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Abstract Software Product Lines (SPLs) and Software
Ecosystems (SECOs) are approaches to capturing fami-
lies of closely related software systems in terms of com-
mon and variable functionality (variability in space).
SPLs and especially SECOs are subject to software evo-
lution to adapt to new or changed requirements resulting
in different versions of the software family and its vari-
able assets (variability in time). Both dimensions may
be interconnected (e.g., through version incompatibili-
ties) and, thus, have to be handled simultaneously as
not all customers upgrade their respective products im-
mediately or completely. However, there currently is
no integrated approach allowing variant derivation of
features in different version combinations. In this the-
sis, remedy is provided in the form of an integrated
approach making contributions in three areas: (1) As
variability model, Hyper-Feature Models (HFMs) and a
version-aware constraint language are introduced to con-
ceptually capture variability in time as features and fea-
ture versions. (2) As variability realization mechanism,
delta modeling is extended for variability in time, and
a language creation infrastructure is provided to devise
suitable delta languages. (3) For the variant derivation
procedure, an automatic version selection mechanism is
presented as well as a procedure to derive large parts of
the application order for delta modules from the struc-
ture of the HFM. The presented integrated approach
enables derivation of concrete software systems from
an SPL or a SECO where both features and feature
versions may be configured.

1 Introduction

Software Product Lines (SPLs) and Software Ecosys-
tems (SECOs) treat a set of closely related software
systems not as individuals but as software family. This
reduces development cost and maintenance effort while
still permitting tailored software systems for small
groups of users [22]. Examples of software families
are the Eclipse IDE', the Android mobile operating
system? and the Linux kernel?. Software families allow

Christoph Seidl
Technische Universitdt Dresden, Germany
E-mail: christoph.seidl@tu-dresden.de

! http://eclipse.org
2 http://android.com
3 https://kernel.org

creation of different products by enabling or disabling
configurable functionality (variability in space), which
yields wariants of the software family. Furthermore,
they are subjected to software evolution when adding
new functionality or fixing defects (variability in time),
which yields versions of assets of the software family
(e.g., source code, design models or documentation).

In some cases, these dimensions may be treated in
isolation to ease development, e.g., when configuration
knowledge is maintained by a single institution or when
solely ready-made products are shipped to customers.
However, for software families with multiple contribu-
tors and unsynchronized development cycles that allow
creation of products by end-users (such as Eclipse, An-
droid and the Linux Kernel), variability in space and
time cannot be handled in complete isolation: Changes
as part of software evolution may alter dependencies on
certain functionality, and enabling particular function-
ality may create dependencies on or incompatibilities
with certain version ranges of other functionality.
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Fig. 1 The Eclipse SECO is an example of a software fam-
ily subjected to variability in space and time where the two
dimensions are interconnected so that they need integrated
management.
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Fig. 1 illustrates the interdependence of variability
in space and time using the two SVN plug-ins Subclipse
and Subversive of the Eclipse SECO and related artifacts
with their dependencies on different functionality in
different versions. The handling of variants and versions
is relevant on both conceptual and realization level to
cope with configuration knowledge and derivation of
executable software systems, respectively.

To illustrate the problems and solutions of this the-
sis, a running example of suitable size is utilized: The
TurtleBot is a domestic service robot. The software tech-
nology group of TU Dresden has developed a driver
software for the robot to control its operation. Due
to individual robots’ different hardware configurations
and their limited resources (e.g., CPU or battery life),
the driver is maintained not as a monolithic software
system but, instead, as a family of configurable soft-
ware systems that allows derivation of custom-tailored
drivers. As the driver software permits definition of
configurations by end-users and is being developed by
multiple loosely connected parties, the dimensions of
variability in space and time are interconnected and
need integrated management.

The driver software consists of an Engine and a
controller for the Movement, which provide access to
locomotion functionality on a physical and logical level,
respectively. Movement may be controlled manually by
Keyboard and Gamepad or using Autonomous operation
of the robot. The prior requires a Webservice to be
selected for remote communication with the robot. The
latter needs a Detection mechanism for obstacles that
can be realized by a Bump sensor, which is triggered
on impact, as well as an Infrared or an Ultrasound
sensor, which are triggered over distance.

