS (BMCSS) if an investigated query is split in several
unconnected components during the search. The evaluation shows that restarting the
search can facilitate the discovery of larger MCSS if the query was split in several un-
connected components by the traversal strategy. It also can compensate the quality
reduction injected by a used traversal strategy.

Subgraph-explanations are query-based explanations, which focus on the topology
of the query and deliver MCSS. They can be used as an upper limit for rewriting an
originally failed query. Still, this explanation does not give any detail about query predi-
cates and defined types and therefore in the following more fine-granular explanations
will be presented, which generate rewritten queries by considering also changes for
types and predicates on query vertices and edges.

4 Coarse-Grained Why-Empty Query Modification

In the previous section, we proposed to explain reasons of a query failure in terms of its
subgraph, which violates a cardinality constraint. This solution is based on the query
topology, where the smallest element is represented by a vertex or an edge.

In this section, we go one step further and consider specifics of the property-graph
model, namely support of predicates for attribute value on edges and vertices. We pro-
pose a next debugging step: a rewriting method for why-empty queries that introduces
a new granularity level represented by predicates, types, and directions in addition to
vertices and edges. In general, this approach generates modification-based explana-
tions by removing some constraints of the failed query. Potentially, this method can
also be used for solving too-few- and too-many-answers problems. However, it does
not have a strong focus on the value of a cardinality threshold and therefore its use for
these problems is rather suboptimal.
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Figure 3: System architecture for why-empty query rewriting

If a query delivers no results, it is probably over-constrained with topological or at-
tribute predicates, whose removal can potentially change the query in such a way that
it delivers at least a few answers. This observation is taken in consideration by con-
structing the why-empty system illustrated in Figure 3 that is an extension of a graph
database with the why-empty engine, which is activated by the user if an empty result
set was delivered to his query. The relaxation process is managed by the query manager
that receives user queries and redirects them to a graph database. If no data subgraphs
match a request the relaxation process is triggered, which starts with initializing the
cardinality estimator that maintains, calculates, and estimates cardinalities for cardi-
nality queries. It considers cardinalities of vertices, edges, and paths up to size n. At
the initialization, the cardinality estimator collects some cardinalities from the graph
database and store them in the query-dependent statistics that is its core data structure
allowing efficient storage of cardinalities. It keeps query-specific information such as
the number of edges, vertices, predicates, which the original query has, and general
statistics about the data graph such as the number of edges, vertices, and the vertex-
edge mapping, i.e., source and target vertices of data edges, which are represented by
their data identifiers.

After the query-dependent statistics has been initialized, the query manager triggers
relaxation of a failed query, which is conducted by the query relaxer that generates mul-
tiple query candidates from it. This step is optimized with applying different relaxation
strategies reducing the size of candidate space by choosing the most promising vertex
and edge to be relaxed. Produced query candidates are transmitted to the candidate
selector that stores them in a priority queue and provides the most promising query
candidate to the query manager by request. The prioritization of query candidates is
a crucial point in the rewriting process and is based on two criteria. The first criterion
compares average path cardinalities of both queries and sorts them in a descending or-
der dependent on them. In case the average path cardinalities are equal the queries are
ordered according to the second criterion that considers the relative cardinality change
induced by applied relaxations and shows how strong the cardinality change is in ref-
erence to the original query. A higher induced cardinality change describes stronger
modifications, which may eliminate unique information from the query. Therefore, the
candidate with a lower induced cardinality change is placed ahead in the queue.
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5 FINE-GRAINED CARDINALITY-DRIVEN QUERY MODIFICATION

After a new query candidate has been placed in the priority queue, the best query
candidate is extracted from it and executed in the graph database. If this candidate
failed to deliver a non-empty result the query manager forwards it to the query relaxer
for its further relaxation. The process terminates if a query delivering a non-empty
answer is found.

The proposed modification process is based on an A*-search, where in each step a
set of query candidates is generated and stored in a priority queue of candidates. Those
query candidates are tested first on the delivery of non-empty results which appear to
be more promising to lead to a non-empty answer.

Without considering user interest during relaxation, we can miss more interesting
explanations for a user and deliver non-interesting relaxed queries. To prevent deletion
of sensitive information from the query, we incorporate user interest in specific query
elements in the relaxation process as follows. After a user received an empty-answer,
he triggers the why-empty engine to reformulate the original query. At each iteration,
the produced query candidates are stored in the priority queue. The best candidate
is extracted from the queue and tested on the delivery of any result. After a query
solution with a non-empty result set is found the user can accept or reject it. For each
rated solution, a user-preference model is calculated and incorporated in the overall
preference model, which is valid only for relaxation of a specific query. All model
changes are directly considered by the relaxation process. Any heuristic based only on
the cardinality tends to follow a few branches from the relaxation tree. Therefore, after
the calculating a user-preference model, we restart the process in order to induce the
search along non-used relaxation branches according to the user interest. The search
can be terminated if the desired query refinement is found, the number of iterations
exceeds a predefined threshold, or no better query proposal can be found.

