
Expressing Context-Free Tree Languages
by Regular Tree Grammars

Extended Abstract

Markus Teichmann

In machine translation, there is a classical tradeoff between the expressivity of a
grammar formalism and its computational complexity. The tree languages induced by
context-free tree grammars (CFTGs) subsume the formal languages of many important
grammar formalisms that are used in the area of machine translation. However, the
computational cost required to work with CFTGs is high and the formalism might be
unfeasible for certain applications. Hence, it is worthwhile to investigate the expressivity
of CFTGs and find ways to reduce the complexity.

In the thesis, three methods are explored to express context-free tree languages, i.e.,
languages that are induced by CFTGs, by regular tree grammars (RTGs). A RTG
is a CFTG with strong syntactic restrictions and thus, it can be efficiently used for
computations. Expressing context-free tree languages by RTGs unveils details about
the complexity of CFTGs and provides knowledge about the two fundamental grammar
formalisms.

The first method finds restrictions for CFTGs such that each CFTG which complies
with these restrictions can be characterized by a RTG. The restrictions are given in
form of syntactic and decidable properties. Furthermore, it is shown how to construct
a RTG which is equivalent to a given restricted CFTG. The properties are inspired by
non-self-embedding context-free grammars [3, 10]. The second method approximates
the tree language induced by an arbitrary CFTG. An approximation in this sense is a
RTG that induces a superset of the tree language generated by the CFTG. In this way,
non-regular dependencies within a tree are broken. This method uses an already known
result that shows how context-free tree languages can be characterized by RTG extended
by a pushdown storage [9, 6]. This characterization is turned into an approximation by
restricting the pushdown storage and only allow a finite amount of storage configurations.
To obtain the approximation, the finite information from the pushdown storage is
incorporated into the nonterminals of the RTG. Whenever information is lost by the
restriction of the pushdown, the missing data is guessed. Hence, a superset approximation
is obtained (cf. [1, 2, 15, 8, 10] for similar results for strings). The third method relates
weighted variants of CFTG and RTG. Weighted CFTG induce a weighted tree grammar,
i.e., each tree from the tree language induced by the grammar is associated with a weight
from the reals. The third method describes how the weights for a weighted RTG can be

1



approximated such that the induced weighted tree language is as close as possible to the
weighted tree language induced by a given weighted linear nondeleting CFTG.

In the following, each of the three methods will be explained in more detail.

1 Characterization by RTG

This part of the thesis is based on the publication [12]. The first method finds restrictions
such that each CFTG that fulfills the restrictions induces a regular tree language, i.e.,
there is a RTG that induces the same tree language. For this, phenomena are considered
that correspond to non-regular behavior. Since copying of argument values is a potential
source of non-regularity, the investigation is initially restricted to linear CFTGs (lCFTGs),
i.e., CFTGs that cannot copy values in argument positions. In derivations of a lCFTG,
there are two remaining phenomena that indicate possible non-regular behavior.

The first phenomenon can be seen by considering a nonterminal A with one argument
position. If, in a derivation starting from A(x1), the nonterminal A occurs again with
x1 in its argument position and symbols have been produced above and below the
repeated occurrence, then these symbols are regarded as synchronously generated. The
synchronous generation can be repeated an unbounded number of times. Each repetition
separates the symbols that were produced earlier. Hence, there are arbitrary many
synchronized and separated symbols. Such generation cannot be modeled by a RTG,
since a RTG cannot produce symbols below a nonterminal.

The second phenomenon can be illustrated by considering a nonterminal A with two
argument positions. If there is a derivation starting from A(x1, x2) such that (i) the
nonterminal A occurs again, (ii) x1 occurs in its first argument positions, (iii) x2 occurs
in its second argument position, and (iv) in both argument positions there are more
symbols than just the respective variable, then the symbols in the argument positions
are regarded as synchronously generated. Repeating this synchronous production leads
to an arbitrary amount of such synchronized symbols. Hence, since RTG cannot produce
symbols in the argument positions of nonterminals, this is an indicator for non-regular
behavior. If a lCFTG includes one of both phenomena, then it is called self-embedding
(cf. [3, 10] for a similar result for context-free grammars). Figure 1 illustrates both
phenomena in a general setting.

A(x1, . . . , xk) ⇒∗

F

A

. . .

H

xi

. . .

i-th successor

(1): F and H are non-trivial trees.