During the period of developing the driver software,
the TurtleBot’s possible hardware configurations were
altered as part of evolution, i.a., by providing the option
to equip the robot with a different type of engine. Fur-
thermore, development on the software components of
the driver yielded new versions that declared different
dependencies with regard to features and even feature
versions. These versions of configurable assets have to be
maintained as not all robots are updated simultaneously
or completely. However, current approaches of man-
aging software families cannot cope with the notion of
evolution so that these versions and their interdependen-
cies cannot be represented as part of the configuration
knowledge. Neither can they be used to create individ-
ual software systems with combinations of configurable
functionality in different versions (see Fig. 2).

To remedy these problems, this thesis devises an in-
tegrated approach for managing variability in space and
time within software families. It extends established ap-

proaches for handling variability in space to make them
suitable for coping with variability in time. It makes
contributions in three areas: a variability model, a vari-
ability realization mechanism and a variant derivation
procedure (see Fig. 3).
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Fig. 3 The thesis extends established technologies for coping
with variability in space to be applicable for variability in time
and makes contributions in three areas.

Sec. 2 provides information on the approaches for
handling variability in space. The following sections
explain the individual contributions: Sec. 3 introduces
Hyper-Feature Models (HFMs) and a version-aware con-
straint language as variability model. Sec. 4 extends
delta modeling by evolution delta modules and presents
a delta language creation infrastructure for the variabil-
ity realization mechanism. Sec. 5 elaborates on a variant
derivation procedure combining the devised variabil-
ity model and variability realization mechanism. Sec. 6
examines feasibility of the concepts in an evaluation
encompassing 3 case studies. Sec. 7 discusses related
work and Sec. 8 concludes by summarizing the work
of the thesis.

2 Foundations

When employing a structured reuse approach, a soft-
ware family encompasses configuration knowledge on a
conceptual level (problem space) and a realization level
(solution space). The prior is suitable for communica-
tion with non-technical stakeholders (e.g., managers or
customers), checks on consistency and validity as well as
analyses. The latter is required for a technical realization
as implementation of a software system.

On a conceptual level, a variability model represents
the configurable functionality of a software family along
with configuration rules governing valid combinations. A
configuration constitutes a valid selection of configurable
elements from the variability model.

On a realization level, a variability realization mecha-
nism manifests the changes associated with configurable
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Fig. 2 Evolution yields new versions of features with interdependencies and incompatibilities that can neither be represented in
feature models nor be used for variant derivation in existing approaches for software families.

functionality in realization artifacts such as source code
(e.g., by extending a class with new methods required
by the configured functionality).

A wariant derivation procedure is utilized to create a
concrete software system as variant or product of the
software family. As part of this procedure, a conceptual
configuration is provided to the variability realization
mechanism which builds the corresponding realization
assets with the selected functionality for the individual
software system.

These procedures focus on configuration to handle
variability in space but are not suitable for integrated
management of variability in time. Hence, the thesis
extends feature models as variability model and delta
modeling as variability realization mechanism to make
them suitable for coping with variability in time. Both
these approaches are explained in the following sections.

2.1 Feature Model

A feature model [15,6] specifies configuration knowledge
of a software family as a tree that decomposes function-
ality into individual features (see Fig. 2). A feature is “a
logical unit of behaviour specified by a set of functional
and non-functional requirements” [3] and represents the
atomic unit of a configuration. A feature’s variation type
may be either mandatory or optional, which requires the
feature to be selected or allows its deselection, respec-
tively. A feature’s variation type is only evaluated if its
parent feature is selected. The root feature is implicitly
perceived as being mandatory. Furthermore, features
may be contained in groups with variation types making
them alternative or or groups, which require selection
of exactly one or at least one of the contained features,
respectively.

In addition to the configuration rules imposed by the
structure of the feature model, additional cross-tree con-
straints may further restrain configuration options. One
possible representation is Boolean logic over features
(see Fig. 2) where references to features are evaluated

to true if and only if a feature is selected. A constraint
is satisfied if and only if it holds for a concrete selection
of features.

A configuration of a feature model is a subset of
all features that satisfies the configuration rules of the
feature model’s structure and its cross-tree constraints.
The semantics of a feature model are defined in terms
of all its valid configurations.

