
Heterogeneity-Aware Placement
Strategies for Query Optimization

Kurzfassung der Dissertation

zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von
Dipl.-Inf. Tomas Karnagel

geboren am 30. August 1986 in Leipzig

Betreuender Hochschullehrer:
Prof. Dr.-Ing. Wolfgang Lehner

Dresden, März 2017



Heterogeneity-Aware Placement
Strategies for Query Optimization

(Extended Abstract)
Tomas Karnagel

Computing hardware is changing from homogeneous CPU systems to
heterogeneous systems combining multiple computing units like CPUs
and GPUs. This trend is caused by scaling problems of homogeneous
systems, where heat dissipation and energy consumption is limiting fur-
ther growths in compute-performance. For database systems, this trend
is a new opportunity to accelerate query processing, while it is also a
challenge as most database systems do not support heterogeneous com-
puting resources and it is not clear how to support these systems best.
In this thesis, we tackle this challenge in detail. As a starting point,

we propose three different approaches of heterogeneous execution and
evaluate them on isolated use-cases to assess their advantages and limi-
tations. The three approaches are: (1) multiple computing units working
on one operator in parallel, (2) statically placing operator execution on
one specific computing unit; and (3) dynamically placing operator exe-
cution on different computing units, depending on their runtime. The
third approach, dynamic placement, shows good performance, while be-
ing highly extensible to different computing units and different operator
implementations.
To automate this dynamic approach, we first propose general place-

ment optimization for query processing. This general approach includes
runtime estimation of operators on different computing units as well as
two optimization approaches for defining the actual operator placements
for whole database queries. The main limitation of these approaches is
the high dependency on cardinality estimation of intermediate results, as
cardinality errors propagate to operator runtime estimation and place-
ment optimization. Therefore, we propose adaptive placement optimiza-
tion, allowing the placement optimization to become fully independent of
cardinalities estimation. We implement our approach as a virtualization
layer between the database system and the heterogeneous hardware. Our
implementation approach bases on preexisting interfaces to the database
system and the hardware, allowing non-intrusive integration into exist-
ing database systems. We evaluate our techniques using two different
database systems and two different OLAP benchmarks, accelerating the
query processing through heterogeneous execution.

2



1 Introduction
Database management systems (DBMSs) are a core technology for the last half
century and a basic building block for many applications. They are not only used
for data storage and data querying but also for data analytics and data mining.
Therefore, improving DBMS performance means inherently improving application
performance, leading to a high demand of database performance tuning. In order
to improve performance, the database system architecture was shaped by hardware
changes in the last decades. Examples are moving (1) from sequential processing to
parallel multi-core execution, (2) from disk-centric systems to in-memory systems,
and (3) from row-based execution to column-based execution. Currently, hardware is
changing again from homogeneous CPU systems towards heterogeneous systems with
different computing units (CUs) like CPUs and GPUs, mainly to overcome physical
limits of homogeneous systems [1]. The computing resources in a heterogeneous
system usually have different architectures for different use-cases. Database systems
need to adapt to this hardware trend to efficiently utilize the given opportunities.
Therefore, the current question is:

How can database systems efficiently utilize heterogeneous
hardware environments to speed up query processing?

At the moment, multiple architectures are emerging to accelerate certain computa-
tions like GPUs for highly parallel SIMD processing; Many Integrated Cores (MIC)
for highly parallel processing of individual threads; field programmable gate ar-
rays (FPGA) for operators on reconfigurable logics; or different application-specific
integrated circuits (ASIC) to speed up custom-specific algorithms. The complete
systems themselves are becoming more and more heterogeneous, which was already
reported in 2011:

“Energy will be the key limiter of performance, forcing processor designs to use
large-scale parallelism with heterogeneous cores, ...” [1]

To support heterogeneous architectures within the database system, a redesign of
the database architecture and the database query optimization is needed. Multiple
choices for the computation significantly increase the complexity of the system and
it is yet unknown in which way hardware heterogeneity can be supported efficiently
in database systems. In the past, database operator implementations were ported
from pure CPU-based processing to an execution using other CUs, like GPUs [3]
or FPGAs [5], but also the Intel MIC [4] and the Cell Processor [2]. Based on the
assumption that operators have been ported to the different CUs in a heterogeneous
environment, the challenge is using them in the most beneficial way to accelerate
query processing.

