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Abstract—Increasing computational demand of simulations motivates the use of
High Performance Computing (HPC) systems. At the same time, the parallelism
of these systems poses challenges to application developers. The Message Pass-
ing Interface (MPI) is a de-facto standard for distributed memory programming in
HPC. At the same time, its use enables complex parallel programing errors such as
races, communication errors, and deadlocks. Automatic tools can assist application
developers in the detection and removal of such errors.

This thesis considers tools that detect such errors during an application run and
advances them towards a combination of both precise checks (neither false posi-
tives nor false negatives) and scalability. Novel hierarchical correctness analyses
and a distributed transition system concept for MPI enable this combination. At
the same time, this thesis investigates novel concepts to develop HPC tools and
proposes an abstraction for fine-grain tool development with reusable parts. This
approach incorporates common tasks such as instrumentation, scalability concepts,
and a high degree of flexibility that lets tool developers freely decide where parts
of the tool functionality execute. The use of the proposed tools infrastructure ab-
straction in wide ranges of parallel runtime tools could greatly increase component
reuse, as well as reduce development costs. An application study with up to 16,384
application processes demonstrates the applicability of both the proposed runtime
correctness concepts and of the proposed tools infrastructure.

1 Introduction

The development of massively parallel software is crucial to satisfy increasing computational demands
of modern simulations. At the same time, the High Performance Computing (HPC) systems that support
such parallelism follow hardware trends towards increasing compute core counts. The Message Passing
Interface (MPI) [11] is a de-facto standard for distributed memory programming [4] that allows program-
mers to utilize this parallelism. MPI enables the development of highly scalable applications, but offers
few extensions to enforce its correct use. The standard includes more than one hundred functions to
which specific rules and restrictions apply. Particularly, software faults that involve incorrect MPI usage
can manifest into failures that corrupt application results, as an application crash, or as a deadlock.

Tools play a critical role in aiding developers during the development of correct and efficient appli-
cations. Especially, they support application developers in the removal of MPI related software defects
with a variety of techniques [6]. Automated runtime correctness tools form one of these techniques and
detect usage errors of the MPI standard during an application run.

1.1 Runtime MPI Correctness Tools

Various tools to detect MPI usage errors at runtime exist, e.g., ISP [17], Marmot [7], Umpire [18], MPI-
Check [10], and TAC [13]. These tools differ in the set of defects that they can detect and in the tech-
niques that they apply to detect them. A study in the thesis that is associated with this document—this/the
thesis in the following—finds that existing tools: Avoid heuristics that can introduce false positives/neg-
atives, but have limited scalability due to the use of a centralized instance that runs a large portion of the
correctness analysis; Or that these tools apply heuristics in order to achieve a certain degree of scalability,
but can fail to detect some defects or provide spurious error reports.

Tools with limited scalability restrict their applicability in practice, since some failures may not occur
in smaller application runs, and need to be understood at a certain scale [3, 8, 16]. At the same time, tools
with heuristics that introduce opportunity for false positives or false negatives reduce the confidence that
application developers can have in them. Thus, the thesis addresses the question:

Can an MPI runtime correctness tool provide both a high degree of scalability with-
out the use of correctness analyses that can report false positives/negatives?
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1.2 Parallel Tools Infrastructures

The development of runtime correctness tools requires components for common tasks. This includes in-
strumentation that observes relevant application activities, communication to forward information within
the tool, and scalability services. Since the development of portable, efficient, and scalable tool com-
ponents is challenging [9, 15], reusable components preserve lessons learned and simplify tool devel-
opment. Parallel tool infrastructures or frameworks—tool infrastructures in the following—can both
directly provide tool components, e.g., an instrumentation service, and can provide abstractions that al-
low a reuse of tool functionality. Thus, tools that use the same tool infrastructure can share parts of their
implementations.