2.2 Delta Modeling

Delta modeling is an approach to manage variability
in software families based on transformations [27,5]. It
uses operations that add, remove or modify assets to
transform one product of a software family into another
product conforming to a certain valid configuration.
For these purposes, a source language (e.g., Java) is
augmented with a delta language (e.g., DeltaJava [27,
18]), which defines delta operations as dedicated domain-
specific modification operations for the source language.
A (configuration) delta module encapsulates calls to
these delta operations to perform changes on realization
assets that enable or disable configurable functional-
ity (see Lst. 1). Delta languages have explicitly limited
expressiveness to allow modifications related to con-
figuration, but to reduce the risk of unintentionally
harming system integrity. For example, identifiers of
source language artifacts are usually perceived as being
immutable [27] so that a delta language may not provide
delta operations to change them.

In order to derive variants with delta modeling, all
delta modules relevant for a configuration have to de-
termined and applied in a suitable order. For these
purposes, delta modeling may be coupled with a fea-
ture model where (logical expressions over) features are
mapped to sets of relevant delta modules. Furthermore,
delta modules may specify application order constraints
listing other delta modules that have to be applied as
predecessors, e.g., to avoid technical incompatibilities.
During variant derivation, these explicit constraints on



configuration delta "Gamepad._Java"
dialect <http://www.emftext.org/java>
requires <../src/eu/vicci/turtlebot/Movement.java>

1
2
3
4
5 Package p = <package::eu.vicci.turtlebot>;
6 createClass ("public class Gamepad {

7

8

Al ooo

" p)i
9
10 Class gamepad = <class::eu.vicci.turtlebot.Gamepad>;
11 Class movement = <class::eu.vicci.turtlebot.Movement>;
13 //Set Movement as super class of Gamepad
14 setSuperClassOfClass (movement, gamepad);
16 V2
17}

Lst. 1 Configuration delta modules enable or disable config-
urable functionality. The example enables the feature Gamepad
in Java source code.

the order of delta modules are evaluated by a topological
sorting algorithm to bring the relevant delta modules
into a suitable sequence. Finally, delta modules and
their calls to delta operations are applied sequentially
according to this order to transform a base variant of the
software family into the target variant that constitutes
the functionality of the selected configuration.

Delta modeling has been applied to a number of pro-
gramming and modeling languages including Java [27,
18], Class Diagrams [26], Matlab/Simulink [13] and Com-
ponent Fault Diagrams [28]. However, delta languages
have to be created for each source language, which may
be tedious and problematic if delta languages are in-
compatible due to different implementation technology.
A common language creation infrastructure could ease
the creation process and ensure technical compatibility
of delta languages.

As delta modeling is based on transformations, it
may handle foreseen changes in the course of configu-
ration [27,7] as well as, principally, unforeseen changes
as needed for evolution (see Sec. 4). However, no ap-
proach exists so far that integrates a dedicated notion
of configurable versions based on the variant derivation
capabilities of delta modeling.

3 Variability Model

Due to the effects of evolution, a feature may be present
in multiple versions. However, neither common feature
models [15] nor attributed feature models [6] may cap-
ture these feature versions and their relations due to
their restriction to variability in space. In order to rem-
edy these shortcomings with regard to representing vari-
ability in time, the thesis introduces Hyper-Feature Mod-
els (HFMs) and a version-aware constraint language.

3.1 Hyper-Feature Model

Hyper-Feature Models (HFMs) are introduced as an
extension to common feature models that defines a new
first class entity—a feature version. A feature version rep-
resents a snapshot of its containing feature’s realization
at a given point in time. It is perceived as incremental to
its predecessor versions. In consequence, versions are ar-
ranged along development lines that support branching.
By supporting features and feature versions, HFMs cap-
ture both variability in space and time on a conceptual
level in a unified notation. Fig. 4 depicts an example
HFM in a graphical notation that shows features and
feature versions for the driver software of the TurtleBot
robot platform. The full version of the thesis further
provides a rigid formal basis as well as a model-based
implementation of HFMs.

