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A first study in 2008 revealed that energy consumption of data centers
is a critical problem, since their power consumption is about to double
every 5 years. However, a follow-up study (2016) points out that this
trend was throttled within the past years, due to the increased energy
efficiency actions taken by data center operators. The authors empha-
size that keeping data centers energy-efficient is a continuous task and
that this trend will resume as soon as energy efficiency research efforts
and its market adoption are reduced. Data management systems are
a fundamental component of nearly every application stack. Modern
state-of-the-art database systems are main memory-centric and use non-
uniform memory access (NUMA) hardware architectures to scale up.
In this thesis, we investigate energy awareness aspects of large scale-up

NUMA systems in the context of in-memory data management systems.
To achieve this goal, we design and build ERIS, the first scale-up in-
memory data management system that is designed from scratch to im-
plement a data-oriented architecture. With the help of ERIS, we explore
our novel core concept for energy awareness, which is Energy Awareness
by Adaptivity. We present the hierarchically organized Energy-Control
Loop (ECL), which is a reactive control loop and provides two concrete
implementations of our Energy Awareness by Adaptivity concept, namely
the hardware-centric Resource Adaptivity and the software-centric Stor-
age Adaptivity. In our evaluation, we measured a superior scalability and
outstanding improvements of energy consumption and query latency.

1 Introduction
The ever-increasing need for more computing and data processing power demands
for a continuous and rapid growth of power-hungry data center capacities all over the
world. As the first comprehensive analysis of U.S. data centers energy consumption
in 2008 [4] concluded: The energy consumption of such data centers is becoming a
critical problem, since their power consumption is about to double every 5 years.
Moreover, the report stated that in 2006 about 61 billion kilowatt-hours (kWh) –
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equal to about $4.5 billion in electricity costs – were consumed by data centers
only in the United States. However, a recently (2016) released follow-up study [12]
revealed that this threatening trend was dramatically throttled within the past years,
due to the increased energy efficiency actions taken by data center operators. The
increase of U.S. data centers energy consumption only increased by 24% from 2005
to 2010 and by 4% from 2010 to 2014. The results of the study also emphasize that
making and keeping data centers energy-efficient is a continuous task, because more
and more computing power is demanded from the same or an even lower energy
budget, and that this threatening energy consumption trend will resume as soon as
energy efficiency research efforts and its market adoption are reduced. Such a lack
of innovation would have led to an estimated overall energy wasting of 620 billion
kWh between 2010 and 2020.
An important class of applications running in data centers are data management

systems, which are a fundamental component of nearly every application stack.
While those systems were traditionally designed as disk-based databases that are op-
timized for keeping disk accesses as low a possible, modern state-of-the-art database
systems are main memory-centric and store the entire data pool in the main memory,
which replaces the disk as main bottleneck. To scale up such in-memory database
systems, non-uniform memory access (NUMA) hardware architectures are employed
that face a decreased bandwidth and an increased latency when accessing remote
memory compared to the local memory.
In this thesis, we investigate energy awareness aspects of large scale-up NUMA

systems in the context of in-memory data management systems. To do so, we pick
up the idea of a fine-grained data-oriented architecture [10, 11] and improve the
concept in a way that it keeps pace with increased absolute performance numbers
of a pure in-memory DBMS and scales up on NUMA systems consisting of up to 64
sockets and a total of 768 hardware threads and beyond. To achieve this goal, we
design and build the first scale-up in-memory data management system – namely
ERIS – that is designed from scratch to implement a data-oriented architecture.
With the help of the ERIS platform, we explore our novel core concept for energy

