
Generic Quality-Aware Refactoring and
Co-Refactoring in Heterogeneous

Model Environments

Kurzfassung der Dissertation

zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

vorgelegt an der

Technischen Universität Dresden

Fakultät Informatik

eingereicht von

Dipl.-Inf. Jan Reimann
geboren am 16.03.1982 in Potsdam

Gutachter:
Prof. Dr. rer. nat. habil. Uwe Aßmann

(Technische Universität Dresden)

Prof. Dr. rer. nat. Ralf Reussner

(Karlsruhe Institute of Technology)

Fachreferent:
Jun.-Prof. Dr.-Ing. Thomas Schlegel

(Technische Universität Dresden)

Dresden im Mai 2015



Problem
Domain

Solution
Domain

DSL

High-level programming language

Low-level programming language

Interpretation/
Translation

Interpretation/
Translation

Pr
og
ra
m
m
in
g
pa
ra
di
gm

ev
ol
ut
io
n
ov
er
tim

e

Ab
st
ra
ct
io
n
in
cr
ea
se

Figure 1: Abstraction Gap based on [KT08, p. 16].

1 Introduction

The techniques of abstraction and specialisation are used in almost every area of our daily lives

and became apparent in languages used to solve problems in many scienti�c or engineering

disciplines. Languages, being dedicated to a particular problem space, are called Domain-Speci�c
Languages (DSLs). Similar progress has happened in the discipline of computer science. In

the beginning, instruction sets of programming languages corresponded heavily to those of

the machine which the programme was intended to run on. Therefore, programmers had to

bridge a big gap between the domain of the initial problem and the domain of the problem-

solving programme (the solution). Between these domains, namely problem domain and solution
domain, the so-called abstraction gap [KT08; IM10] was very big, because the used concepts

of a solution idea and the particular solution implementation (machine instructions) are very

di�erent. Figure 1 illustrates this contemplation in the lower part. Realising an implementation

was very complex until high-level programming languages (such as C++ or Java) came out

onto the market. These languages raised the level of abstraction and increased developer’s

productivity by 450 % [KT08]. This progress got another impetus, when it was recognized that

taking advantage of the concept of DSLs can raise the abstraction level even more. Thus, DSLs

arrived in computer science and information technology (IT), enabling developers to implement

solutions closer to the problem domain. Most often, these languages are delivered with some

kind of compiler or interpreter to map abstract instructions to less abstract ones in an already

known and executable formalism. Such a mapping speci�es the translational or interpretative

semantics of a DSL and de�nes how to resolve DSL instances to an instance of the underlying

layer in Figure 1: compilation to another language, or direct execution respectively [EvSV+13].

In practice, there are heaps of DSLs supporting daily developer’s and engineer’s work, and

their number is still growing. One reason for the quantitative increase is a development

paradigm, which became more and more popular in the last decade. This paradigm is called

Model-Driven Software Development [SVB+06] (MDSD) and takes advantage of formal artefacts

to create instances of abstract concepts. The following short example illustrates the MDSD

paradigm. Consider, e.g., a detached house on the one hand and a tool shed on the other hand.

Both are buildings but have distinct purposes. The former is for living and the latter is for

storing gardening tools. From an abstract point of view both exemplars have several things

2



in common. Both are buildings, have a door and a roof. Unless a building has no roof or door

it is not considered to be a building. Single parts of the houses are conceptualised (e.g. roof
or door) and a rule is given under which circumstances a set of single parts is meant to be a

building. These concepts and the rule are the formal base of both buildings. They enable us to

re�ect about houses and to evaluate, if something belongs to the domain buildings or not. This

formalisation is called a metamodel, because it speci�es properties of all its instances: the models.
Since metamodels have a higher level of abstraction than their models, they can be used, e.g., to

generate other artefacts from the models, because the generation rules can be speci�ed on top

of the metamodel’s concepts. A metamodel is considered to be the abstract formal grounding of

a DSL, not focussing the concrete, but on the abstract syntax of the DSL’s instances, the models.

Coming back to the small example, such a generation rule could automatically produce a list of

all consumed materials for a building, instead of having to write the list manually.