HFMs refine the atomic unit of configuration from a
feature in common feature models to a feature version.
Hence, configurations no longer consist solely of features
but rather contain features and feature versions. In
consequence, the conditions for a valid configuration of a
feature model are extended by the following three points:

1. For each selected version, the containing feature also
has to be part of the configuration.

2. For each selected feature, there has to be exactly
one version in the configuration.

3. All version-aware constraints have to be satisfied
(see Sec. 3.2).

These points extend the conditions imposed on a
configuration of a common feature model in order to
cope with variability in time when using HFMs and the
version-aware constraint language (see Sec. 3.2). The
semantics of an HFM are, again, defined in terms of the
configurations that can be derived from it. Fig. 4 demon-
strates a valid HFM configuration with the highlighted
features and feature versions.

3.2 Version-Aware Constraint Language

In addition to the configuration knowledge captured in
the HFM, cross-tree constraints may be specified. To
formulate these constraints also for aspects of variability
in time, a dedicated version-aware constraint language is
provided. It allows establishing constraints over versions
and version ranges, e.g., to express that specific versions
are incompatible with certain versions of another fea-
ture. The version-aware constraint language is based on
Boolean logic over features and supports constructs for
negation (—), conjunction (A), disjunction (V), implica-
tion (—) and equivalence (=). Furthermore, it defines
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Fig. 4 Hyper-Feature Models (HFMs) capture variability in time on a conceptual level as feature versions, which are arranged
along development lines. Version-aware constraints specify interdependencies and incompatibilities of versions and version ranges. A
configuration of an HFM obeys the configuration rules of the feature model, contains exactly one version per selected feature and

satisfies all version-aware constraints.

dedicated language constructs for version restrictions
of individual features:

A wversion range restriction specifies a range of possi-
ble versions that satisfy the restriction by providing
a lower and an upper version bound. This type of
restriction is useful if both the upper and lower ver-
sion bounds of the range are defined within the HFM.
It has the form “feature [lower — upper]”. For exam-
ple, “TurtleBot [1.0 — 1.1]” is a version range restric-
tion that is satisfied if a configuration contains the
feature TurtleBot and one of the versions from the set
{1.0 (TurtleBot), 1.1 (TurtleBot)}.

A relative version restriction defines a set of po-
tential versions by means of a restriction in relation
to one specific referenced version using an operator
op € {>,>,=,<,<} interpreted as “greater than” etc.
This type of restriction is useful if not necessarily all
bounds of a version range are known, e.g., when express-
ing that a version should be “newer than” an existing
version which should also include versions that are only
added in the future. It has the form “feature [op version]”.
For example, “TurtleBot [> 1.0]” is a relative version
restriction that is satisfied if a configuration contains
the feature TurtleBot and one of the versions from the
set {1.1 (TurtleBot), 2.0 (TurtleBot), 2.1 (TurtleBot)}.

Both version range restrictions and relative ver-
sion restrictions may be used in a conditional form
by prepending them with a question mark (?) as a con-
venience construct. In this case, the version restriction
is only evaluated if the restricted feature is part of the
configuration. This construct allows avoiding uninten-
tionally making a feature mandatory through specifying
a version restriction. For example, to not (unintention-
ally) make the feature Webservice mandatory for all
configurations containing feature TurtleBot in at least

version 2.0, a version restriction may be specified as con-
ditional by “TurtleBot [> 2.0] —?Webservice [> 1.1]”
to only be evaluated if Webservice is selected.

With the version-aware constraint language, it is
possible to formulate interdependencies and incompati-
bilities of different ranges of versions in order to cope
with variability in time. Fig. 4 demonstrates the use
of version-aware constraints for the TurtleBot driver
software. The full version of the thesis further provides
a rigid formal basis as well as a model-based implemen-
tation of the version-aware constraint language.

4 Variability Realization Mechanism

To manifest the changes associated with features and
feature versions in realization assets (e.g., source code),
the variability realization mechanism delta modeling [27]
is employed. However, for the approach to be applicable,
it has to be extended to cope with variability in time, and
suitable delta languages have to be created for all source
languages used in the realization assets (e.g., DeltaJava
for Java). The following sections present solutions to
both these challenges.