awareness, which is Energy Awareness by Adaptivity. The concept describes that
software and especially database systems have to quickly respond to environmental
changes (i.e., workload changes) by adapting themselves to enter a state of low en-
ergy consumption. We will show that the data-oriented architecture already provides
a solid foundation for quick adaptations, but still misses important changes, which
are covered by our Living Partitions architecture that understands individual data
partitions as evolving objects that are not bound to a specific hardware thread any-
more. Finally, we present the hierarchically organized Energy-Control Loop, which
is an reactive control loop and provides two concrete implementations of our Energy
Awareness by Adaptivity concept: (1) the hardware-centric Resource Adaptivity as
an holistic approach for managing hardware energy-control knobs at runtime and (2)
the software-centric Storage Adaptivity that is responsible for continuously adapting
the physical storage layout of the database system at runtime. We implemented
both Adaptivity Facilities in ERIS and evaluate the entire system in terms of scala-
bility, energy consumption, and responsiveness during the adaptation process in the
presence of a varying workload pattern.
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2 Energy Awareness in Data Management
In this chapter, we introduce the topic of energy awareness in database systems and
discuss the important aspects of how to measure and benchmark energy awareness.
As the main contribution of this chapter, we finally come up with our core concept
of Energy Awareness by Adaptivity and formulate a variety of requirements that a
database system architecture needs to fulfill to enable specific implementations of
this concept.

2.1 Energy Awareness

In this section, we discuss certain metrics describing the energy awareness of a data
management system. Beforehand, we need to define what energy awareness exactly
is. In our understanding:

Definition 2.1 (Energy Awareness). Energy Awareness is the ability of soft-
ware (e.g., a database system) to be conscious of its energy consumption behavior
related to the amount of work it is executing.

While energy is a well-defined physical unit that can be measured by built-in
energy counters, the metrics for determining the work respectively performance of
a database system depend on the application area. High-level application-specific
work measurements are a suitable choice for evaluating standardized application
benchmarks (e.g., the TPC family). For low-level performance measurements, per-
formance counters can be used that are implemented in mostly all modern processors
and cover a wide range of component-specific measurements.
As the main metrics for energy awareness, we introduce energy efficiency and en-

ergy proportionality. Energy efficiency is defined as the quotient of work and energy
respectively performance and power. To improve the metric, modern processors use
performance states (P-states) to adjust the trade-off between performance and power
at runtime. Due to the non-linear correlation of performance and power as well as
the existence of user-defined performance and latency demands, the appropriate
choice a performance state is a non-trivial problem. The second metric for energy
awareness is energy proportionality, which expresses a proportional relation between
work and energy or power and performance and is a critical metric for reducing the
energy footprint of a database system. To achieve energy proportionality, modern
processors implement processor states (C-States) to turn off unneeded cores.

To assess the energy awareness of a DBMS, benchmarking approaches are required
that consider energy proportionality and the dependency between system load and
energy efficiency. Thus, we propose to use a combination of a workload specification
and a load profile specification to overcome those weaknesses. While the workload
specification is already given by existing benchmarks, load profiles need to be stan-
dardized for valuable comparisons. A special focus of such a benchmarking approach
for energy awareness are the query latencies, which can either be compared using
the energy-delay product (EDP) or by quantifying violations against the service-level
agreement (SLA).
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2.2 Energy Awareness by Adaptivity
Based on our discussion of energy awareness, we derive our core concept of Energy
Awareness by Adaptivity, which is inspired by the natural mechanism of evolution.
Thus, we understand a database system as an organism in a continuous struggle
for energy and frequent adaptations are the appropriate countermeasure to face this
challenge. We identified Resource Adaptivity, Storage Adaptivity and Data Place-
ment Adaptivity as Adaptivity Facilities implementing our core concept (cf., Fig-
ure 1). Nevertheless, to enable those fine-grained adaptations at runtime, a lot of
requirements need to be fulfilled. Those requirements either originate from general
performance observations or from the individual adaptivity facilities of our energy
awareness by adaptivity concept. In the following chapter, we will pick up these
requirements and compare existing architectures for their ability to fulfill them and
mainly focus on scalability as a prerequisite for energy proportionality.
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Figure 1: Energy Awareness by Adaptivity concept.

