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Allocation Strategies in Data-Oriented
Architectures (Extended Abstract)

Tim Kiefer

Data orientation is a common design principle in distributed data
management systems. In contrast to process-oriented or transaction-
oriented system designs, data-oriented architectures are based on data
locality and function shipping. Data-oriented systems, i.e., systems that
implement a data-oriented architecture, bundle data and operations to-
gether in tasks which are processed locally on the nodes of the distributed
system. Allocation strategies map tasks to nodes and are core compo-
nents in data-oriented systems. Optimal allocation strategies are hard
to find given the complexity of the systems, the complicated interactions
of tasks, and the huge solution space.
In this thesis, we develop novel allocation strategies for data-oriented

systems based on graph partitioning algorithms. We propose to extend
classic graph partitioning to model non-linear performance by introduc-
ing vertex weights that do not linearly aggregate to partition weights.
On top of the basic algorithms, we propose methods to incorporate het-
erogeneous infrastructures and to react to changing workloads and in-
frastructures by incrementally updating the partitioning.
We evaluate all components of our allocation strategy algorithms and

show their applicability and scalability with synthetic workload graphs.
In end-to-end–performance experiments in two actual data-oriented sys-
tems, a database-as-a-service system and a database management system
for multiprocessor systems, we prove that our allocation strategies out-
perform alternative state-of-the-art methods.

1 Introduction

The term data-oriented architecture is not fixed and does not refer to a single system
layout. In the context of data management systems, data orientation is commonly
used to describe distributed data processing systems that make the data a first class
citizen and drive the processing based on data locality. Unlike process-oriented or
transaction-oriented architectures, where a single process is assigned to acquire the
necessary data, perform the operations, and return the results, in data-orientated
architectures the data drives the processing. In data-oriented systems, i.e., systems
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that implement a data-oriented architecture, transactions1 are split into self con-
tained units of work. Data and the operations performed thereon are bundled in
tasks and tasks are processed locally on the nodes of the distributed system. The
term allocation in data-oriented systems refers to the mapping of tasks to nodes.
Data locality is a key design principle in data-oriented systems, i.e., tasks are ex-
ecuted where the data resides instead of moving the data to the process. In other
words, a data-oriented architecture uses function shipping while process-oriented ar-
chitectures use data shipping. Data can be moved in data-oriented systems, but only
explicitly when tasks communicate to coordinate or perform complex workloads.
In this thesis, we investigate allocation strategies for systems that implement data-

oriented architectures. We demonstrate the applicability of our solutions in two
different exemplary systems from different application domains, namely a database-
as-a-service system and a database management system (DBMS) for multiprocessor
systems. Although the two scenarios are very different, they base on common prin-
ciples and we show that a unified allocation strategy can be used for both.
Given that the location of data determines where processing is performed, the

allocation is crucial in any data-oriented system. Consolidation, i.e., co-location
and concurrent execution of (possibly unrelated) tasks on single nodes is a central
means to optimize utilization, hence cost-effectiveness, and performance in data-
oriented systems (Curino et al., 2011). Consequently, the decision on where data
resides in data-oriented systems, i.e., the allocation strategy, is commonly taken
from the user and optimized by the system. This optimization is workload-driven,
i.e., based on the actual tasks. An ideal allocation strategy can be used to optimize
for different objectives like minimizing the required number of nodes or maximizing
task performance.
Finding an optimal allocation is an inherently difficult problem. Even on a small

scale, solving the allocation problem is hard, given the complex interactions that
tasks may have. Contention on hardware or operating system resources may lead to
performance characteristics that are hard to predict. The presence of heterogeneous
hardware, dynamic workloads, and dynamic infrastructures add to the complexity
of the problem. To ensure the scalability of data-oriented systems and to keep
them manageable with hundreds of thousands of tasks and thousands of nodes,
fast and reliable algorithms for the allocation problem are mandatory. However,
distributed data processing systems and complex workloads are hard to model and
system behavior is hard to predict (Ahmad and Bowman, 2011; Curino et al., 2011).
Even with the models, the allocation problem has a huge solution space and the
problem itself is NP-hard (e.g., Curino et al., 2011; Schaffner et al., 2013).
The core contribution of this thesis is a set of allocation strategies for data-oriented

systems. Our allocation strategies model workload and infrastructure information
in weighted graphs and solve the allocation problem based on graph partitioning
and mapping algorithms. We extend known heuristics for graph partitioning by
methods to account for non-linear resource behavior. Thereby, we introduce the
notion of penalized weights and secondary weights. To the best of our knowledge,
our method is the first to partition a graph with vertex weights that do not combine
linearly to partition weights.