In this work, only model-based DSLs are considered, since they allow for abstraction of

languages to their constructional concepts. The abstract syntax of a DSL is speci�ed in its

metamodel and their instances (the models) conform to it.

2 Problems and Objectives

2.1 Problems

Software complexity rose and still rises [Leh96; Kle09]. Software design evolved as an essential

tool to cope with that complexity before developing the software itself. Therefore, the design

is the base for understanding a software system and for the early identi�cation of problems

instead of living with them afterwards [P�98]. Opdyke and Johnson investigated on this and

introduced the term refactoring in [OJ90], which signi�es the restructuring of code while

preserving its semantics to improve the design of a software. Later, Opdyke published a �rst

catalogue of refactorings in his dissertation [Opd92] forming the foundation of refactoring tools

in nowadays integrated development environments (IDEs). These IDEs came into the market to

support developers in managing the complexity of developed software so that qualities, such as

reusability, readability, or comprehensibility, are improved. In the beginning, refactorings had to

be applied manually after every regression, which was error-prone and required huge e�ort.

Later, the IDEs were equipped with mature refactoring tools enabling developers to execute

them (semi-)automatically. Today, all modern IDEs support refactoring in one or the other

modality [XS06]. For high-level programming languages code refactoring is well investigated

and can be applied easily.

In recent years Language Workbenches (LWs) [Fow05] emerged enabling the development

of mature tools for using DSLs. We call these tools Domain-Speci�c Language Environments
(DSLEs). According to [EvSV+13], a DSLE usually consists of an editor, syntax highlighting,

a parser, language-speci�c refactoring, and semantic services as reference resolution or error

marking. All these features are not new since they were adopted from programming language

IDEs [Fow05]. Many of them can be derived from a DSL’s abstract or concrete syntax. But one

of the biggest problems in nowadays LWs is still the lack of adequate refactoring support in

the produced DSLE [KV10; Mer10; EvSV+13; VWT+14]. As a result, developers cannot apply

refactorings in DSLEs, as they are used to it from modern IDEs.

3



Figure 2: Overview of model life cycle in MDSD.

Creation/
Initialisation

Evolution/
Maintenance

Quality
Evaluation

Creation/
Initialisation

Evolution/
Maintenance

Quality
Evaluation

Co-Evolution

Model 1 Model 2

The main problem regarding the lack of appropriate refactoring support can be subdivided

into the following three issues.

Only structural information is available inmetamodel DSLs only provide structural information

in their metamodels, especially knowledge about how concepts relate to each other. This

information is only of static nature and is regarded as the abstract syntax. Consequently, it is

not possible to establish a relation to a concept of quality representing information about which

quality a model actually has. Without such a fact it is not possible to interrelate qualities with

refactorings, which results in the fact that one cannot specify an indicator expressing when
and what structure to refactor. As a consequence, refactorings would be executed randomly
without a formal grounding. Furthermore, refactorings cannot be derived automatically for

DSLs, because they do not only depend on the structure, but on the speci�cs of the particular

language as well. DSLEs are not able to provide DSL-speci�c mature refactoring tools and they

omit the aspect of evolution completely. As a consequence, the e�ort to specify refactorings for

a particular DSL is huge. In the worst case, the restructurings a refactoring comprises must be

applied manually. This means that the consistency of the model to be refactored may break,

because this manual process is error-prone.

Figure 2 summarizes this subproblem on the left hand side for Model 1. This DSL instance is

created before it undergoes a process of evolution. Modi�cations are applied. Afterwards, the

quality should be evaluated for being able to give evidence which refactoring could be applied

upon which structure for improving the overall quality of the model. The process of evolution

and quality evaluation is a cycle which might stop when a model is not modi�ed anymore and

its quality requirements are satis�ed.

DSL is regarded as isolated The second subproblem is the fact that, when DSLs are engineered,

potential relations to other DSLs are not taken into account, thus, the DSL is considered as

isolated. Models of a DSL might relate to models of other DSLs. Those connections then can

4



point to instances of arbitrary DSLs and cannot be foreseen. In such a case, interdependencies

between those models arise. As a consequence, a dependent model is in�uenced by modi�cations

of the other model. Figure 2 illustrates this relationship for Model 1 and Model 2 exemplarily.