In this section, we proposed the why-empty engine for rewriting queries delivering
empty results. The presented system conducts an A*-search, where new candidates are
generated from the failed query by removing vertices, edges, and their properties. The
refined queries are stored in a priority queue. The most promising query candidate
extracted from the queue is checked on the delivery of a non-empty answer. If the new
query failed it is relaxed and the process is repeated until a non-failed rewritten query
is discovered.

The why-empty engine can also be potentially used for answering why-so-few and
why-so-many queries by removing the most specific or general query parts, correspond-
ingly. However, it has been optimized for why-empty queries and does not have a
strong focus on a specific cardinality threshold. In addition, this system provides a
coarse-grained rewriting and does not consider specific predicate changes. Therefore,
in the following we go one step further and consider fine-grained changes in attribute
description of a failed query for why-so-few and why-so-many queries.

5 Fine-Grained Cardinality-Driven Query Modification

In this section, we go one step further and propose a method for generating topology-
and predicate-aware modification-based explanations, which considers the cardinality
threshold and supports fine-grained topological and predicate changes. It generates
explanations for both too-few- and too-many-answers problems. In addition to this
approach, we introduce two new concepts, which are extensively used by the proposed
method: an operational representation of a graph query and a modification tree for
storing executed changes.
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Figure 4: Modification process for why-so-few and why-so-many queries

.

The rewriting procedure is presented in Figure 4. It is maintained by the query ma-
nager, which receives an original query from a user and redirects it to a graph database
that executes it and returns matching data subgraphs together with the operational
graph of a query. An operational graph is a representation of a query graph that de-
scribes how a query has been processed and is annotated with corresponding cardinal-
ities. We use this model as a base for query modification in order to discover a query,
which delivers results of a better cardinality.

After a query has been executed and its operational graph has been returned, the
cardinality checker tests the size of a given result set and takes a decision, whether the
query has to be modified. In case the result corresponds to a cardinality threshold, data
subgraphs can be delivered to a user and the modification process terminates. Other-
wise, the modification tree is initialized that is a data structure for tracking applied
changes to a query. The root of this tree describes the initialization of the modification
process and therefore it keeps the operational graph of an original query. Each node
of the modification tree denotes a single iteration in the modification process and cor-
responds to a single change applied to a query of a parental node. Along each tree
branch, every operator of an operational graph appears only once. Nodes of a modi-
fication tree keep the following information: a modified operator from an operational
graph, a corresponding refined query with its operational tree. Traversing a modifica-
tion tree top-down, we can collect all modifications and track corresponding cardinality
changes applied to an original query in order to deliver a refined one at a destination
node of a modification tree.

At initialization, the modification tree is extended with a failed query and its opera-
tional graph, and a position of a query in the tree is returned to the cardinality checker,
which triggers the creation of a new query candidate. For this purpose, the query mod-
ifier extracts a query from a specified position of the modification tree and rewrites
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it by consulting a graph database and adapting the modification tree. The rewriting
process supports both topological and predicate changes. Structural modifications are
represented by removing vertices, edges, and subgraphs. Predicate changes include in-
crease and decrease of predicate intervals individually and simultaneously. The order
of changing query vertices and edges is determined online based on the problem which
has to be solved and already executed changes. A produced new query is redirected
to the query manager which repeats the process if necessary. The modification termi-
nates if a query, which delivers a required number of results is found or no new query
candidates can be produced.

To summarize, the modification process is implemented as an iterative procedure,
which intensively uses a modification tree and operational graphs. By using an opera-
tional graph and constructing a modification tree, the algorithm exhibits the following
properties: (1) Any change applied to the operational graph propagates to its output
node and all non-contributing modifications are prohibited in order to keep the syntac-
tic distance minimal. (2) The structure of the operational graph is considered in order
to take advantages of known dependencies. (3) The query modification process adapts
to prohibited changes and current output cardinality.

In contrast to subgraph-based explanations and modification-based explanations for
why-empty queries, we do not present a new model for generating user-aware answers.
We believe that the user-integration methods can be used, which were previously in-
troduced for other explanations. For example, the user-preference model for subgraph-
based explanations can be re-applied to modification-based explanations in order to
adapt the modification tree by re-arranging branches: Such neighboring operational
nodes have to be modified first, which are less relevant to a user.

In this section, we also compared our approach with three baselines according to
the number of improved queries, cardinality, result, and syntactic distances, and the
number of considered iterations. Our approach TRAVERSESEARCHTREE out-performs
all competitors in terms of the quality of generated explanations and the quantity of
modified queries. It also shows very similar performance to the A*-search. In order
to improve the performance of our approach, we consider how topological changes in-
fluence the performance of the generation process. We came to the conclusion, that
if a cardinality threshold differs from an original cardinality in several order of mag-
nitude the topological changes have to be considered. For small cardinality distances,
predicate changes are good enough to derive better explanations.