4.1 Evolution Delta Modules

Changes associated with variability in space and time
may both be realized through transformation. Hence,
delta modeling can, principally, represent these changes
within delta modules [27,7,19]. However, despite the
similarity of the changes to be performed, a distinction
into configuration delta modules and evolution delta
modules is required due to discriminating differences
inherent to variability in space and time [20,29,23]:



1. Intent: A configuration delta module is employed
to enable/disable functionality associated with (part
of) a particular configuration whereas an evolution
delta module is used to realize changes to meet new
or altered requirements on the software system.

2. Predictability: A configuration delta module per-
forms changes that yield an a priori known variant
of the system whereas an evolution delta module
performs changes that yield an a priori unknown
version of the system.

3. Expressiveness: The expressiveness of a configu-
ration delta language is intentionally limited to the
purposes of configuration whereas that of an evolu-
tion delta module needs to be expressive enough to
alter all parts of a system affected by evolution.

Analogously to the distinction of delta modules, delta
operations are also distinguished into configuration delta
operations and evolution delta operations. Configuration
delta operations are intentionally limited in their ex-
pressiveness to not harm system integrity. In contrast,
evolution delta operations may provide more powerful
operations. Evolution delta operations may exclusively
be used within evolution delta modules to update con-
figurable functionality (see Lst. 2)

1 evolution delta "Engine._Create 1.2_Java"

2 dialect <http://www.emftext.org/java>

3 requires <../src/eu/vicci/turtlebot/Engine. java>

4 {

5 Class engine = <class::eu.vicci.turtlebot.Engine>;
6 Method driveMethod =

7 <method::eu.vicci.turtlebot.Engine#drive ()>;

8

9 //Rename Engine to CreateEngine

10 renameNamedElement ("CreateEngine", engine);

11

12 //Extract super class Engine from CreateEngine

13 extractSuperClass ("Engine", engine, [driveMethod]);
14

15 //Make new Engine abstract

16 Class newEngine = <class::eu.vicci.turtlebot.Engine>;
17 setAbstractModifier (true, newEngine);

18 A ooo

19 }

Lst. 2 Evolution delta modules perform updates of configurable
functionality. The example updates the Java source code of
feature Engine to version Create 1.2.

4.2 Delta Language Creation

In order to manifest changes in realization assets using
delta modeling, suitable delta languages for all source
languages whose artifacts are affected by variability
need to be supplied (e.g., DeltaJava for Java). For this
purpose, the thesis presents a delta language creation

infrastructure that allows devising delta languages for
arbitrary source languages if they provide a metamodel
based on EMF Ecore. This is feasible for arbitrary tex-
tual and graphical languages. Fig. 5 illustrates the gen-
eral architecture of the delta language creation infras-
tructure.
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Fig. 5 The delta language creation infrastructure uses a
language-agnostic common base delta language, which is ex-
tended by a language-specific delta dialect to retrieve a custom
delta language for a source language given as metamodel.

A common base delta language encompasses all con-
structs of a delta language that can be specified without
knowledge of the concrete source language, e.g., depen-
dencies on other delta modules, variable declarations or
use of identifiers. A delta dialect defines configuration
and evolution delta operations for one specific source
language presented as metamodel, e.g., to add and re-
move certain elements. When a delta module modifies
an artifact of a specific source language, the respective
delta dialect may be combined dynamically with the
common base delta language to form a custom delta
language suitable for the source language.

As certain delta operations are common to most
existing delta languages [27,18,26,13,28], the thesis de-
fines signatures and semantics of seven types of standard
delta operations to set and unset single values; add, in-
sert and remove elements in (possibly ordered) sets of
values; modify attribute values and detach elements from
their container. To use these operations within a delta
dialect, they have to be instantiated for the elements
of a particular source language, e.g., to add a method
to a class in Java. As the metamodel of the source
language contains the general structure of the source
language, the thesis defines a procedure to instantiate a
large number of these operations fully automatically for
a specific source language. Furthermore, custom delta
operations permit arbitrary signatures and semantics
so that specific operations may be realized, e.g., by uti-
lizing domain knowledge to maintain well-formedness
of a realization artifact.
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Fig. 6 The Hyper-Feature Model (HFM) and version-aware constraints constitute the variability model on conceptual level. The
creation and application of delta languages form the variability realization mechanism on realization level. The variant derivation
procedure uses the delta module mapping to translate a conceptual configuration to a set of relevant delta modules. The delta
modules are applied in a suitable sequence to transform the base variant of the software family to the intended target variant,
which encompasses aspects of variability in space and time according to the selected features and feature versions.