A current tool development trend is the use of infrastructures with Tree-Based Overlay Network
(TBON) capabilities [1, 3, 5, 12], since they provide a powerful approach for scalability. The TBON
concept uses a hierarchy of processing nodes—places in the following—that allows tools to condense
information as it progresses towards the root of the hierarchy. Aggregations and filters on all hierarchy
layers provide a step-by-step means to condense the information. TBON-based tools such as STAT [3]
and DDT [2] operate for applications that run on close to, or even more than, one million compute cores.
Of these two examples, STAT already uses the tools infrastructure MRNet [14] that provides TBON
services.

However, an evaluation of existing infrastructures in this thesis underlines that current TBON ap-
proaches use distinct interfaces for specific parts of the TBON network. These interfaces differentiate
between front-end code that executes on the root of the tree, back-end code that executes on the appli-
cation processes, and module code that executes on the intermediate levels of the hierarchy. Thus, as
an example, a piece of tool functionality that usually operates on the application processes cannot be
migrated to a higher hierarchy layer of the tree directly. This unnecessarily restricts component reuse.
Consequently, a key question that this thesis addresses is:

Can an infrastructure provide a single concept to put tool functionality flexibly onto
the application processes, the root of the TBON, or intermediate hierarchy layers?

In summary, this thesis follows two goals: First, it advances runtime correctness tools for MPI with
concepts and algorithms for scalable and precise checks. Second, it proposes a novel abstraction for a
parallel tools infrastructure that simplifies the development of such a correctness tool. The abstraction
and the assumptions for this infrastructure must apply to the correctness tool use case, but should be
general enough to apply to a wide range of runtime tools. Such capabilities should particularly include
an abstraction that enables reuse of parts of the tool implementation across different tools. Challenging
correctness analyses such as deadlock detection then provide a means to test both the scalability features
and the abstraction of the infrastructure that this thesis proposes. At the same time, these correctness
capabilities advance the scalability of previous precise approaches for runtime MPI correctness tools.

2 Tool Infrastructure Concept

The subsequent concept for novel tools infrastructures relies on a notion of events and analyses (some-
times also referred to as event-action [19]):

Event: Occurrence of information that the runtime tool must know about, and

Analysis: The processing that needs to take place upon perceiving an event.

2.1 Analyses

Events and analyses capture the activities of a wide range of existing HPC tools, such as:

• Tracing tools for performance analysis store information on a function invocation (event) into a
trace buffer, from where they are processed (analysis);
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Figure 1: Illustration of a tool layout and analyses for a profiling tool.

• A debugging tool retrieves a stack trace (analysis) due to a request from the graphical user interface
(event);

• A sampling-based performance analysis tool retrieves a stack trace (analysis) when a new sample
is triggered (event); or

• A runtime correctness tool for MPI analyzes whether send and receive datatypes match (analysis)
when a pair of send and receive operations is observed (events).

Consequently, the goal of the subsequent abstraction is that the overall functionality of a tool derives
from a set of events and analyses, as well as an association between the two. A tool developer then focus
on the fundamental questions required for their particular tool:

What are the activities (analyses) that the tool must implement and which events trigger them?

With this approach, a tool developer can implement the tool functionality as a set of analyses and describe
their relation to events of interest. Distributing analyses across a runtime tool to apply them to application
processes or further tool owned processing capabilities, triggering them when events occur, and handling
the instrumentation that observes relevant events can be left to an infrastructure then, rather than the tool
developer.