For example, it would be possible to use a fork-join model and partition data in
a way that multiple CUs can partially execute an operator in parallel, theoretically
improving performance over a single-CU execution. However, it is unclear if possible
overheads of this approach can be compensated by the faster execution.

3



For single-CU execution, it would be possible to define a static operator-CU
combination that is always used in this fixed scenario, e.g., using a GPU only for
sorting. This allows a high level of performance tuning for this specific operator and
hardware. However, it is unclear if an operator should always be executed on the
same CU, given that data sizes and data properties can be different. Additionally,
this approach might not be extensible to multiple operators and different hardware
platforms.

A third approach would be dynamic execution, i.e., deciding the location (place-
ment) of an operator execution dynamically for each query and operator. There,
any CU can be used for any operator, allowing to change the placement if the exe-
cution is not beneficial for some data sizes or operator implementations. However,
the question is how to define this placement automatically, as decisions have to be
based on the given computing hardware and operator implementation, but also on
the query structure and data transfers within a query.

1.1 Summary of Contributions
We investigate the three mentioned approaches in isolated scenarios to evaluate their
potential for heterogeneity-aware database systems. Our key contributions for these
approaches are the following:

1. We evaluate intra-operator parallelism for two different operators and two
different heterogeneous computing environments. We propose a data parti-
tioning scheme and investigate performance effects of the execution in detail.
(Section 2.1)

2. We evaluate and fine-tune a group-by operator using the static offloading ap-
proach on a GPU. We find multiple performance effects and bottlenecks, which
we explain through in-depth hardware benchmarking. This includes a thor-
ough analysis of the GPU TLB architecture, identifying never-before-published
TLB properties. We propose multiple configurations combining different pa-
rameter and implementation adjustments to improve the performance. (Sec-
tion 2.2)

3. We propose dynamic placement decisions, where the operator actually switches
between different CUs to reduce CU-disadvantages by changing placement
decisions at the right point. We evaluate this approach manually by executing
a group-by operator on eight different CUs including different CPUs, GPUs,
and MIC. (Section 2.3)

The third approach is highly extensible for different hardware environments and op-
erator implementations, therefore, we choose this approach for further investigation.
Our key contributions for this heterogeneous placement decisions are the following:

1. We propose a novel way of runtime and transfer estimation, a basic technique
for placement optimization. We utilize a learning-based black-box approach
for operators and computing units, which allows high extensibility towards
unknown hardware environments and operator implementations. (Section 3.1)

4



2. Based on the runtime estimation, we propose two placement optimization ap-
proaches, local and global optimization, to define placement decisions for all
database operators within a query in order to reduce the overall query runtime.
(Section 3.2 and 3.3)

3. Placement optimization is highly dependent on the cardinality estimation of in-
termediate results, where small errors lead to inaccurate runtime estimations
and wrong placement decisions. Therefore, we propose adaptive placement
optimization, which allows the decisions to become completely independent
of intermediate cardinality estimations. This is achieved by partitioning the
query and allowing a combination of compile-time and run-time optimizations,
leading to higher precisions for runtime estimation and placement optimiza-
tion. (Section 4)

4. Finally, we propose a novel implementation approach as virtualization layer
based on OpenCL for the database system interface. This allows our approach
to be highly extensible for different heterogeneous environments, while also
being able to be integrated into multiple database systems without additional
effort. (Section 4.3)

In the following, we present these approaches in more detail.

2 Approaches to Utilize Heterogeneous Environments
We propose and evaluate three different approaches to utilize heterogeneous com-
puting environments for database query processing. The approaches are illustrated
in Figure 1. In the following, we present each approach separately.

2.1 Intra-Operator Parallelism
As a first approach, we investigate intra-operator-parallelism using a fork-join model
of dividing the input data, executing a database operator in parallel on multiple
computing units, and merging the results in the end. The approach is illustrated in
Figure 1a. We evaluated this approach with two operators, selection and sorting,
for two different heterogeneous CPU-GPU systems. As a result of our experiments,
we found multiple limitations:

1. General Effects: Resource contention on CPU cores and underutilization with
small data sizes introduce performance slowdowns that need to be compensated
by the actual benefits of parallel processing. If these slowdowns can not be
compensated, this approach can not be used beneficially.