A(x1, . . . , xk) ⇒∗

F

A

. . .

H

xi

. . .

K

xj

. . .

i-th successor j-th successor

(2): H and K are non-trivial trees.

Figure 1: Properties for self-embedding (i, j ∈ {1, . . . , k}).

2



Both phenomena are defined on a semantic level, i.e., they require to prove the existence
of a certain derivation. However, it is also shown how to syntactically detect whether a
lCFTG is self-embedding by a graph analysis. The graph in question is build from the
rules of the lCFTG and represents which nonterminals synchronously generate symbols
in which of their argument positions. Thus, the position graph is an indicator for the
complexity of a lCFTG.

Since the second phenomenon has no equivalent in the string case [3, 10], novel
approaches are presented to show that each non-self-embedding lCFTG induces a regular
tree language. This seems intuitively clear, since non-regular behavior is forbidden.
However, the proof requires attention to detail. First, unbounded generation of symbols
that happens in two argument positions of the same nonterminal is separated into distinct
nonterminals. This is possible, because such generation must be independent. Afterwards,
unbounded generation below one nonterminal is transformed such that it happens above
a new nonterminal in reversed order. After these two steps, there is no more unbounded
generation below a nonterminal and thus, the finite information that can occur below
a nonterminal can be encoded into the nonterminals of a RTG. The constructed RTG
induces the same language as the original non-self-embedding lCFTG.

For the above considerations, copying of argument values is explicitly forbidden by
investigating lCFTGs. A second decidable property, called non-weakly-self-embedding, is
shown that applies to all CFTGs and guarantees that a non-weakly-self-embedding CFTG
induces a regular tree language. The property disallows unbounded generation below a
nonterminal, even if it only occurs in one argument position. Thus, a RTG that induces
the tree language of a non-weakly-self-embedding CFTG can be constructed, since in all
derivations only finitely many trees may occur below a nonterminal occurrence.

It is known that the yields of context-free tree languages correspond to the languages
induced by macro grammars (introduced by [7]). This constructive result (cf. [16, p. 113]
and [5, Thm. 7.17]) is used to transfer the properties of being non-self-embedding and
being non-weakly-self-embedding to the realm of macro grammars. It is shown that non-
self-embedding linear macro grammars and non-weakly-self-embedding macro grammars
induce context-free string grammars.

An overview of the results can be found in Figure 2 for different restrictions of CFTGs.
The CFTGs belonging to the hatched areas induce regular tree languages.

CFTG

linear CFTG

non-self-embedding CFTG

non-weakly-self-embedding CFTG

Figure 2: An overview of the characterization results.

3



2 Approximation

The second method to express a context-free tree language by a RTG approximates the
given tree language. For this, the already known characterization of a context-free tree
language in terms of a RTG with pushdown storage is used [9, 6]. The characterization
is realized by traversing the right-hand sides of the rules of a given CFTG. Whenever a
nonterminal A is processed, the traversal of the current rule is interrupted. The rule and
position within that rule is stored as a return address onto the pushdown and traversal
continues at the root of a rule for A. If a variable is processed, then the traversal continues
at the position determined by the most recently pushed return address. In this way,
using pushdown configurations of arbitrary size, each context-free tree language can be
characterized by a RTG with an associated pushdown.

Following analogous results for the string case [1, 2, 15, 8, 10], this approach can be
modified to obtain an approximation of context-free tree languages. In more detail, a
RTG that induces a superset of the tree language induced by an arbitrary CFTG can be
obtained as follows. The size of the pushdown is limited to a fixed height. Whenever a
return addressed is pushed such that the pushdown would exceed the allowed height, the
return address on the bottom of the pushdown is forgotten. The derivation of the RTG
continues as discussed above and the pushdown associated with the nonterminals remains
smaller than the limit. If the traversal requires a return address but the pushdown storage
is empty, then one return address is nondeterministically guessed from all possible return
addresses and the traversal continues. Since there are only finitely many return addresses
and the pushdown never exceeds a fixed height, only finite information can be represented
in the pushdown storage. This finite information can be encoded into the nonterminals
of a RTG. The RTG obtained in this way is called a pushdown approximation.