The following example illustrates this idea using a simplified profiling tool. A profiling tool creates
basic execution profiles and maps them to source code regions to aid in performance optimization. Such
a tool would observe when the application enters or leaves functions. Summarizing this information
for all functions of equal name, the tool provides basic profiles that identify the functions in which the
application spends most time. Figure 1 illustrates an instance of a profiling tool for four application pro-
cesses/threads depicted as nodes T0,0–T0,3. Instrumentation, i.e., observing function enters and leaves,
takes place directly on the application, along with adding up the time that each function consumes. The
box with instrumentation & measurement in the figure illustrates the association of this tool functional-
ity to the application processes. The tool in the figure employs a TBON layout for two purposes: First,
the root T2,0 of the TBON can create a summary report that could average the profiling data from all
processes. Second, the intermediate layer with T1,0 and T1,1 aids in averaging the profiling data, by ap-
plying a step-wise aggregation of the data. This event aggregation replaces multiple input events with a
single/few summarized events. As a result, tool nodes (places) on each hierarchy layer receive a constant
amount of events and higher layers do not become a scalability bottleneck.
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Figure 2: Illustration of the proposed mapping-based abstraction for the profiling tool example from
Figure 1.

2.2 Abstraction

The proposed parallel tools infrastructure abstraction employs the notion of events and analyses. Then,
it combines them with a notion for a tool layout and defines which events form the input of an analysis
on the layout. Following the profiling tool example with the high-level activities from Figure 1, Figure 2
illustrates the subsequent terms.

Analyses represent available actions for tools. A selection from these analyses then makes up the
overall functionality of a tool instance. A set of available analyses A represents them. For the profiling
tool, an analysis enter could observe when the application enters a function, an analysis leave could
then observe when the application leaves a function, an analysis finalize could trigger the creation and
forwarding of the profiling data before the application exits, and an analysis printProfile could write
the resulting profiling data into a file for user investigation. Figure 2 (middle) illustrates the analyses
A = {enter, leave, finalize, printProfile}. The thesis considers modules as an additional indirection
step to package multiple analyses that operate on the same data together. The following definitions are a
simplification from the thesis and omit the handling for modules.

Layers and Layer Connections Figure 1 illustrates a possible layout for the example tool. The
proposed abstraction defines such layouts with a set of layers L = {l0, l1, . . .} that uses l0 as the layer
that consists of the application processes or threads. A layer tree L = (L,EL ⊆ L × L) then connects
these layers to indicate which layers send information to which other layers. This forwarding represents
the towards-root direction for scalable tools that apply event aggregation, as in existing TBON tools.
The layer tree L must form a directed tree with root l0, i.e., the towards-root direction always originates
from the application layer, but multiple or partial hierarchies could still be used. The example uses
L = {l0, l1, l2} and EL = {(l0, l1), (l1, l2)}. The lower third of Figure 2 illustrates this layer tree.

Further, a function size : L → N \ {0} associates a place count with each layer (N being the set of
natural numbers). A place represents an application process/thread or a tool process/thread. Thus, T1,0,
T1,1, and T2,0 in Figure 1 could be additional processes, as well as additional threads on the application
processes T0,0–T0,3. In the example: size(l0) = 4, size(l1) = 2, and size(l2) = 1.

Connection rules then create a tool topology graph T = (P,ET ) from a layer tree, e.g., to create the
layout in Figure 1 from the layer tree in Figure 2 (bottom). The node set of this graph is the set of all
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places P = {Ti,j : li ∈ L and 0 ≤ j < size(li)}, i.e., for each layer li the rules create as many places Ti,j

as the size function indicates (0 ≤ j < size(li)). A connection rule then connects places of connected
layers to create the set of arcs ET ⊆ P × P .

Layer-Analysis-Mapping To associate tool functionality in the form of analyses with specific places,
a layer-analysis-mapping specifies the analyses that each layer executes. The function mL,A : L →
P(A) specifies this mapping. Figure 1 illustrates the association for the example tool, which could use
mL,A(l0) = {enter}, mL,A(l1) = ∅, and mL,A(l2) = {printProfile}. Figure 2 illustrates mL,A with
arrows between layers and analyses.