2. Result Processing: After an operator’s execution, the result needs to be merged
in order to proceed with the remainder of the query. This overhead can vary
depending on the database operator, while possibly growing to the extent that
the whole execution is dominated by this merging overhead.

3. Heterogeneity of CUs: In heterogeneous environments it is likely that a partic-
ular CU is significantly faster for a specific operator than other CUs. Therefore,

5



(a)	Intra-Operator	Parallelism	

Input	1	

Input	2	

Execu9on	on	CU1	
Merge	

Execu9on	on	CU2	 Result	

(b)	Sta9c	Placement	

Normal	Execu9on	

Offloaded	execu9on	

CU1	

(c)	Dynamic	Placement	

CU1	

CU2	

CU3	 CU3	

CU1	

Figure 1: Three different approaches of query execution in heterogeneous environ-
ments.

the partitioning has to provide this CU with almost all input data. At some
point, it is impractical to partition and merge, if most data is computed on
one CU anyway. There, it is better to execute the operator atomically on a
single CU and avoid further overheads like merging or synchronization.

As a result, we come to the conclusion that there are not many cases, where the intra-
operator parallelism on heterogeneous CUs can be applied beneficially. Therefore,
we do not follow this approach and instead, we decided to execute each database
operator atomically on one CU. While the execution on the CU can be in parallel,
the parallelism does not go beyond one CU to avoid the mentioned overheads.

2.2 Static Placement
When executing an operator atomically, we can add a CU to the system and use it
for a specific database operator, basically making a static decision, which operator
is executed on which CU (Figure 1b). This can be beneficial because the static deci-
sion allows further hardware-specific code-optimizations. We evaluate this approach
with a group-by operator and an Nvidia GPU. As result, we found that the static
execution was not that simple. We have seen various unforeseen hardware and soft-
ware effects, including hash contention, atomic contention, data cache misses, and
TLB misses, making the execution inefficient for certain scenarios. To understand
the occurring effects, we profile the operator and the CU in great detail, includ-
ing the proposal of novel low-level benchmarks to assess the TLB-architecture of
GPUs, producing unconventional never-before-published TLB properties. To tackle
the various performance bottlenecks, we derive multiple configurations that are ad-
justed for different scenarios and bottlenecks, resulting in optimized execution and
high performance. However, these configurations are highly dependent on the CU’s
hardware architecture and the operator’s implementation, while for each additional
operator or hardware platform, the high effort of profiling and deriving multiple
configurations has to be repeated. As this is too time-consuming and not easily
extensible, we do not follow this approach further.

2.3 Dynamic Placement
As a third approach, we look at dynamic execution decisions (Figure 1c). There, we
assume to have a system with multiple CUs and a dynamic decision is made with

6



Proper&es	of	Heterogeneous	
Compu&ng	Units	

	
	

Op.	A	 Op.	B	

Op.	C	 Op.	D	

Op.	E	

The	most	efficient	QEP		
determined	by	the	query		
Op&mizer.	

Run&me	Es&ma&on	
+	

Transfer	Time	
Es&ma&on	

Op.	A	 Op.	B	

Op.	C	 Op.	D	

Op.	E	

Operator	Run&me	
Informa&on	

The	most	efficient	QEP	with	
placement	of	operators	to	
compu&ng	units.	

Placement	
Op&miza&on	

Query	Plan		
Structure	

CU	1	 CU	2	 CU	3	

Figure 2: Finding a good placement for the given query.

respect to the location of an operator’s execution (operator placement). We execute
operators atomically only on one CU and it is possible to optimize an operator’s
implementation further, as in the previous approach. The idea of this approach is
that an operator is only placed on a specific CU, if the execution on this CU is
beneficial for the query runtime. This decision depends on the CU, the operator
implementations, and possibly needed data transfers. The actual optimization can
work with black-box approaches for the hardware and the operator implementation,
allowing to support all hardware-operator combinations for which an implementation
exists. This makes this approach adaptive and highly extensible, ideal for wildly
heterogeneous environments.

3 General Placement Optimization
The goal of our investigations is now, to automate this highly extensible approach
of dynamic placement. Our general placement approach is illustrated in Figure 2.
We assume to get a logically and physically optimized query execution plan (QEP)
from the query optimizer, making the following steps independent of any logical or
physical query optimization. The goal is now to assign placement decisions to the
operators before their execution in order to increase the overall query runtime. A
two phase approach is used to make the placement decision: (1) run-time estimation,
including transfer time estimation, and (2) placement optimization.