1The term transaction here refers to any query, statement, or data-processing code

2



2 Foundations of Data-Oriented Systems

As a foundation for our allocation strategies, we present two application scenarios
that use data-oriented systems, namely database-as-a-service systems and DBMSs
for multiprocessor systems. A variety of actual systems exist in both scenarios that
differ in the implementation or in the degree of data orientation, i.e., the granularity
of tasks and the degree of data locality. Although being different, we show in our
thesis that all systems can use a unified allocation strategy once the workload and
the infrastructure are abstracted in the corresponding models.

2.1 Data Orientation in Database-as-a-Service Systems

Cloud computing has become a valid usage model for a variety of applications
and a successful business model for several service providers. Offering (relational)
databases as a service transfers the advantages of cloud computing to the data stor-
age layer and allows applications that rely on a storage layer to run in the cloud.
Database-as-a-service systems implement data-oriented architectures. Relational

databases comprise the actual data (in form of tables) and the operations thereon (in
form of SQL statements). Relational databases can be partitioned, leading to tasks
that communicate to execute a workload. The allocation problem is of high interest
in database-as-a-service systems (e.g., Curino et al., 2011; Schaffner et al., 2013).
The allocation strategy can, for instance, be used to minimize the number of nodes
and thereby reduce resource consumption and operational costs. Furthermore, the
allocation strategy can help to improve performance, to guarantee service levels, and
to ensure availability.
Database-as-a-service systems are implemented by virtualizing the database server

and consolidating multiple virtual servers on a single physical server. However, the
multi-layered system stack of a database management system, ranging from the
hardware layer up to the database schema, allows for virtualization of different levels
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Figure 1: Classification of Database-as-a-Service Systems
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Figure 2: Classification of Data-Oriented Approaches to Modern Hardware

with different characteristics of the resulting system. This leads to the following five
classes, which are also shown in Figure 1: (1) Private OS, (2) Private Process,
(3) Private Database, (4) Private Schema, and (5) Shared Schema (e.g., Jacobs and
Aulbach, 2007; Kiefer and Lehner, 2011; Wang et al., 2008).
The data-oriented systems differ among the implementation classes. Especially,

the granularity of tasks and nodes depends on the layer that is virtualized and
consequently on the portion of the system stack that is shared/private.

2.2 Data Orientation in DBMSs for Multiprocessor Systems

The second category of data-oriented systems considered in our thesis are DBMSs
for modern multiprocessor systems. Classic DBMSs (not being optimized for these
systems) contain many critical sections and central data structures that quickly lead
to contention and hinder scalability (e.g., Huber and Freytag, 2009; Johnson et al.,
2008, 2009; Pandis et al., 2010; Salomie et al., 2011).
Database management systems can leverage the data-oriented–execution principle

an treat multiprocessor machines as distributed systems. Relations are partitioned
and partitions together with the operations thereon form tasks. Tasks are mapped
to multiprocessors of the machine, i.e., the nodes of the data-oriented system.
Different approaches have been proposed to deal with the characteristics of mod-

ern hardware in database management systems. We propose a classification (shown
in Figure 2) that distinguishes classes based on the step in the data access stack
where the data or the access is partitioned. This classification scheme leads to the
following five classes: (1) Shared-Everything, (2) Logical Partitioning, (3) Physio-
logical/Physical Partitioning, (4) Partition Locality, and (5) Process Partitioning.
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3 Allocation Problem for Data-Oriented Systems
In this section, we introduce the allocation problem for data-oriented systems. To
use the allocation strategy, specific data-oriented systems have to be generalized to
an abstract data-oriented system. The abstract system is a common denominator
of different data-oriented systems and acts as an interface to the allocation strategy.
Figure 3 sketches exemplarily the generalization of a (class of) database-as-a-service
system(s) to the abstract data-oriented system.

3.1 Infrastructure and Workload Model
Characteristics of the execution environment are subsumed in the infrastructure.
The infrastructure contains hardware resources that are captured, their types
(bounded or unbounded) and their models to combine loads (linear or non-linear).
Properties of the tasks in the data-oriented system are subsumed in the workload.

Definition 1 (Infrastructure). An infrastructure is an undirected graph of nodes
connected by links. Nodes have bounded and unbounded resources and weight func-
tions map each node to either an absolute or a relative capacity per resource. Each
unbounded resource additionally has a model for combining loads. Link capacities
in the infrastructure are given by an edge-weight function.