Finally, we propose the Energy-Control Loop (ECL) as the hosting framework
for our adaptivity facilities as we proposed within our collaborative research center
“HAEC” [1]. The ECL employs the design principle of a closed reactive control
loop. Hence, the ECL continuously monitors certain database system metrics and
responds to workload and system load changes using the measures of the respective
adaptivity facility. Moreover, the ECL is organized hierarchically to consider the
scope of the specific adaptation facilities including the availability of DBMS metrics
and the respective time scale of adaptation.

3 Adaptivity-Enabling Scale-Up Architecture
In this chapter, we start with an exploration of current medium and large scale-
up NUMA system architectures to quantify and asses the impact of remote main
memory accesses on such architectures. Especially on large-scale NUMA systems,
our experiments revealed that latency and throughput differ up to an order of mag-
nitude when accessing main memory remotely, which emphasizes that local main
memory access is the key factor for scalability on such hardware platforms. Based
on those insights, we classify existing DBMS architectures in terms of their ability to
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scale-up on large NUMA systems and their ability to allow fine-grained adaptations
at runtime. We conclude that – compared to the transaction-oriented architecture –
the data-oriented architecture [10, 11] provides us with the best foundation for ful-
filling our requirements for an energy-aware DBMS. However, this architecture still
lacks (1) an investigation and appropriate concepts for in-memory DBMSs on large-
scale NUMA systems and (2) certain requirements originating from our adaptivity
facilities.

3.1 DORA for In-Memory DBMSs on Large-Scale NUMA Systems

To cope with the first issue, we transfer existing concepts of the data-oriented ar-
chitecture from medium-scale disk-based systems to large-scale in-memory systems,
which is mainly a matter of the message passing subsystem that needs to keep pace
with the increased speed of data object accesses. We implemented the corresponding
proof of concept (PoC) to evaluate our concepts and focus on database primitives
such as scans and index accesses. Our evaluation showed that the data-oriented
architecture is able to scale up on large-scale NUMA systems in the context of an
in-memory database system and clearly outperforms the classic transaction-oriented
architecture. Our in-depth evaluation also reflects on the root causes for this scalabil-
ity gap between both architectures. Moreover, we demonstrate that Data Placement
Adaptivity can efficiently be done in such an environment.

3.2 ERIS Data Management System

To address the second issue, we extend the data-oriented architecture to enable
fine-grained adaptivity at runtime. Hence, we present the Living Partitions archi-
tecture, which enables a flexible work to hardware thread assignment as well as a
late-binding of physical operators. We introduce our in-memory data management
system ERIS, which is designed from scratch to implement the living partitions ar-
chitecture as well as our Adaptivity Facilities. In contrast to our PoC, ERIS is able to
execute comprehensive queries in a transactional environment using constructs like
Tasks, Dataflows, and Micro Operators. Furthermore, ERIS employs a hierarchical
message passing layer, to deal with the changes introduced by the living partitions
architecture.
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Figure 2: Scalability of the TATP-Mix in ERIS (SF 10).
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In the evaluation of ERIS, we use a systematic series of microbenchmarks as well
as the standardized transactional TATP benchmark [6] (cf., Figure 2) and demon-
strate the superior scalability of ERIS on large-scale NUMA systems (64 sockets and
768 hardware threads). Hence, ERIS and its living partitions architecture are an
excellent foundation for investigating our adaptivity facilities with the overall goal
to build an energy-aware data management system.

4 Resource Adaptivity

In this chapter, we present Resource Adaptivity as the hardware-centric imple-
mentation of our Energy Awareness by Adaptivity concept. While previous re-
search [9, 13, 15] mainly focused on disk-based DBMSs, resource adaptivity aims at
investigating and optimizing the energy consumption of highly parallel state-of-the-
art in-memory database systems that make heavy use of the main power consumers
– CPUs and main memory – and are thus, an attractive target for energy optimiza-
tions. Our in-depth energy analysis of a current server system shows that modern
processors provide a rich set of energy-control facilities, but lack the capability of
controlling them appropriately.