If Model 2 evolves in terms of a refactoring its quality must be evaluated again. Since Model
1 depends on the evolved model it must co-evolve. This co-evolution is highly dependent

on the concrete modi�cations in Model 2 and the current state of Model 1. This is a problem

when di�erent DSLs are considered isolated, because an evolution of one model can violate

the consistency of a dependent model. In the following, environments incorporating several

di�erent DSLs are called Multi-Language Development Environment (MLDE) [PW15].

Another consequence of DSL isolation is that refactorings cannot be reused across di�erent

DSLs. For instance, the same semantics-preserving restructuring is available for di�erent

programming languages. The di�erence between these refactorings is not the speci�cs of the

refactoring itself but the language which it is applied to. Thus, from an abstract point of view,

the same steps are executed in di�erent languages. The same holds for DSLs. If refactorings

cannot be reused they must be speci�ed and implemented anew for every di�erent DSL.

Appropriate refactorings are dependent on DSL designer’s preferences Apart from the two sub-

problems above, the decision which refactorings to specify for a DSL highly depends on the

preferences of the DSL designer. On the one hand, the DSL designer must determine which

structures are suitable for refactoring. Therefore, the abstract syntax must be examined and

feasible relations between concepts have to be found for establishing potential candidates for

refactorings.

On the other hand, the technical background of the intended DSL users should be taken into

consideration by the DSL designer. Depending on the target group, refactorings of di�erent

maturity could be provided. As a consequence, this subproblem again leads to the fact that

DSL-speci�c refactorings cannot be derived automatically, since the decision which refactorings

to provide is highly subjective.

2.2 Objectives

These problems �nd expression in the following objectives which will be covered in this thesis.

Generic Specification of Refactorings DSLs should not be regarded as isolated, thus it is not

e�cient to specify and implement a refactoring for di�erent DSLs anew, although the same

modi�cations are applied except that the target language is di�erent. The same refactorings must

be reusable in di�erent DSLs from an abstract point of view. Consequently, the speci�cation of

refactorings should be independent from the target language which it is intended to be applied

to. Thus, an approach for the generic speci�cation of refactorings is needed.

DSL-Specific Instantiation of Refactorings When refactorings can be speci�ed generically, an

approach is needed that supports the declaration of what a generic refactoring means for a

particular DSL. This is the consequence of the previous objective and comprises the DSL-speci�c

instantiation of generic refactorings.

5



ExplicitRelationBetweenRefactoringCandidates, RefactoringsandQualities In [FBB+99], Fowler

et al. de�ned structures suggesting the application of a particular refactoring as bad smells.
The presence of a bad smell is a refactoring candidate, because it deteriorates speci�c qualit-

ies and the execution of a refactoring might improve them [FBB+99; SSL01; MTM07; Als09].

The problem of Fowler et al. ’s term is that it has not been de�ned precisely. Furthermore,

the connection to qualities and refactorings is only implicit. Hence, it is not possible to give

evidence about what smelling structures in�uence which quality negatively and can be resolved

by which refactoring [MTM07]. That’s why a precise de�nition of a bad smell in the context of

MDSD is needed, explicitly relating refactoring candidates, refactorings and qualities to allow

for automatic detection and resolution.

Specification of Dependent Modifications A DSL and its models can have interdependencies to

models of other DSLs in MLDEs. If a model evolves, it might have e�ects on dependent models.

To avoid violation of consistency of the dependent models, an approach for speci�cation of

dependent modi�cations is needed. Since the subsequent changes must not alter the dependent

model semantics such modi�cations are considered to be refactorings. In addition, the sub-

sequent refactorings depend on a preceding refactoring and are therefore called co-refactoring.

Such a speci�cation should enable the mapping of preceding modi�cations in a model of one

DSL to succeeding modi�cations in a dependent model of another DSL.

Detection of Dependent Models Apart from the speci�cation of dependent modi�cations, de-

pendent models themselves must be detectable in MLDEs. This objective contains two essential

parts. First, dependencies between models must be tracked. Second, it must be recognized

when a tracked model evolves, what modi�cations occurred and which other models they have

in�uence on. After this detection process, the dependent modi�cations must be applied to the

dependent models.