5 Variant Derivation Procedure

Configuration knowledge regarding variability in space
and in time is captured conceptually in HFMs and man-
ifested in configuration and evolution delta modules,
which transform realization artifacts. A variant of the
software family is a software system that encompasses
the functionality specified by the selected features at
the revisions specified by the selected versions. Fig. 6
illustrates the interconnection of the different artifacts
defined in the thesis and the following sections describe
the process of deriving a variant with variability in
space and time.

5.1 Automatic Version Selection

The first step of variant derivation is the selection of a
configuration. This can be performed using the graphical
representation of HFMs by manually selecting features
and suitable versions. However, the manual selection of
versions may be tedious. To remedy this problem, the
thesis defines a procedure to automatically select a set of
suitable versions for a valid preselection of features. For
this purpose, the HFM, the version-aware constraints
and the preselection of features are translated into a
Constraint Satisfaction Problem (CSP). A CSP solver

determines suitable version constellations as possible
solutions. The procedure is guided by an objective func-
tion, which rates intermediate solutions to only maintain
an optimal solution. The thesis defines three criteria that
may be combined to form a suitable objective function:

1. Novelty: More recent versions towards the end of a
branch are assumed to be preferable over less recent
ones as they are more current.

2. Importance: Features closer to the root of the tree
spanned by the HFM are assumed to represent more
coarse-grain functionality and, thus, to have a larger
effect on the overall system than features further
down in the tree.

3. Inverse Importance: Features further away from
the root of the tree spanned by the HFM are as-
sumed to represent the actual implementation of
functionality and, thus, to have a larger effect on
the overall system than features further up in the
tree that may just serve the purpose of conceptual
containers.

Each of these criteria is scored with a value between
0 (bad) and 1 (good) by analyzing the structure of the
HFM. Obviously, these factors may be contradictory in
the sense that improving the value for one automatically
leads to deterioration of the other (e.g., with Importance
and Inverse Importance). However, each of these values



may be valid in its own right depending on the nature
of the concrete software family. Furthermore, additional
criteria may be defined that can be used as part of the
objective function for automatic version selection.

5.2 Delta Module Mapping

To derive a variant for a conceptual configuration, the
configuration needs to be resolved to the set of relevant
delta modules. For this purpose, an explicit mapping
from (combinations of) features and feature versions of
the HFM to (sets of) configuration and evolution delta
modules is defined as visualized in Fig. 7.
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Fig. 7 Features are mapped to configuration delta modules
and versions are mapped to evolution delta modules but more
complex mappings are possible.

In the general case, each feature is mapped to a
configuration delta module and each feature version is
mapped to an evolution delta module. However, more
complex mappings may be specified if more sophisti-
cated logical expressions are required as condition or
multiple delta modules are used as target. The language
to specify conditions of mappings uses the same con-
structs as the version-aware constraint language. The
delta modules of a mapping are relevant for variant
derivation if the respective condition is satisfied by the
conceptual configuration.

5.3 Application Order and Variant Derivation

Using the mapping model, it is possible to resolve a
conceptual configuration to a set of required delta mod-
ules. As feature versions of HFMs are incremental, the
predecessors of explicitly selected versions are implicitly
included when evaluating conditions of the mapping. To
determine all relevant versions for a particular config-
uration, the HFM is pruned of all irrelevant versions
using two automated steps:

1. Prune all branches of the development line that do
not contain the selected version.
2. Prune all versions superseding the selected version.

This procedure is illustrated in Fig. 8 where the
irrelevant versions of feature TurtleBot are pruned for
a selection of version 2.0. The remaining versions are
used as basis for evaluating the conditions of the delta

module mapping.
<)
TurtleBot
A
1.0

Fig. 8 Irrelevant versions are pruned from the HFM as prepa-
ration for determining an application sequence: a) initial version
constellation, b) pruned irrelevant branches, c¢) pruned super-
seding versions.
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It is further necessary to establish an application
sequence of the relevant delta modules to ensure deter-
ministic variant derivation. With HFMs, a large part of
the application order constraints is implicitly imposed
by the structure of the HFM:

1. Delta modules of an initial version require the delta
modules of their defining feature.

2. Delta modules of a version require the delta modules
of their predecessor version.

These two rules are employed to introduce implicit
application order constraints upon the delta modules as-
sociated with individual features and versions as demon-
strated on the HFM in Fig. 9.