4.1 Energy Profiles

We specify the concept of Configurations, which represent a specific system state
in terms of hardware energy-control settings for a single processor. Configurations
are evaluated in the context of a specific workload to be enriched by information
about the power consumption, the delivered performance, and the effective energy
efficiency. A set of configurations is aggregated to an Energy Profile (cf., Figure 3).
This set of configurations is generated with the help of a configuration generator,
which tries to cover the most important supporting points of the big exploration
space. We show that the cardinality of the configuration set can be kept low, while
still reaching a good quality of the energy profile. Moreover, we demonstrate that
the shape of the energy profile is highly workload dependent.
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Figure 3: Energy profile of a memory-intensive workload.
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4.2 Resource Adaptivity-Specific ECL

Finally, we propose the Resource Adaptivity-Specific ECL as a holistic software-based
approach for adaptive energy-control on scale-up in-memory database systems that
obeys a query latency limit as a soft constraint and actively optimizes energy aware-
ness and performance of the DBMS. Resource adaptivity effectively implements the
CPU-level and the system-level of the overall Energy-Control Loop by employing a
Node ECL per processor and a Global ECL. Node ECLs rely on adaptive workload-
dependent energy profiles that are continuously maintained at runtime using the
Online Adaptation and Multiplexed Adaptation maintenance strategies. The global
ECL monitors and projects the current query latencies to influence the resource
allocation strategy of the Node ECLs.

Figure 4: Load profile and power consumption of the baseline and the ECL.

In our evaluation, we observed energy savings of up to about 40% for real world
load profiles (cf., Figure 4). Moreover, we demonstrate that the Node ECLs are
able to quickly and efficiently adapt their energy profile in case of workload changes
without inducing a significant overhead.

5 Storage Adaptivity

Modern application scenarios require data management systems to cope with a vast
variety of datasets and query types that are not known beforehand and change over
time. To still provide a superior performance and energy efficiency in all of the
potential scenarios, the database system needs to adapt its physical storage layout
to the current workload, because the data organization has a significant impact on
the query execution performance and there exists no one-size-fits-all physical stor-
age layout. Current solutions for the storage adaptation problem are very limited,
because they are either designed as offline approaches [5, 14] or address only a small
subset of the available storage layout tuning knobs [2, 3, 7, 8].
In this chapter, we presented Storage Adaptivity as a holistic software-centric

approach for increasing the performance and energy efficiency of a database system
in the presence of varying workloads and data characteristics. Our approach consists
of two main components: (1) the 1-Storage storage manager and the (2) Storage
Adaptivity-Specififc Energy-Control Loop.
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5.1 1-Storage
The first component is 1-Storage, which is a storage manager that is able to organize
the data in a multitude of physical layouts combining the advantages of row-wise and
columnar data organizations in combination with adaptive indexing. Furthermore,
1-Storage uses the concept of extensible storage modules to provide support for any
kind of access path implementation. Since 1-Storage is designed to operate within
the Living Partitions architecture, each living partition of a relation is additionally
able to apply a different physical storage layout. To decouple database operators
from the actual physical storage layout, 1-Storage employs an indirection layer that
induces a certain overhead and decomposes the query plan compilation into a Macro
Query Execution Plan and Micro Query Execution Plans.

5.2 Storage Adaptivity-Specififc Energy-Control Loop
The Storage Adaptivity-Specififc Energy-Control Loop leverages this implicit parti-
tioning of the architecture for enabling a fine-grained incremental adaptation of the
physical storage layout in case of a changing workload. Moreover, this component
integrates well with our Resource Adaptivity-Specific ECL, which results in a sophis-
ticated ECL hierarchy that is able to control the adaptation of hardware as well as
software at runtime while trying to stay within a user-defined query latency limit.

Figure 5: Power consumption over time during the adaptation process.