3 Contributions in Brief

In the following, the thesis’ main contributions are presented and their progress beyond the

state-of-the-art is justi�ed.

Role-Based Generic Model Refactoring (Chapter 4)

To provide means for language-independent [MTM07; TMM08; MMBJ09] speci�cation of

refactorings, an appropriate abstraction mechanism is essential. For this reason, a �rst approach

of abstraction over the desired refactorings is contributed by means of role modelling. A role
model represents a dedicated view of objects in an certain context and the collaborations of the

objects within this context [RWL96; RG98]. In this thesis, a role model de�nes the participants of

a refactoring and their collaborations, independent from the target DSL which it should be made

available in. The di�erent context of the same generic refactoring is considered the particular

refactoring of a speci�c DSL. A refactoring speci�cation de�nes the intrinsic transformation a

generic refactoring should execute. To instantiate a generic refactoring for a speci�c DSL, only

6



Model
refactored

Determine
dependent
models

Co-Refactor
dependent
models

Dependency
Knowledge

Base

Co-Refactoring
Knowledge

Base

Figure 3: Schematic work�ow of Co-Refactoring.

a mapping of the role model to a certain structure of the DSL’s metamodel must be provided.

Thus, the transformation is reused. This contribution is extends our work published in [Rei10;

RSA10; RSA13].

The limitations of related approaches of generic refactorings is that they abstract from the

DSLs which refactorings should be provided for. Thus, they are constrained in the sense that all

DSLs must be similar to the concepts of the language abstraction. These approaches are too

static and arbitrary DSLs are not supported.

Role-Based Quality Smells as Refactoring Indicator (Chapter 6)

The term bad smell [FBB+99] is too imprecise, and an explicit connection of structures violating

particular quality requirements is omitted completely. Therefore, the concept of quality smell is

contributed. A quality smell establishes an explicit relation between model de�ciencies, their

deteriorating qualities and resolving refactorings. A concrete occurrence of a quality smell

can trace it back to the causing elements and suggests refactorings potentially resolving the

occurrence. Such a suggestion is achieved by de�ning roles of interest for a concrete quality

smell which then are mapped to the roles used in a resolving refactoring. This approach allows

developers for focussing speci�c qualities in isolation. This contribution is extends our work

published in [RA13; RBA14].

The limitations of related work is that there are approaches enabling detection and resolution

of de�ciencies in models but none of them correlates qualities, model de�ciencies and resolving

refactorings explicitly. We argue that this relation is essential for a quality-aware development

and engineering life cycle.

Role-Based Co-Refactoring of Dependent Models (Chapter 8)

Usually models do not occur isolated, but have dependencies on other models or other models

are dependent on them. To ensure consistency of dependent models, they must be co-refactored.

Our contribution is divided into two parts according to the work�ow depicted in Fig. 3.

First, dependent models and elements within them can be detected by means of a Dependency
Knowledge Base (DK-Base). Therefore, we de�ned four categories of potential model dependen-

cies and provide a logics-based approach to reveal them. Explicit dependencies are persisted in

7



the DK-Base and the others are determined by querying the DK-Base. A part of determining

dependencies is published in [PRW14].

Second, the intrinsic co-refactoring approach is realised by means of Co-Refactoring Speci�ca-
tions (Co-RefSpecs), which populate a Co-Refactoring Knowledge Base (CoRK-Base). A Co-RefSpec

refers an incoming initiating refactoring, a condition, and an outgoing triggered co-refactoring.

Again, the roles of an initiating refactoring are bound to roles of a triggered refactoring. As

a consequence, the mapping of roles prevents the user from providing required input for an

outgoing refactoring which is dependent from an incoming refactoring.

The limitations of existing approaches is that none of them can be used as is for co-refactoring

of models. Either they have limitations regarding dependency detection, or they are not generic

enough to apply them in heterogeneous model environments such as MLDEs.

4 Conclusion

This thesis shows,that the concept of role models is bene�cial for all of our contributions.