TurtleBot

step Implicit/Explicit
Application
Order Constraint

1 ! Legend 1
A< A ! !

1 name
LOR2/0 | - Feature :
> > Detection : :
A< A A A< A A ! A Versi 1
1.0 1.1 Kobuki1.0 1.0 1)1 1.0 I number Version I
1 1
1 1
1 1
1 1

- 1

Fig. 9 In addition to explicit application order constraints,
implicit application order constraints are established to represent
1) the versions’ dependence on the defining feature and 2) the
incremental nature of versions.

Additionally, explicitly specified application order
constraints are collected. Using these order constraints,
a topological sorting is performed to determine a partial
order that respects the interdependencies of all relevant
delta modules. From this partial order one concrete se-
quence is chosen. The relevant delta modules and their



delta operations are applied to a copy of the realization
artifacts of the software family’s base variant. The target
variant resulting from this procedure contains function-
ality of the selected features at the revisions specified
by the selected feature versions and, thus, encompasses
aspects of both variability in space and time.

6 Evaluation

To examine the suitability of the concepts presented in
the thesis, an evaluation was performed. For this pur-
pose, all concepts of the thesis were realized using model-
based development to create the tool suite DeltaEcore?.
Within the evaluation, three case studies were inspected:

1. Configurable TurtleBot driver: The TurtleBot
is a small domestic service robot. This case study
presents the robot’s driver software, which can be
custom tailored to different configurations of the
robot to account for limited resources, such as CPU.

2. Metamodel Family for Role Modeling: Role-
based modeling captures both context-dependent
and collaborative behavior of objects within vari-
ous notations. This case study presents a family of
metamodels that can be utilized to derive different
concrete notations as defined in the literature.

3. Family of Feature Modeling Notations: Many
different, yet similar, feature modeling notations
with accompanying constraint languages exist. This
case study presents a software family consisting of
metamodels and a syntax for textual languages to
derive a multitude of feature modeling notations and
constraint languages of different expressive power.

Case Study 1 Case Study 2 Case Study 3

Monitored Period 1.5 years 1.5 months 1.0 months
Features 11 48 57
Versions 29 106 64
Constraints 6 5 10
Delta Languages 7 1 2
Delta Modules 46 52 65

Table 1 The inspected case studies utilize various combinations
of nine different languages, devise delta dialects for them and
specify HFMs with features and feature versions as well as
configuration and evolution delta modules to manage variability
in space and time.

The software systems of the case studies utilize dif-
ferent combinations of a total of nine individual source

4 http://deltaecore.org

languages (see Table 1). For each of the source lan-
guages, a delta dialect was devised using the provided
language creation infrastructure. Changes associated
with variability in space and time could be captured as
features and feature versions in HFMs. Utilizing the cre-
ated delta languages, configuration and evolution delta
modules were devised to manifest the changes associated
with features and feature versions in realization artifacts.
In order to derive variants, configurations were created
manually and semi-automatically using the automatic
version selection procedure. The resulting variants were
inspected for validity through manual inspection as well
as automated tests.

On a conceptual level, it was possible to specify
all changes as features and feature versions along with
version-aware constraints. On a realization level, changes
associated with variability in space and time could be
manifested within configuration and evolution delta
modules. Created variants contained the changes ac-
cording to the selected features and feature versions
and exposed no defects. Emerging problems in the pro-
cess could be circumvented using the means provided
by DeltaEcore. Hence, apart from minor caveats, the
results of the evaluation support the claim that the
concepts of the thesis constitute a suitable solution for
an integrated management of variability in space and
time in software families.

7 Related Work

Work related to the thesis addresses subsets of variability
in space and time on the conceptual or realization level.
However, no integrated approach is presented. Fig. 10
illustrates the addressed areas of related work and the
following sections briefly discuss each approach.

Feature models [15,6] may not be used as adequate
substitute for HFMs when representing variability in
time as their workaround solutions to representing fea-
ture versions do not capture the intent of variability
in time and development lines of versions cannot be
represented.