6 Conclusion

Graph databases implementing the property-graph model allow to store information of
different degree of structure and provide sophisticated queries for data analysis. They
keep heterogeneous information without a rigid schema as a property graph, where
entities are represented by vertices and edges describe relations between them. The
stored data graph can be easily modified by introducing new data or removing existing
data. Keeping the data in the form of a graph makes it also possible to conduct com-
plex graph algorithms over it and to combine standard queries with complex analytics.
The flexibility of the property-graph model and various query types come at additional
costs and complicate the query-answering process. Without deep data knowledge and
with little experience in constructing graph-aware queries, a user can create queries
that deliver no, too few, or too many results. He can get frustrated by receiving un-
expected results, because the reason of unexpectedness is difficult to understand and
resolve. Considering these facts, in this thesis we focus on the usability issues for graph
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databases implementing property graphs and study fundamental functionality for de-
bugging the graph queries delivering unexpected results. We investigate the cardinality
problems using pattern-matching queries as one of the commonly used graph-query
types. To summarize, this thesis describes debugging features for pattern-matching
queries delivering unexpected query results in the form of why-queries, which explain
query results and thus make graph databases more user-friendly.

We classify unexpected results according to the subject of unexpectedness such as
content or size of the received result. Content-based unexpectedness can mean pres-
ence of unexpected results or absence of expected results. Two kinds of why-queries
deal with these issues: why-so and why-not queries. If the size of the result set does not
satisfy user expectations because it has no, too few, or too many answers then we speak
about why-empty, why-so-few, and why-so-many queries. Considering the fact that car-
dinality issues like receiving no or too many results are very typical for graph queries
with multiple constraints, in this thesis we address them and provide cardinality-based
why-queries over property graphs. In general, this thesis has the following contribu-
tions:

Extraction of Common Features for Why-Queries First, in this thesis we reviewed
the existing state-of-the-art approaches for debugging unexpected results in order
to extract general features enabling basic debugging capabilities. The extracted
features include efficient generation of explanations, user integration, generation
of different kinds of explanations, discovery of the reason of unexpectedness, and
query refinement, which are further revised for graph databases.

Generation of Subgraph-Based Explanations One of the extracted features focuses
on the discovery of the reason of unexpectedness. In the state-of-the-art systems,
this aspect is represented by query-based explanations, which show the cause of
the unexpected results as a part of a query graph. Speaking in graph terms, a
query-based explanation for a pattern-matching query represents a query sub-
graph, which violates the cardinality constraint. We provided two methods for
generating such explanations: DISCOVERMCS and BOUNDEDMCS algorithms for
empty-answer and too-few- and too-many-answers problems, respectively. We
evaluated both approaches using two data sets and showed several optimizations
to improve their performance by preventing duplicate processing. We also in-
creased the quality of generated subgraph-based explanations with considering
weakly-connected and unconnected query subgraphs.

Generation of Modification-Based Explanations Instead of providing subgraph-ba-
sed explanations, the user can also be directly supplied with the rewritten query,
which corresponds to a given cardinality constraint. This answer is called a modi-
fication-based explanation and represents the second typical kind of explanations
produced by state-of-the-art why-queries. We investigated two methods for gen-
erating such explanations: one for why-empty and another one for why-so-few
and why-so-many queries. For the empty-answer problem, we proposed a query
rewriting approach that relaxes specific query constraints and processes rewrit-
ten queries based on how likely they can deliver some results. For why-so-few
and why-so-many queries we introduced the TRAVERSESEARCHTREE algorithm,
which supports fine-granular predicate and topological changes. This algorithm
adapts to the cardinality problem that has to be solved, guarantees propagation
of changes, and optimizes the search by rejecting non-contributing changes.
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Comprehensive Analysis of Why-Explanations In this thesis, we proposed methods
to explain unexpected results for pattern-matching queries over property graphs.
In order to judge the quality of generated explanations, we compared them on
three different levels: the syntactic, cardinality, and result distances. The syn-
tactic distance describes how different the explanation appears to the user. The
cardinality distance shows the difference between the user-defined cardinality
threshold and size of the result, provided by the explanation. The result distance
explains how many answers remain in the result set, after an explanation has
been generated. The three-level comparison considers all important aspects for
judging the quality of explanations.

Development of Models for User Integration To steer the generation of explanations
according to the user interest, we proposed two ways for considering user pref-
erences in specific query elements: The first approach, for generating subgraph-
based explanations, requires a user to mark relevant query elements. Then it cal-
culates the most relevant traversal path along the query, and traverses the query
along it. The user integration is easily done by choosing the most relevant vertices
and edges to process. The second approach for generating modification-based
explanations for why-empty queries constructs a user-preference model from al-
ready rated explanations. Based on this model, the rewriting system adapts the
modification process and discovers relevant explanations first. Both approaches
are general enough and can be re-used in generating modification-based expla-
nations for why-so-few and why-so-many queries.

With this thesis, we have taken the first step towards creating a debugging tool
for why-queries over property graphs and opened up new challenges to be solved in
order to make graph databases more usable by providing comprehensive explanation
functionality.
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