For the generic refactoring approach, we use role models to capture structural constraints

of participants of a refactoring in a language-independent manner. A role mapping must be

provided to map roles to metaclasses of a particular target metamodel in order to enable a

generic refactoring in a concrete language. For quality smells, one can de�ne a role model to

declare certain participants of a quality smell that might be of interest. The elements which

are bound to the roles in a present quality smell then are passed to a resolving refactoring.

To co-refactor models, the used roles from an incoming refactoring are related to the used

roles of an outgoing refactoring. Thus, role models rendered as a very powerful abstraction

mechanism in the scenario of quality-aware model refactoring and co-refactoring in MLDEs. As

a consequence, role models can be considered as some kind of interfaces for models which can

be used for loosely coupled interaction. The interaction then can be speci�ed just depending on

the roles, regardless the context of interaction such as a refactoring, the detection of a quality

smell or a co-refactoring.

References

[Als09] M. Alshayeb, “Empirical investigation of refactoring e�ect on software quality”,

Information and Software Technology, vol. 51, no. 9, pp. 1319–1326, 2009, issn:

0950-5849. doi: 10.1016/j.infsof.2009.04.002 (cit. on p. 6).

[EvSV+13] S. Erdweg, T. van der Storm, M. Völter, M. Boersma, R. Bosman, W. R. Cook, A.

Gerritsen, A. Hulshout, S. Kelly, A. Loh, G. D. P. Konat, P. J. Molina, M. Palatnik,

R. Pohjonen, E. Schindler, K. Schindler, R. Solmi, V. A. Vergu, E. Visser, K. van der

Vlist, G. H. Wachsmuth and J. van der Woning, “The State of the Art in Language

Workbenches”, in Software Language Engineering, ser. Lecture Notes in Computer

Science, M. Erwig, R. F. Paige and E. Van Wyk, Eds., vol. 8225, Springer International

Publishing, 2013, pp. 197–217, isbn: 978-3-319-02653-4. doi: 10.1007/978-3-
319-02654-1_11 (cit. on pp. 2, 3).

8

http://dx.doi.org/10.1016/j.infsof.2009.04.002
http://dx.doi.org/10.1007/978-3-319-02654-1_11
http://dx.doi.org/10.1007/978-3-319-02654-1_11


[FBB+99] M. Fowler, K. Beck, J. Brant, W. Opdyke and D. Roberts, Refactoring: Improving the
Design of Existing Code. Addison-Wesley, 1999 (cit. on pp. 6, 7).

[Fow05] M. Fowler, “Language Workbenches: The Killer-App for Domain Speci�c Lan-

guages?”, 2005, Available: http : / / www . martinfowler . com / articles /
language-Workbench.html (cit. on p. 3).

[IM10] J. L. C. Izquierdo and J. G. Molina, “An Architecture-Driven Modernization Tool

for Calculating Metrics”, Software, IEEE, vol. 27, no. 4, pp. 37–43, Jul. 2010, issn:

0740-7459. doi: 10.1109/MS.2010.61 (cit. on p. 2).

[Kle09] A. Kleppe, Software Language Engineering: Creating Domain-Speci�c Languages
Using Metamodels. Pearson Education, 2009, isbn: 0321553454 (cit. on p. 3).

[KT08] S. Kelly and J.-P. Tolvanen, Domain-Speci�c Modeling: Enabling Full Code Genera-
tion. John Wiley & Sons, 2008 (cit. on p. 2).

[KV10] L. C. L. Kats and E. Visser, “The Spoofax Language Workbench: Rules for Declarat-

ive Speci�cation of Languages and IDEs”, in Proceedings of the 25th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2010, M. C. Rinard, Ed., Reno/Tahoe, Nevada: ACM, 2010,

pp. 444–463, isbn: 978-1-4503-0203-6. doi: 10.1145/1869459.1869497 (cit. on

p. 3).

[Leh96] M. M. Lehman, “Laws of Software Evolution Revisited”, in Lecture Notes in Com-
puter Science, C. Montangero, Ed., vol. 1149, Springer Berlin Heidelberg, 1996,

pp. 108–124, isbn: 978-3-540-61771-6. doi: 10.1007/BFb0017737 (cit. on p. 3).

[Mer10] B. Merkle, “Textual Modeling Tools: Overview and Comparison of Language

Workbenches”, in Proceedings of the ACM International Conference Companion on
Object Oriented Programming Systems Languages and Applications Companion, ser.