Mitschke and Eichberg [21] introduce a version-
ing scheme for feature models of SPLs they call feature-
driven versioning but their approach allows only one
version per feature at a time and, thus, does not sup-
port configuration of versions.

Ducasse et al. [8] model software evolution by treat-
ing history as first class entity. Their model is used
primarily for analyses determining certain evolution
patterns but cannot be employed for creating actual
variants of a software family.

Zschaler et al. [31,25] introduce VML* as a family
of variability modeling languages created by bootstrap-
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Fig. 10 Related work only addresses subsets of variability in
space and time on the conceptual or realization level where the
thesis presents an integrated approach.

ping SPL techniques. These languages handle variability
in space but not variability in time.

Haugen et al. [14] introduce the Common Vari-
ability Language (CVL) with the intent of adding stan-
dardized variability in space to arbitrary base models.
However, at its current level of development, CVL does
not aim at being applicable for variability in time.

Apel et al. [2] define FeatureHouse to create lan-
guages for capturing changes related to variability. How-
ever, they cannot model arbitrary evolutionary changes
due to the compositional nature of the operations.

Schaefer et al. [27] introduce delta modeling to
apply changes associated with variability in space in
realization assets through transformation. Its concepts
are used as basis for the work of the thesis.

Ebraert et al. [10,9] define Change-Oriented Pro-
gramming (ChOP), which uses change objects to rep-
resent evolutionary modifications on realization assets
in order to capture variability in time. Even though
attempts exist for extracting information regarding vari-
ability in space [9], the created feature models do not
represent the intentions of configurable features.

Keunecke et al. [16] define feature packs to handle
variability of SECOs as components accompanied by
variability information. Even though this approach may,
in part, be used to address concerns of variability in
time, it imposes a component-based architecture on the
solution space and is, thus, not applicable in general.

Brummermann et al. [4] introduce a strictly for-
mal definition of distributed variability evolution in
SECOs making the variability model itself subject to
variability. However, the concrete handling of variant
derivation is outside the scope of their approach.

Rumpe and Weiseméller [24] introduce domain-
specific model transformation using custom model-
modification operations for individual source languages
provided as metamodel. While these operations are gen-
eral enough to perform all modifications on realization
artifacts, there is no distinction between the intentions
of configuration and evolution, which bears the risk of
unintentionally damaging a variant.

Van Gurp and Prehofer [30] augment artifacts
under version control with properties representing in-
formation from the variability model, which reduces
conceptual information to the realization level. Hence,
versions for features are not explicit on a conceptual level
and logical constraints on versions cannot be specified.

On a technical level, source code management
tools such as CVS®, SVN or Git” may address handling
of versions. However, these tools do not offer information
on a conceptual level.

General purpose model transformation lan-
guages, such as ATL® or ETL?, may be used to
manifest changes for both variability in space and
time within realization assets. However, the lack of a
distinction of both types of changes and their intentions
leads to a risk of accidentally harming consistency of
an SPL or a SECO as part of modeling variability in
space due to too potent modification operations.

Aspect-Oriented Programming (AOP) [17]
can be employed to handle configuration and evo-
lution of software families [1,12,11]. However, the
compositional nature of the approach makes removal
of realization assets complicated so that arbitrary
evolutionary changes cannot be performed.

8 Conclusion

This thesis presented an integrated approach for manag-
ing variability in space and time in software families. It
introduced Hyper-Feature Models (HFMs) with explicit
elements for feature versions and defined a version-aware
constraint language to formulate cross-tree constraints
on versions and version ranges. Furthermore, it distin-
guished configuration and evolution delta modules due
to their different characteristics and introduced a lan-
guage creation infrastructure to devise suitable delta
languages for arbitrary source languages. A mapping
from (logical expressions over) features and feature ver-
sions of HFMs to sets of delta modules allows resolution
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of conceptual configurations to delta modules, which are
relevant for creating the associated variant. For these
delta modules, a suitable application order is determined
by respecting the explicitly specified order constraints
as well as those implicitly imposed by the structure of
the HFM. Applying delta modules in the determined
sequence transforms a base variant into a target variant
for the selected configuration that contains aspects of
variability in space and time.
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