Hooks and Analysis-Hook-Mapping The proposed abstraction takes care of the instrumentation
of the application, i.e., of observing relevant (application) activities, in order to simplify tool develop-
ment. This requires that the infrastructure is aware of what can be instrumented, which is specified as a
set of hooks H . A hook h ∈ H is some activity that the infrastructure can instrument in order to observe
it. When during tool runtime, an instrumented hook h is triggered, the runtime of the infrastructure cre-
ates an event with information on the observation of hook h. Examples of hooks are function calls or
APIs such as the profiling interface of MPI.

The profiling tool example uses H = {userFunction, exit, provideProfile}. The userFunction hook
observes all function calls of the application and could rely on a compiler-based or source-to-source
instrumentation of the application. The exit hook observes when the application attempts to exit, e.g.,
with an atexit handler. When it is triggered, it must pass the profiling data to the printProfile analysis.
To do so:

A tool can use events to both observe application activities and to inject events that communicate
information within the tool.

The third hook uses this concept and implements part of the tool functionality, rather than to observe
application activities. With the provideProfile hook, the finalize analysis can inject an event that carries
this data. Any analysis that is interested in the data, e.g., printProfile, can then observe it. Figure 2 (top)
illustrates these hooks and highlights that the first two hooks serve for application activities, while the
third hook implements part of the tool functionality.

The above example already illustrates a notion of an analysis is interested in events of a hook. An
analysis-hook-mapping specifies this notion in the proposed abstraction. The function mA,H : A →
P(H) defines this mapping. The enter and leave analyses must observe the userFunction hook, i.e.,
mA,H(enter) = {userFunction} and mA,H(leave) = {userFunction}. Additionally, the finalize anal-
ysis observes the exit hook, while the printProfile analysis observes the provideProfile hook. Figure 2
illustrates these mappings with arrows between the analyses and hooks. The arrow with the dashed line
illustrates that the finalize analysis would provide the measured profiling data with the provideProfile
hook, i.e., that it will trigger it at runtime.

Event-Flow The previous specifications detail an abstract representation of a tool. An instantiation of
the proposed abstraction can use this information to map it to the system. While the previous definitions
conveyed a notion of their intention, no semantics specified which analyses should be triggered for which
events yet. So called event-flow definitions define the workflow within the tool:

• What events must the instrumentation system of the tool observe?

• Towards which other places must a place forward events?

• Which analysis must be triggered when the instrumentation system observes an event or if a place
receives an event from another place?
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Based on a mapping function execute : P → P(A) that associates a set of analyses with each place1,
the first definition of the event-flow specifies which analyses must be triggered when it observes or
receives an event for a hook:

Event-Flow 1 (Trigger) A place T ∈ P that observes or receives an event for a hook h must
trigger an analysis a ∈ execute(T ) exactly if h ∈ mA,H(a).

This definition follows the intuition that when a place receives or observes an event, it triggers any
analysis that is mapped to the hook that created the event.

The remaining event flow definitions depend on communication directions. For the towards-root di-
rection, events progress from application processes towards higher level hierarchy layers, e.g., towards
the root of a TBON. The tool topology graph T , e.g., the one in Figure 1, determines which events a
place can perceive. A place T can perceive events that are directly triggered on T and any event that a
predecessor in the graph can perceive. As an example, in the figure, T0,0 only perceives its own events,
whereas the root T2,0 can perceive events from all places. To minimize tool overhead, a place must only
perceive events for hooks to which some of its analyses are mapped, or which a descendant in the tool
topology graph must perceive. The relation requiresInformation ⊆ P ×H formally defines the hooks
whose events a place must observe as (T, h) ∈ requiresInformation exactly if ∃T � ∈ P and a ∈ A:

• T
� ∈ {T} ∪ successors(T, T ),

• a ∈ execute(T �), and

• h ∈ mA,H(a).

The relation includes pairs of a place and a hook if the place itself or a direct successor of the place
executes at least one analysis that is mapped to the respective hook

�
successors(T, T ) is the set of

successor places of T in the tool topology graph T
�
. This relation directly allows a definition of what

hooks a place must instrument, i.e., observe, and towards which places a place forwards events:

Event-Flow 2 (Observe) A place T ∈ P must observe (i.e., instrument) a hook h ∈ H exactly if
(T, h) ∈ requiresInformation.