A derivation of an arbitrary CFTG can be modeled by a pushdown approximation if
at each nondeterministic choice, the correct return address is guessed. Hence, each tree
that can be derived by the CFTG can also be derived by the pushdown approximation.
However, since the pushdown is copied to all nonterminals in the right-hand-side of a rule
but each nonterminal guesses a return address independently when reading an empty
pushdown, the pushdown approximation may derive trees that do not belong to the
context-free tree language. Thus, a pushdown approximation is a superset approximation.

One factor of the complexity of a CFTG is the size of the pushdown that is required
to characterize it. If the limit of the pushdown approximation is never reached, then the
approximation becomes a characterization. However, it is shown that there are CFTGs
that require arbitrary large pushdown configurations. Furthermore, for such CFTGs, an
increased limit on the pushdown storage improves the approximation, i.e., some trees are
not generated that would have been produced using a lower limit. Formally, a hierarchy
of improving pushdown approximations is presented.

4



3 Training

This part of the thesis is based on the conference article [18]. The third method shows
how certain weighted context-free tree languages can be approximated by RTGs. For this,
weighted linear nondeleting CFTGs are considered which are explained in the following.
A linear nondeleting CFTG (lnCFTG) may neither delete nor copy argument values in a
derivation. A weighted CFTG is a CFTG together with an assignment from its rules to
the positive reals, called the weight of a rule. For each derivation of a weighted CFTG, a
weight is obtained as follows. At each derivation step, the weight of the applied rule is
multiplied with the value obtained from the remaining steps. The weight of a tree is then
defined by summing up the weights of all derivations that produce this tree. A weighted
RTG is defined analogously.

Given a weighted lnCFTG and a RTG, it is shown how weights for the rules of the
RTG can be obtained such that the induced weighted tree languages of both grammars
are as close as possible considering the Kullback-Leibler divergence. This divergence
is 0, if the induced weighted tree languages are equal and greater than 0 otherwise. The
Kullback-Leibler divergence is chosen, since it is broadly used in the existing literature
on this topic. The approach is based on a similar result for the training of a finite string
automaton [11] and for the training of a context-free string grammar [4].

In more detail, the approximation is calculated as follows. First, a given RTG H is
enriched with a trivial weight assignment 1 that assigns the weight 1 to each rule.
Then, the weighted intersection between the weighted RTG (H,1) and the given
weighted lnCFTG (G, pG) is constructed. This intersection is represented by a weighted
lnCFTG (K, pK) which, for each tree in the intersection of the tree languages of G and H,
assigns the product of the weights assigned by each weighted grammar (cf. [16, 17, 13,
14] for similar constructions).

Due to a special requirement upon H, it turns out that (K, pK) assigns to each tree that
is in the tree language of both G and H, the value that is assigned by G. Furthermore,
considering the weighs as probabilities, it is possible to approximate expected frequencies
for each rule in derivations of (K, pK).

The construction of K couples derivations from G and H. The coupling allows
transferring the expected frequencies from (K, pK) to the rules of H. Then, using
the obtained expected frequencies, weights for the rules of H can be calculated. It is
shown that the weights obtained in this way are optimal regarding the Kullback-Leibler
divergence to the weighted tree language induced by (G, pG).

In machine translation, this approximation of the optimal weights can be regarded
as training of a RTG where the given weighted lnCFTG is considered as a language
model. An advantage is that any RTG can be trained in this way as long as its tree
language intersected with the tree language induced by the lnCFTG is nonempty. Thus,
the method applies to characterizations and approximations. Thus, the result extends
the two previous methods to a weighted variant.

5



References

[1] T. P. Baker. Extending Lookahead for LR Parsers. Journal of Computer and
System Sciences 22.2 (1981), 243–259. issn: 0022-0000. doi: 10.1016/0022-

0000(81)90030-1.

[2] M. E. Bermudez and K. M. Schimpf. Practical Arbitrary Lookahead LR Parsing.
Journal of Computer and System Sciences 41.2 (1990), 230–250. doi: 10.1016/
0022-0000(90)90037-L.

[3] N. Chomsky. On Certain Formal Properties of Grammars. Information and Control
2.2 (1959), 137–167.

[4] A. Corazza and G. Satta. Probabilistic Context-Free Grammars Estimated from
Infinite Distributions. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 29.8 (2007), 1379–1393. doi: 10.1109/TPAMI.2007.1065.

[5] W. Damm. The IO- and OI-Hierarchies. Theoretical Computer Science 20.2 (1982),
95–207. doi: 10.1016/0304-3975(82)90009-3.