OOPSLA ’10, Reno/Tahoe, Nevada, USA: ACM, 2010, pp. 139–148, isbn: 978-1-

4503-0240-1. doi: 10.1145/1869542.1869564 (cit. on p. 3).

[MMBJ09] N. Moha, V. Mahé, O. Barais and J.-M. Jézéquel, “Generic Model Refactorings”, in

MODELS, A. Schürr and B. Selic, Eds., ser. Lecture Notes in Computer Science,

vol. 5795, Denver, USA: Springer, Oct. 2009, pp. 628–643, isbn: 978-3-642-04424-3.

doi: 10.1007/978-3-642-04425-0_50 (cit. on p. 6).

[MTM07] T. Mens, G. Taentzer and D. Müller, “Challenges in Model Refactoring”, in Pro-
ceedings of the 1st Workshop on Refactoring Tools, University of Berlin, 2007 (cit. on

p. 6).

[OJ90] W. F. Opdyke and R. E. Johnson, “Refactoring: An aid in designing application

frameworks and evolving object-oriented systems”, in Proceedings of Symposium
on Object-Oriented Programming Emphasizing Practical Applications (SOOPPA), Sep.

1990 (cit. on p. 3).

[Opd92] W. F. Opdyke, “Refactoring Object-Oriented Frameworks”, PhD thesis, University

of Illinois at Urbana-Champaign, 1992 (cit. on p. 3).

[P�98] S. L. P�eeger, Software Engineering: Theory and Practice. Prentice Hall, 1998 (cit. on

p. 3).

[PRW14] R.-H. Pfei�er, J. Reimann and A. Wąsowski, “Language-Independent Traceability

with Lässig”, in, ser. Lecture Notes in Computer Science, J. Cabot and J. Rubin,

9

http://www.martinfowler.com/articles/language-Workbench.html
http://www.martinfowler.com/articles/language-Workbench.html
http://dx.doi.org/10.1109/MS.2010.61
http://dx.doi.org/10.1145/1869459.1869497
http://dx.doi.org/10.1007/BFb0017737
http://dx.doi.org/10.1145/1869542.1869564
http://dx.doi.org/10.1007/978-3-642-04425-0_50


Eds., vol. 8569, Springer International Publishing, 2014, pp. 148–163, isbn: 978-3-

319-09194-5. doi: 10.1007/978-3-319-09195-2_10 (cit. on p. 8).

[PW15] R.-H. Pfei�er and A. Wąsowski, “The design space of multi-language development

environments”, English, Software & Systems Modeling, vol. 14, no. 1, pp. 383–411,

2015, issn: 1619-1366. doi: 10.1007/s10270-013-0376-y (cit. on p. 5).

[RA13] J. Reimann and U. Aßmann, “Quality-Aware Refactoring for Early Detection and

Resolution of Energy De�ciencies”, in Proceedings of the 2013 IEEE/ACM 6th In-
ternational Conference on Utility and Cloud Computing, ser. UCC ’13, Washington,

DC, USA: IEEE Computer Society, 2013, pp. 321–326, isbn: 978-0-7695-5152-4. doi:

10.1109/UCC.2013.70 (cit. on p. 7).

[RBA14] J. Reimann, M. Brylski and U. Aßmann, “A Tool-Supported Quality Smell Catalogue

For Android Developers”, in Proceedings of the conference Modellierung 2014 in the
Workshop Modellbasierte und modellgetriebene Softwaremodernisierung – MMSM
2014, 2014 (cit. on p. 7).

[Rei10] J. Reimann, “Generisches Modellrefactoring für EMFText”, Diploma Thesis, Tech-

nische Universität Dresden, 2010. [Online]. Available: http://nbn-resolving.
de/urn:nbn:de:bsz:14-qucosa-67762 (cit. on p. 7).

[RG98] D. Riehle and T. Gross, “Role Model Based Framework Design and Integration”, in

Proc. of OOPSLA ’98, Vancouver, British Columbia, Canada: ACM, 1998, pp. 117–

133, isbn: 1-58113-005-8. doi: 10.1145/286936.286951 (cit. on p. 6).