Event-Flow 3 (Forward) A place T ∈ P must forward an event of hook h, which it observes or
receives from another place, to a direct successor T � ∈ P exactly if (T �

, h) ∈ requiresInformation
where (T, T �) ∈ ET .

For the example, these definitions require that places T0,0–T0,3 observe the hook provideProfile, even
though the analysis mappings do not assign them an analysis that is mapped to this hook. This is due to
the fact that place T2,0 executes the analysis printProfile that is mapped to provideProfile, while T2,0 is
a successor of T0,0–T0,3 in the tool topology graph.

These event-flow definitions formally define the workings of a tool that follows the proposed abstrac-
tion. This thesis incorporates event aggregation into these definitions and considers further communica-
tion directions in addition.

2.3 Prototype and Further Infrastructure Contributions

Based on the aforementioned concept, the thesis provides a prototype implementation called GTI. This
infrastructure includes the mapping-based abstraction as well as additional contributions to parallel tools
infrastructures:

• An integration of event aggregation into the concept,

• A concept for order preserving event aggregation,

• An intralayer communication direction to overcome shortcomings of tree layouts, and

• A crash handling concept to allow event processing to complete past an application crash.
1This mapping is defined by the layer-analysis mapping and the concept of event aggregations, which are not handled in this

document.
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Figure 3: An illustration of the association of modules—as sets of associated analyses—to impor-
tant layers of basic MUST instantiations. The figure groups modules into functionality
packages.

3 Distributed MPI Correctness Analysis

The prototype implementation GTI enables an implementation of a novel runtime correctness tool called
MUST. Its implementation only needs to provide the actual tool functionality as a set of GTI modules
and specifications. These specifications describe the MPI standard as a set of hooks, tool internal hooks
for MUST’s internal communication, and analysis-hook mappings. The goal of MUST is to combine
precise MPI correctness analysis with a high degree of scalability.

3.1 Architecture

Figure 3 summarizes the modules of MUST. Each of these modules (colored boxes with white labels)
include a set of associated analyses of the proposed abstraction. Additionally, modules are associated
with distinct functionality packages. The modules of the identifier package provide basic information on
MPI ranks and call locations, e.g., a call name or a call stack. Thus, most other modules require these
services to identify which MPI rank created an event. Modules of the check package create correctness
messages when they detect a failure. The logging package provides services to report these correctness
messages to the tool user. The resource package then provides information on handles that identify MPI
datatypes, communicators, groups, requests, and operations. The individual modules in this package
track all default instances of each of these resources and monitor resource creation, destruction, and
modification. Check modules use module them to retrieve detailed information about involved MPI
resources. The condition package provides modules that evaluate whether MPI operations satisfy a
specific condition. They serve to filter out unnecessary events and to preprocess events for tool internal
communication.

The modules of MUST operate on specific layers of a TBON hierarchy, Figure 3 highlights the de-
fault association for the individual functionality packages. Key correctness analysis in the thesis are the
P2PMatch module (“P2P” in Figure 3), which provides a distributed analysis of MPI point-to-point op-
erations; the CollectiveMatch module (“Coll” in Figure 3), which provides a distributed analysis of MPI
collective operations; the TransitionSystem module (“TS” in Figure 3), which implements a distributed
transition system for MPI deadlock detection; and the WfgManager module (“WFG” in Figure 3), which
provides a graph-based dependency analysis to create detailed deadlock reports. The thesis describes
these modules and their distributed analysis concepts in detail, while the following summarizes the Col-
lectiveMatch module and its analysis.
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Process 0 Process 1
MPI_Bcast(root:0) MPI_Bcast(root:1)

Figure 4: Even if processes execute collective operations of the same type, they can specify incom-
patible arguments as in this example. For MPI_Bcast the MPI standard requires all
participating processes to identify the same process with the root argument.