3.1 Runtime Estimation
To make a decision before the actual execution, runtime estimation is needed for
each operator occurrence within a query. The runtime depends on the operator, the
chosen CU, and used data. To allow runtime estimation as a black-box approach,
we monitor the execution during query runtime, building a learning-based model for
each operator on each CU. In addition to operator runtime estimations, transfer cost
estimations from every CU to every other CU are provided through benchmarking
varying data sizes at ramp-up time. The transfer times are not dependent on the
database query, operator, or data distribution, therefore, we do not need to monitor
and learn the transfer times at run-time.

7



3.2 Local Placement Strategy
Having the runtime estimations for all query operators on all available CUs is only
the first step of optimization. As the next step, the local optimization approach
executes each operator on the CU, where it runs best. The decision is made at
run-time, while taking input data transfers into consideration. However, this can
introduce many harmful transfers, as further usage of the operator’s data is not
considered.

3.3 Global Placement Strategy
To improve local optimization, we propose global optimization at compile-time,
which considers all operators and their interactions within the query in order to
find the best trade-off between ideal execution and time-consuming transfers. One
challenges of this optimization is the large search space, when considering all possi-
ble placements. Therefore, instead of evaluating all placements, we propose a greedy
algorithm, which tries to improve the overall runtime with local changes for a given
starting placement. Since the outcome of this algorithm heavily depends on the
starting placement, we execute this algorithm multiple times with different starting
placements like single-CU placements, random placements, or the locally optimized
placement.

4 Adaptive Placement Optimization
For the general placement optimization, we found a strong connection between place-
ment quality and the quality of cardinality estimations (estimations of intermediate
result sizes). Cardinality information for intermediate results is needed to estimate
operator runtimes and transfer costs at compile-time. Any error in the cardinali-
ties propagates to the general placement optimization and influences the placement
decisions.

4.1 Adaptive Placement Strategy
To overcome the limitations of general placement optimization, we proposed adaptive
placement optimization. The adaptive optimization uses the execution patterns of
highly parallel operator execution to find groups of multiple operators (so called
execution islands), within which the cardinalities can be exactly calculated. We allow
placement optimization only on one execution island at a time, making sure that
we only work with precisely known cardinalities. In addition to execution islands,
we proposed to refine the optimization and placement granularity from operators
to sub-operators and to allow data copies to reside in multiple locations in order to
reduce unnecessary data transfers.

4.2 Adaptive Placement Sequence
We incorporated a combination of our general approach and the proposed adaptive
techniques in an adaptive placement sequence, which is illustrated in Figure 3. Our

8



Runtime Estimation
- On DB operators
- On vague cardinalities

Global Optimization
- With inaccurate estimations
- Limited by data transfers

Execution

at compile-time
at run-time

(a) General Approach

Drill-Down
Data Location Analysis

Island Creation
Runtime Estimation

- On sub-operators
- On precise cardinalities

Regional Optimization
- With accurate estimations
- With multiple copies

Execution

(b) Adaptive Approach

Figure 3: Adaptive optimization sequence: the pre-processing (yellow) extends and
improves the general steps (green).

novel sequence uses three pre-processing steps at compile-time to (1) refine the query
(Drill Down), to (2) apply an advanced dependency analysis, and to (3) define the
execution islands. In the remaining steps, we apply runtime estimation, regional
placement optimization (global optimization on an execution island), and the actual
execution according to the placements for one execution island at a time.

4.3 Implementation Approach
We implemented our approach as virtualization layer called HERO (HEterogeneous
Resource Optimizer), which is placed between the database system and the het-
erogeneous hardware. HERO is implemented as OpenCL Driver, building upon
the standardized OpenCL interface for the communication with both, the database
system and the heterogeneous hardware. With our optimization layer, the database
system only works with one virtual CU provided by HERO, while the layer itself pro-
vides automatic runtime and transfer estimation, adaptive placement optimization,
and heterogeneous execution. Therefore, this approach allows a clear separation of
concerns for the different query optimization steps, hiding the complexity of the
heterogeneous environment from the core database system. At the same time, this
decoupled approach allows any OpenCL-based database system to use HERO, while
supporting any OpenCL-based computing hardware.