[6] J. Engelfriet. Context-Free Grammars with Storage. Tech. rep. 86-11. Republished
2014. University of Leiden, 1986. url: http://arxiv.org/abs/1408.0683.

[7] M. Fischer. Grammars with Macro-Like Productions. PhD thesis. Harvard Univer-
sity, Massachusetts, 1968.

[8] E. Grimley-Evans. Approximating Context-Free Grammars with a Finite-State
Calculus. In: Proceedings of the Eighth Conference on European Chapter of the As-
sociation for Computational Linguistics. Association for Computational Linguistics,
1997, 452–459. doi: 10.3115/979617.979675.

[9] I. Guessarian. Pushdown Tree Automata. Mathematical Systems Theory 16.1 (1983),
237–263. doi: 10.1007/BF01744582.

[10] M.-J. Nederhof. Regular Approximation of CFLs: A Grammatical View. In: Ad-
vances in Probabilistic and Other Parsing Technologies. Ed. by H. Bunt and A.
Nijholt. Vol. 16. Text, Speech and Language Technology. Springer, 2000, 221–241.
doi: 10.1007/978-94-015-9470-7_12.

[11] M.-J. Nederhof. A General Technique to Train Language Models on Lan-
guage Models. Computational Linguistics 31.2 (2005), 173–186. doi: 10.1162/
0891201054223986.

[12] M.-J. Nederhof, M. Teichmann, and H. Vogler. Non-Self-Embedding Linear Context-
Free Tree Grammars Generate Regular Tree Languages. Journal of Automata,
Languages and Combinatorics (2016). Acceppted for publication.

[13] M.-J. Nederhof and H. Vogler. Synchronous Context-Free Tree Grammars. In:
Proceedings of the 11th International Workshop on Tree Adjoining Grammars and
Related Formalisms. 2012, 55–63.

6

http://dx.doi.org/10.1016/0022-0000(81)90030-1
http://dx.doi.org/10.1016/0022-0000(81)90030-1
http://dx.doi.org/10.1016/0022-0000(90)90037-L
http://dx.doi.org/10.1016/0022-0000(90)90037-L
http://dx.doi.org/10.1109/TPAMI.2007.1065
http://dx.doi.org/10.1016/0304-3975(82)90009-3
http://arxiv.org/abs/1408.0683
http://dx.doi.org/10.3115/979617.979675
http://dx.doi.org/10.1007/BF01744582
http://dx.doi.org/10.1007/978-94-015-9470-7_12
http://dx.doi.org/10.1162/0891201054223986
http://dx.doi.org/10.1162/0891201054223986


[14] J. Osterholzer. Pushdown Machines for Weighted Context-Free Tree Translation. In:
Proceedings of 19th International Conference on Implementation and Application of
Automata. Ed. by M. Holzer and M. Kutrib. Vol. 8587. Lecture Notes in Computer
Science. 2014, 290–303.

[15] F. C. N. Pereira and R. N. Wright. Finite-state Approximation of Phrase Structure
Grammars. In: Proceedings of the 29th Annual Meeting on Association for Com-
putational Linguistics. Association for Computational Linguistics, 1991, 246–255.
doi: 10.3115/981344.981376.

[16] W. C. Rounds. Tree-Oriented Proofs of Some Theorems on Context-free and Indexed
Languages. In: Proceedings of the Second Annual ACM Symposium on Theory of
Computing. 1970, 109–116. doi: 10.1145/800161.805156.

[17] W. C. Rounds. Mappings and Grammars on Trees. Mathematical Systems Theory
4.3 (1970), 257–287. doi: 10.1007/BF01695769.

[18] M. Teichmann. Regular Approximation of Weighted Linear Nondeleting Context-
Free Tree Languages. In: Proceedings of the 21st International Conference on
Implementation and Application of Automata. Ed. by Y.-S. Han and K. Salomaa.
Vol. 9705. Lecture Notes in Computer Science. Springer, 2016, 273–284. doi:
10.1007/978-3-319-40946-7_23.

7

http://dx.doi.org/10.3115/981344.981376
http://dx.doi.org/10.1145/800161.805156
http://dx.doi.org/10.1007/BF01695769
http://dx.doi.org/10.1007/978-3-319-40946-7_23

	Characterization by RTG
	Approximation
	Training