3.2 Distributed Analysis of Collectives

Collective communication operations of MPI provide data transfers and reduction operations between
groups of processes. MPI communicators specify these process groups. For a collective communication
to take place, all involved processes issue a collective operation of the same name with a communicator
argument that exactly includes the involved processes. The term collective refers to the overall commu-
nication between all members of a process group and the term collective operation refers to a single MPI
call invocation of a member of the group. MPI usage errors for collective operations involve deadlocks,
MPI datatype matching defects, and further kinds of inconsistent arguments. The CollectiveMatch mod-
ule of MUST employs a distributed detection scheme to implement correctness analyses for this purpose.
The module issues checks to detect inconsistent arguments and type matching defects.

3.2.1 Representative Operations

Figure 4 illustrates an example defect that involves inconsistent collective operation arguments. In the
example, processes 0 and 1 specify different values for the root argument. An implementation for a
correctness analysis to detect this failure must compare arguments of collective operations that belong to
the same collective. A comparison such as “Do all processes use the same root argument?” is transitive.
Thus, it is not necessary to compare all pairs of operations with each other. Rather, any comparison
scheme that compares pairs of operations, such that the transitive closure of these pairs includes all pairs
of distinct operations, suffices. As an example, the approach in Umpire uses one operation ox of each
collective as a representative and compares all other operations against ox.

To provide a scalable and distributed comparison scheme, this thesis proposes a step-wise hierarchical
comparison. It requires a layer l with exactly one place, where l and all its predecessor layers in the
layer tree execute a hierarchical comparison as follows: If a place on these layers can receive operations
o0, o1, . . . , on of a collective, it selects a representative ox (0 ≤ x ≤ n) and compares all remaining
operations that it receives to ox. The place then forwards an event for operation ox and removes the
events for the other operations from the primary communication direction. Further, the place stores in
the event for operation ox that this event is a representative for o0, o1, . . . , on. Places use this information
to determine when they perceived all operations for a collective. If a place detects an inconsistency during
a comparison, it reports it to the user.

The hierarchical comparison scheme satisfies the above condition that the transitive closure of all
compared operations includes all pairs of distinct operations (without proof). As opposed to a centralized
scheme on a single place, the hierarchical scheme provides an efficient distribution. For a k-ary TBON
layout, and collectives that involve all processes, each place receives information on k operations and
forwards information on one operation. Particularly, the workload on each place is independent of the
application scale if k remains constant when scale increases.

The following checks apply to collective communications:

Call: Consistent type of operation, e.g., all operations are a MPI_Bcast, within one collective;

Root: Same root for all operations of a collective that uses a root process;

Op: Compatible reduction operator (MPI_Op) for collectives that use such an operator; and

Types: Type matching for all data transfers of the collective.
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Figure 5: Illustration of the analyses of the CollectiveMatch module, which enables a distributed
comparison of MPI collective operations, along with their relevant hooks and mappings.

All of these checks are transitive with the exception of the type matching rules of the irregular collectives
MPI_Gatherv, MPI_Scatterv, MPI_Alltoallv, and MPI_Alltoallw. Collectives such as
MPI_Gather specify transitive type matching rules where the root of the collective and all other pro-
cesses must use an identical type signature. Type matching checks for such collectives can use a tran-
sitive scheme. The irregular version of this collective (MPI_Gatherv), however, can specify distinct
type signatures between the root process of the collective and each other participating process. Thus,
for irregular collectives, a transitive type matching scheme is inapplicable. The CollectiveMatch module
handles all transitive checks with the hierarchical scheme. For the collectives that use non-transitive type
matching rules, the thesis presents a scheme that exchanges type matching information within a single
hierarchy layer.