[RSA10] J. Reimann, M. Seifert and U. Aßmann, “Role-based Generic Model Refactoring”, in

Model Driven Engineering Languages and Systems - 13th International Conference,
MoDELS 2010, Oslo, Norway, October 3-8, 2010, Proceedings, Part II, D. C. Petriu, N.

Rouquette and Ø. Haugen, Eds., ser. Lecture Notes in Computer Science, vol. 6395,

Springer, 2010, pp. 78–92. doi: 10.1007/978-3-642-16129-2_7 (cit. on p. 7).

[RSA13] J. Reimann, M. Seifert and U. Aßmann, “On the reuse and recommendation of

model refactoring speci�cations”, English, Software & Systems Modeling, vol. 12,

no. 3, pp. 579–596, 2013, issn: 1619-1366. doi: 10.1007/s10270-012-0243-2
(cit. on p. 7).

[RWL96] T. Reenskaug, P. Wold and O. A. Lehne, Working with objects – The OOram Software
Engineering Method. 1996. [Online]. Available: http://heim.ifi.uio.no/
~trygver/1996/book/WorkingWithObjects (cit. on p. 6).

[SSL01] F. Simon, F. Steinbrückner and C. Lewerentz, “Metrics Based Refactoring”, in Pro-
ceedings of Fifth European Conference on Software Maintenance and Reengineering,

CSMR 2001, 2001, pp. 30–38 (cit. on p. 6).

[SVB+06] T. Stahl, M. Völter, J. Bettin, A. Haase and S. Helsen, Model-Driven Software Devel-
opment: Technology, Engineering, Management. John Wiley & Sons, 2006 (cit. on

p. 2).

[TMM08] G. Taentzer, D. Müller and T. Mens, “Specifying Domain-Speci�c Refactorings for

AndroMDA Based on Graph Transformation”, in Applications of Graph Transforma-
tions with Industrial Relevance: Third International Symposium, AGTIVE 2007, Kassel,
Germany, October 10-12, 2007, Revised Selected and Invited Papers, Berlin, Heidel-

berg: Springer, 2008, pp. 104–119, isbn: 978-3-540-89019-5. doi: 10.1007/978-3-
540-89020-1_9 (cit. on p. 6).

10

http://dx.doi.org/10.1007/978-3-319-09195-2_10
http://dx.doi.org/10.1007/s10270-013-0376-y
http://dx.doi.org/10.1109/UCC.2013.70
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-67762
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-67762
http://dx.doi.org/10.1145/286936.286951
http://dx.doi.org/10.1007/978-3-642-16129-2_7
http://dx.doi.org/10.1007/s10270-012-0243-2
http://heim.ifi.uio.no/~trygver/1996/book/WorkingWithObjects
http://heim.ifi.uio.no/~trygver/1996/book/WorkingWithObjects
http://dx.doi.org/10.1007/978-3-540-89020-1_9
http://dx.doi.org/10.1007/978-3-540-89020-1_9


[VWT+14] E. Visser, G. Wachsmuth, A. Tolmach, P. Neron, V. Vergu, A. Passalaqua and G.

Konat, “A Language Designer’s Workbench: A One-Stop-Shop for Implementation

and Veri�cation of Language Designs”, in Proceedings of the 2014 ACM International
Symposium on New Ideas, New Paradigms, and Re�ections on Programming &
Software, ser. Onward! 2014, Portland, Oregon, USA: ACM, 2014, pp. 95–111, isbn:

978-1-4503-3210-1. doi: 10.1145/2661136.2661149 (cit. on p. 3).

[XS06] Z. Xing and E. Stroulia, “Refactoring Practice: How it is and How it Should be

Supported - An Eclipse Case Study”, in 22nd IEEE International Conference on
Software Maintenance (ICSM) 2006, Sep. 2006, pp. 458–468. doi: 10.1109/ICSM.
2006.52 (cit. on p. 3).

11

http://dx.doi.org/10.1145/2661136.2661149
http://dx.doi.org/10.1109/ICSM.2006.52
http://dx.doi.org/10.1109/ICSM.2006.52

	Introduction
	Problems and Objectives
	Contributions in Brief
	Conclusion
	References