Although not explicitly stated, the infrastructure can be heterogeneous. Differ-
ent kinds of actual hardware resources can be modeled in the infrastructure, e.g.,
processing resources (CPU cycles), memory resources (bandwidth, capacity), and
network resources (link bandwidth). The allocation strategy finds mappings based
on the abstract infrastructure instead of any specific resource.
The infrastructure model distinguishes between bounded resources and unbounded

resources. Bounded resources have a hard limit that cannot be exceeded. Overload-
ing a node’s bounded resources leads to an invalid allocation. Unbounded resources
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Figure 3: Abstracting a Specific Data-Oriented System

5



are not literally unbounded but they can (and usually will) be overcommited. Over-
committing an unbounded resource still leads to a valid allocation, even if the per-
formance degrades. The goal of our allocation strategy will be to respect the upper
bounds of bounded resources and to balance unbounded resources.
Several tasks commonly share a single node in data-oriented systems. To be able

to evaluate a given allocation, the aggregated load of a node (induced by all tasks)
needs to be estimated. To grasp the behavior of complex systems, we assume a
simplified resource consumption model that reflects non-linear performance often
found in actual systems. In our infrastructure model, each resource has a (relative)
capacity and a (possibly non-linear) model to combine loads.

Definition 2 (Workload). A workload is an undirected graph of data partitions
connected by data transfers. Data partitions and operations executed on them are
bundled in tasks. Tasks consume bounded and unbounded resources and vertex
weight functions map each task to either an absolute or a relative cost, i.e., load,
per resource. An edge weight function quantifies data transfer costs.

The granularity of a data partition in the workload depends on the implementation
of the data-oriented system, e.g., it may be a single tuple, a relation or parts thereof,
or a whole database. Likewise, a task is a generalization of a query, a transaction,
or any complex set of operations on the data. Data-oriented systems may look
differently and it heavily depends on the actual system how the workload graph can
be derived from the performed tasks. In fact, the workload does not even have to be
in the form of SQL statements. A program, written in a high-level language, that
contains data manipulating operations may as well be transformed to a workload.

3.2 Allocation Problem

The allocation problem can be formulated differently to optimize for different ob-
jectives. Two basic formulations are (1) minimize the number of used resources
without violating performance constraints and (2) maximize performance with a
given amount of resource. Both formulations can be extended and customized to
further specify the allocation problem.
Given the complexity of the underlying systems, performance may be hard to

evaluate without actually materializing a setup and executing the workload. Instead,
meta-objectives that can be evaluated are used in practice to achieve the actual goals.
For instance, the Schism project (Curino et al., 2010) uses the number of distributed
transactions, i.e., the message count, as a meta-objective. Minimizing the number
of transactions that have to communicate is shown to improve performance.
Our allocation strategies optimize performance by minimizing costly communi-

cation and balancing oversubscribed unbounded resources. The first assumption is
that network communication is a major cost factor that, given a partitioning, can
be optimized by the allocation strategy. The second assumption is that balancing
load, especially for oversubscribed resources, leads to the best global performance.
Given these preconditions, we use the following definition for an allocation and a

corresponding formulation for the allocation problem to solve.
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Definition 3 (Allocation). An allocation is a mapping from workload tasks to
infrastructure nodes. For each resource, a node’s load is the combined weight (in-
cluding non-linear behavior) of all tasks assigned to that node. An allocation is
valid if no load is greater than the node’s capacity for all bounded resources. An
allocation is balanced if all loads are equal (within a tolerance) to the average load
for all unbounded resources. An allocation’s communication costs are the sum of all
edge weights of edges between vertices that are assigned to different nodes.

Allocation Problem

Given a workload and an infrastructure, the allocation problem is to find a valid
and balanced allocation that minimizes communication costs.

A number of requirements can be derived for allocation strategies. The infras-
tructure model assumes that performance does not scale linearly with the amount
of work. The allocation strategy must therefore be able to handle this non-linear
infrastructure behavior. Furthermore, the allocation strategy must consider hetero-
geneous infrastructures, i.e., nodes with different capacities, network graphs that are
not fully connected, and links with different capacities. Multiple bounded and un-
bounded resources as well as communication costs must be considered individually
by the allocation strategy. The allocation strategy must be able to incrementally
update a solution after changes in the workload or the infrastructure occurred.