3.2.2 Mapping to Tools Infrastructure Abstraction

Figure 5 illustrates the design of the CollectiveMatch module, which implements the hierarchical analy-
sis of MPI collective operations. The module uses one analysis for each collective, e.g., barrier for
MPI_Barrier. Additionally, as to inject events for representative collective operations that represent
multiple operations, the design uses one tool internal hook (per type of collective) to inject these events,
e.g., mustBarrier. When the CollectiveMatch module determines that all operations of a collective
are consistent, it injects a new representative event with the hook. The hooks that the CollectiveMatch
module uses include an additional argument that represents information on how many collective opera-
tions each event represents. This information supports the CollectiveMatch module when it determines
whether all reachable operations of a collective arrived.

For the collectives with non-transitive type matching rules, such as MPI_Gatherv, the passType-
SigInfo hook supports type signature comparisons within a single hierarchy layer.

4 Summary

This document summarizes a novel approach to check the consistency of MPI collective operations,
while the associated thesis presents approaches for correctness analyses of MPI point-to-point operations
and a distributed deadlock detection scheme. Overall, the design and the prototype implementation
of MUST fill the gap of a precise tool that offers a high degree of scalability. The thesis introduces
time complexities for these correctness analyses that highlight that the proposed distributed analysis
schemes for point-to-point operations, collective operations, and for a transition system that supports
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MPI deadlock detection can analyze MPI operations with time costs that compare to their overheads
within an MPI implementation.

At the same time, the development of runtime tools for high performance computing systems is ex-
pensive and involves many common components and tasks. Recent developments in parallel tool in-
frastructures provide one approach to avoid reoccurring development costs for such tools. Moreover,
abstractions and patterns can guide tool developers towards scalable implementations. Several scalable
tools use tree-overlay abstractions, such as provided by the abstractions of MRNet. However, current
infrastructures fail to provide some requirements for runtime correctness tool such as MUST, including
a crash handling scheme to tolerate an application crash or a communication system that enables data
exchanges within a hierarchy layer of a TBON. Additionally, the abstractions of infrastructures such as
MRNet employ different interfaces on the application processes, the root of the TBON, or its intermedi-
ate layers. This layer-specific distinction unnecessarily reduces flexibility in tool component reuse. Thus,
this thesis contributes a concept for a novel tool infrastructure that employs a mapping-based abstraction.
Most importantly, this abstraction uses a single concept to apply tool analyses onto application processes,
the root of a hierarchy of tool places, or on an intermediate hierarchy level. This contribution overcomes
a shortcoming of existing infrastructures. Further contributions of the proposed tool infrastructure con-
cepts include event order preserving aggregations, a communication scheme that enables data exchanges
within a hierarchy layer, and a scheme for application crash handling.

The MUST prototype then serves as a challenging test case for the prototype infrastructure imple-
mentation GTI. GTI both supports all of MUST’s requirements and allows this tool to be specified as a
collection of modules—representing the tool analyses—and specifications that provide the analysis-event
mappings. In addition, MUST does not implement any of the usual tool components, e.g., instrumen-
tation, tool internal communication, or spawning extra tool processes/threads. Widespread use of an
abstraction such as in GTI would drastically simplify tool integrations and combinations.

Further, the thesis presents an empirical study with synthetic stress tests and two widely used HPC
benchmarks to evaluate the prototypes of GTI and MUST. The stress tests with up to 4,096 application
processes (8,191 total MPI processes) underline that the analyses in MUST and the overheads within
GTI can match the scalability that their theoretic time complexities suggest. The two benchmark suites
at 2,048 and 16,384 application processes respectively (2,731 and 27,307 total MPI processes) highlight
that the MUST analyses provide low overheads that should not limit the applicability of the approach.
No other runtime deadlock detection approach for MPI reports results at similar scale. A comparison
of the overheads of the distributed transition system to a state-of-the-art centralized runtime deadlock
detection approach highlights that the approach in this thesis provides two orders of magnitude lower
overheads at 512 processes already.
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