4.4 Evaluation
For the evaluation, we use two different OpenCL-based database systems with two
different OLAP benchmarks. We show that HERO has no significant overhead and
that our heterogeneous execution can result in a speedup of up to 50x for our het-
erogeneous test environment with one CPU and three GPUs. Additionally, we show
the robustness of our adaptive approach concerning wrong cardinality estimations,
where naive local or global optimization fails to achieve good results.

9



5 Conclusion and Publications
In this thesis, we discussed the utilization of heterogeneous environments for
database query processing. We evaluated three different approaches, where we
considered different limitations and advantages. We determined that the dynamic
placement approach shows good performance, while being highly extensible
to different CUs and different operator implementations. To investigate this
approach further, we first proposed general placement optimization, including
runtime estimation, local optimization, and global optimization. To solve the
strong dependency on intermediate cardinality estimation, we proposed adaptive
placement. This adaptive approach includes the usage of estimation islands,
fine-grained optimization, and advanced data handling by utilizing data copies. We
incorporate this adaptive approach in an adaptive optimization sequence, which
itself is implemented in our OpenCL-based virtualization layer HERO.

This thesis is partially based on the following peer-reviewed publications:
• Heterogeneity-Aware Operator Placement in Column-Store DBMS;

Karnagel, Habich, Schlegel, Lehner; Datenbank-Spektrum Journal, Vol. 14 No. 3, 2014.
• Local vs. Global Optimization: Operator Placement Strategies in Heterogeneous Environ-

ments; Karnagel, Habich, Lehner; In Proceedings of the 1st International Workshop on Data
(Co-)Processing on Heterogeneous Hardware (DAPHNE’15), March, 2015, Belgium

• Optimizing GPU-accelerated Group-By and Aggregation;
Karnagel, Müller, Lohman; In Proceedings of 6th International Workshop on Accelerating
Data Management Systems Using Modern Processor and Storage Architectures (ADMS),
August, 2015, Hawai’i, USA

• Limitations of Intra-Operator Parallelism using Heterogeneous Computing Resources;
Karnagel, Habich, Lehner; In Proceedings of the 20th East European Conference on Advances
in Databases and Information Systems (ADBIS’16), August, 2016, Prague, Czech Republic

• Heterogeneous Placement Optimization for Database Query Processing;
Karnagel, Habich; it - Information Technology Journal, 2017

• Big Data causing Big (TLB) Problems: Taming Random Memory Accesses on the GPU;
Karnagel, Ben-Nun, Werner, Habich, Lehner; In Proceedings of the 13th International Work-
shop on Data Management on New Hardware (DaMoN’17), May 2017, Chicago, IL, USA

• Adaptive Work Placement for Query Processing on Heterogeneous Computing Resources;
Karnagel, Habich, Lehner; In Proceedings of the 43rd International Conference on Very Large
Data Bases (VLDB), Vol. 10 No. 7, August, 2017, Munich, Germany

References
[1] H. Esmaeilzadeh, E. R. Blem, R. S. Amant, K. Sankaralingam, and D. Burger. Dark silicon

and the end of multicore scaling. In 38th International Symposium on Computer Architecture
(ISCA 2011), San Jose, CA, USA, June 4-8, pages 365–376, 2011.

[2] B. Gedik, P. S. Yu, and R. Bordawekar. Executing stream joins on the cell processor. In Pro-
ceedings of the 33rd International Conference on Very Large Data Bases, University of Vienna,
Austria, September 23-27, 2007, pages 363–374, 2007.

[3] B. He, K. Yang, R. Fang, M. Lu, N. K. Govindaraju, Q. Luo, and P. V. Sander. Relational
joins on graphics processors. In Proceedings of the ACM SIGMOD, Vancouver, BC, Canada,
June 10-12, pages 511–524, 2008.

[4] S. Jha, B. He, M. Lu, X. Cheng, and H. P. Huynh. Improving main memory hash joins on intel
xeon phi processors: An experimental approach. PVLDB, 8(6):642–653, 2015.

[5] R. Müller, J. Teubner, and G. Alonso. Streams on wires - A query compiler for fpgas. PVLDB,
2(1):229–240, 2009.

10