4 Balanced K-Way Min-Cut Graph Partitioning

In this section, we describe the balanced k-way min-cut graph partitioning problem
(GPP) and methods to solve it. The general goal of the problem is to partition
a given graph into k parts such that the sum of edges that are cut is minimized
while keeping the sizes of all parts within balance. Applied to the workload graph,
a balanced min-cut partitioning minimizes communication and at the same time
balances load across the nodes.
To develop an allocation strategy, we start with simplified formulations of infras-

tructure, workload, and allocation. In the GPP, we assume a homogeneous infras-
tructure with only a single unbounded and linear resource. These limitations will
be relaxed step-by-step. Multiple individual resources are covered in the Multi-
Constraint GPP (MC-GPP).2 The Penalized GPP (P-GPP) and the Secondary
Weight GPP (SW-GPP)3 extend the graph partitioning algorithms to reflect non-
linear resources. Extensions to the core graph partitioning algorithms further relax
limitations of the allocation strategy. We propose methods to incrementally update
an allocation, deal with heterogeneous infrastructures, and incorporate bounded
resources.

2Due to space constraints, the MC-GPP is omitted in this extended abstract.
3The SW-GPP is also omitted in this extended abstract.
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4.1 Graph Partitioning
Given an undirected, weighted graph, the balanced k-way min-cut graph partitioning
problem (GPP) refers to finding a k-way partitioning of the graph such that the
total edge cut is minimized and the partitions are balanced within a given tolerance.
Minimizing the edge cut can be considered the objective in the GPP while the
requirement that partitions are of similar size can be considered the constraint.
Partitioning a graph into k partitions of roughly equal size such that the total cut

is minimized is NP-complete (Hyafil and Rivest, 1973). There exist approximation
algorithms with proven boundaries for variations of the problem. However, these
results and the implementations of the methods are only of theoretical interest due to
extremely long runtimes (Andreev and Racke, 2004; Buluç et al., 2013). Heuristics,
such as the multilevel graph partitioning framework, are used in practice to solve
the GPP (Bichot and Siarry, 2011; Buluç et al., 2013).
The multilevel graph partitioning framework consists of three phases: (1) coars-

ening the graph, (2) finding an initial partitioning of the coarse graph, and (3)
uncoarsening the graph and projecting the coarse solution to the finer graphs.
The idea of multilevel graph partitioning is to reduce the initial problem to a much

smaller problem, then to solve the small problem, and last to project the solution
of the small problem to the initial problem. To improve the quality of the final
solution, each uncoarsening step is followed by a refinement step. There are several
intuitive reasons why the multilevel approach leads to very good results. First, one
can use very expensive algorithms or a variety of algorithms on the coarse level
without increasing the overall execution time by a lot. Second, coarsening broadens
the scope of local optimization algorithms, i.e., moving vertices between partitions
in the coarse graph leads to potentially long distance moves of many vertices in the
finest graph. Third, local improvements during the uncoarsening are fast because
they start with an already good solutions.

4.2 Penalized Graph Partitioning
There is a mismatch between the graph partitioning problem and the actual behavior
of the infrastructure. A fundamental assumption in the graph partitioning problem
is that vertex weights sum up to reflect the weight of a partition. To account for the
non-linear performance caused by contention in the actual infrastructure, we propose
the Penalized Graph Partitioning Problem (P-GPP). The P-GPP is a generalization
of the GPP where the goal is to find a k-way partitioning with minimal cut such
that the penalized partition weights are balanced within a given tolerance.
Definition 4 (Penalized Weighted Graph). Let G = (V, E, wV , wE , p) be an undi-
rected, weighted graph with vertexes V , edges E, a vertex weight function wV , and
an edge weight function wE . Furthermore, let p be a positive, monotonic increasing
penalty function that penalizes a partition weight based on the partition cardinality:

p : N→ R≥0 with p(n1) ≤ p(n2) for n1 ≤ n2.

The vertex weight function is extended to sets V ′ ⊆ V (penalized partition weights):

wV (V ′) :=
∑

v∈V ′

wV (v) + p(|V ′|).
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Adding penalties to partition weights invalidates some of the assumptions made
in the GPP and its solution algorithms. Most fundamentally, the combined weight
of two or more partitions is not equal to the weight of a partition containing all
the vertices. Consequently, the total vertex weight wV (V ) of a graph differs from
the total partition weight of the same graph. The total partition weight is the sum
of all partition weights. Consequently, the total partition weight depends on the
partitioning and is not constant for a given graph. This observation has implications
in all steps of the graph partitioning algorithm, e.g., the balance constraint needs to
be modified to refer to the total partition weight instead of the total vertex weight.
In our thesis, we propose modifications of the multilevel graph partitioning algorithm
to solve the P-GPP.