Our evaluation demonstrates that all ECLs work hand in hand and we observe
energy savings of about 65% while additionally improving the query latency by
orders of magnitude (cf. Figure 5). Nevertheless, we also revealed the limitations of
the current state of our approach and suggested just-in-time compilation, forecasting,
redundancy, and Data Placement Adaptivity as augmenting techniques to overcome
these limitations.

6 Summary and Conclusions
Recent studies revealed that the energy consumption of server hardware already be-
came a critical problem, especially in data centers. Since data management systems
are an application class that amounts to a high portion of the overall deployments,
they are responsible for a high share of the energy draw. Another trend is the ongo-
ing move from disk-based to in-memory database systems, which run on hardware
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that exhibits more and more non-uniform memory access (NUMA) related effects. In
this thesis, we investigated how the energy consumption of such in-memory database
systems that run on mid and large scale-up NUMA hardware platforms can be re-
duced.
In the first place, we discussed the nature of energy in the context of data man-

agement systems and derived the term energy awareness as the ability of a DBMS
to actively optimize its energy efficiency as well as energy proportionality. We came
up with our core concept of Energy Awareness by Adaptivity, which aims at ac-
tive software-driven adaptations at runtime, especially in the presence of changing
workloads and data characteristics as it is becoming increasingly common in today’s
applications. To actually implement this concept, we defined a rich set of require-
ments that need to be fulfilled to build an energy-aware database system. Those
requirements either originate from the general scalability prerequisite or from the
ability to enable fine-grained adaptations at runtime.
Our exploration of existing database architectures concluded that none of the

known architectures fulfills our requirements for an energy-aware DBMS. Neverthe-
less, we decided to use the data-oriented architecture as a starting point, because
of its scalability advantages. We optimized this architecture for large scale-up in-
memory database systems and achieved superior scalability results as well as absolute
performance numbers that clearly outperform the traditional transaction-oriented
architecture. To enable our Adaptivity Facilities on this architecture, we proposed
the Living Partitions architecture that treats Living Partitions as autonomous self-
adapting objects and presented the database system ERIS that is based on this novel
architecture. Our evaluation showed superior scalability of ERIS for transnational
workloads on a large scale-up NUMA system.
Using ERIS and the living partitions architecture as a solid foundation, we in-

vestigated two Adaptivity Facilities that implement our core concept. The first
implementation is the hardware-centric Resource Adaptivity, which actively adapts
the hardware configuration by controlling the rich set of available energy-control
knobs of current processors. Our resource adaptivity approach implements the Re-
source Adaptivity-Specific Energy-Control Loop (ECL), which consists of a system-
level Global ECL and a CPU-level Node ECL. While the global ECL keeps track of
the current average query latency, the Node ECL maintains an adaptive Energy Pro-
file to manage the hardware configurations. In our evaluation, we measured energy
savings ranging from 20% to 40% for a real-world load profile.
The second Adaptivity Facility we investigated was Storage Adaptivity, which is a

software-centric approach for adapting the physical storage layout at runtime. Our
approach uses the extensible 1-Storage storage manager that is capable of organizing
its data in a wide variety of physical representations covering columnar and row-
wise data organizations as well as adaptive indexing. To actually adapt the physical
storage layout, we presented the Storage Adaptivity-Specific Energy-Control Loop,
which leverages the implicit partitioning of our living partitions architecture to in-
crementally adapt the storage layout at runtime. We described how to integrate the
different ECLs with each other and ended up with a sophisticated ECL hierarchy
that is doing hardware and software-centric adaptations at runtime, while trying
to stay within a user-defined query latency limit. Our evaluation showed that all
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ECLs work hand in hand and we achieved superior energy savings and query latency
improvements for various workload mixtures.
In our opinion, highly adaptive database systems are the only way to cope with

the vast amount of application domains database systems are being exposed today.
The scalable and adaptivity-enabling Living Partitions architecture as well as our
Adaptivity Facilities are a first milestone towards such a highly adaptive DBMS,
which opens up new horizons for further research.
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