Experimental Evaluation of Graph Partitioning In the thesis, we thoroughly eval-
uate graph partitioning as an allocation strategy. We show the benefit of multi-
constraint and penalized graph partitioning over standard graph partitioning. We
confirm the applicability of graph partitioning as a solution for the allocation prob-
lem by presenting results of various scalability experiments. More specifically, the
graph partitioning algorithms scale well with the number of nodes, the number of
edges, the number of partitions, and the number of constraints (i.e., vertex weights).
Last, in the thesis, we evaluate our extensions of the graph partitioning algorithms
that (1) incrementally update a partitioning, (2) deal with heterogeneous infrastruc-
tures, and (3) incorporate capacity constraints for bounded resources.

5 Experimental Evaluation
In our thesis, we experimentally evaluate our allocation strategies in two data-
oriented systems. First, the experiments are used to test whether the allocation
strategies are applicable in actual data-oriented systems. Second, the experiments
help to evaluate the benefit of our new allocation strategies over existing strategies.
Our first test system is the fully functional database-as-a-service system MTM,

which we developed as part of the thesis. We conduct our experiments using our
own Multi-Tenancy Database Benchmark Framework MulTe (Kiefer et al., 2012)
and Amazon Web Services4. Multiple EC2 instances are used as backend nodes.
Additional EC2 instances are used to host the benchmark application, frontend
tools, and the middleware. We deploy two different setups for our experiments. The
larger setup uses 32 instances as backend nodes and 4 instances drive the benchmark.
In this setup, we host a total of 1,000 databases with an aggregated size of 120 GiB.
Our second test system is the ERIS database management system for multiproces-

sor systems.5 A defining characteristic of multiprocessor systems is the non-uniform
memory access (NUMA) caused by the main memory being directly attached to
the various sockets and hence distributed across the system. Differences in latency

4http://aws.amazon.com
5ERIS is a research prototype developed by the Dresden Database Systems Group at the TU
Dresden (Kissinger et al., 2014).
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and bandwidth up to a factor of 10 between local and remote memory accesses lead
to the conclusion that NUMA systems should be treated as distributed systems.
The ERIS system is an in-memory DBMS that is optimized for the challenges of
multiprocessor systems with non-uniform memory access.
The experiments in both systems reveal that a simple first fit allocation strategy

fails to balance the load, which leads to a skewed system and high relative response
times. Comparing the allocation strategies that are based on graph partitioning, the
experiments show that penalized graph partitioning leads to better overall system
performance in all metrics. Penalized graph partitioning causes fewer outliers than
the unmodified graph partitioning and has better maximum, average, and median
relative response times.

6 Conclusion
Data orientation is a common design principle in distributed data management sys-
tems. The abstract data-oriented architecture, which is based on data locality, is
implemented in different systems in a variety of application scenarios. Allocation
strategies are core components in any data-oriented system. Good allocation strate-
gies can lead to balanced systems while others cause skew in the load and therefore
the application performance and the infrastructure utilization. Optimal allocation
strategies are hard to find given the complexity of the systems, the complicated
interactions of tasks, and the huge solution space.
We show in the thesis that data-oriented systems from different application sce-

narios and with different abstraction levels can be generalized to generic infrastruc-
ture and workload descriptions. We use weighted graph representations to model
infrastructures with bounded and unbounded resources and possibly non-linear per-
formance characteristics. Based on our workload and infrastructure model, we for-
malize the allocation problem, which seeks a valid and balanced allocation that
minimizes communication costs.
Our unified allocation strategies for the generalized data-oriented system are based

on the balanced k-way min-cut graph partitioning problem and the corresponding
multilevel graph partitioning solution heuristic. We show methods to solve the graph
partitioning problem for single and multiple resources and propose methods for re-
sources with non-linear performance characteristics. On top of the basic algorithms,
we propose extensions to (1) incorporate heterogeneous infrastructures, (2) react to
changing workloads and infrastructures by incrementally updating a partitioning,
and (3) enable bounded resources in the infrastructure model.
Experimental evaluations of all components of our allocation strategies on syn-

thetic workload graphs confirm the applicability and scalability of the methods. In
end-to-end–performance experiments in MTM and ERIS, we prove that our alloca-
tion strategies can be used in actual data-oriented systems and that they outperform
alternative state-of-the-art allocation strategies.
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