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1 INTRAOPERATIVE THERMAL
NEUROIMAGING

Thermal imaging (TI) is an imaging technique that detects the emitted heat radiation of a
target object and converts it into temperature values. Heat propagates through various layers
of an object, making inner heat sources visible at outer layers or even at the surface. In the
present work, we will discuss the application of this technique to intraoperative neuroimaging
to analyse human tissue.
Pathological changes of the central nervous system (CNS) require medical intervention in
the field of neurosurgery. Latter is a highly specialized and technological medical discipline
covering the diagnostics and treatment of disorders of the CNS. For diagnostics and OP
planning, a close collaboration with neuroradiology is necessary, since this discipline provides
necessary imaging tools and experience for reasoning about neurological disorders. Hereby,
neuroimaging denotes various approaches to measure and visualize functional and structural
information at different scales.

1.1 BRAIN TUMOUR

The steady growth of abnormal cells in the brain is called brain tumour. These cells can be
categorized by their origin, for example Glioblastoma multiforme originate from a massive
proliferation of Glial cells. This growth increases intracerebral pressure (ICP) causing patho-
physiological symptoms like oedema [17]. ICP induced by brain tumour causes severe tissue
mass movements, a compression of the brainstem as well as a displacement of parts of the
temporal lobe into the posterior cranial fossa [17]. These consequence significantly endanger
the patient’s life. Approximately 6,920 Germans develop a primary brain tumour every year
[15]. In the same year, 5,646 cases of death were reported[15].

1.2 ISCHAEMIC STROKE

Stroke denotes the shortage of substrates like glucose in delimited parts of the brain. This
shortage may be caused by embolic or thrombotic blockage (ischaemic stroke) of a vessel.
Both lead to a (potentially irreversible) loss of brain function of the affected tissue depending



1.3 Thesis Contribution

(a) Cortex reconstruction from preoperative
MRI of a intracranial tumour.

(b) Cortex reconstruction with ischaemic
demarcation shown in green.

Figure 1.1: (a) The white cluster in this image resembles the contrast enhancement of a
grade III Oligoastrocytoma on precentral gyrus. (b) shows the 3d cortex recon-
struction of a patient undergoing MCA occlusion. The infarct demarcation is seg-
mented as green area.

on the duration of the shortage. As consequence, a chain of biochemical reactions to hypop-
erfusion is initiated leading to loss of function, cell death and forming of a cerebral oedema.
When the shortage is below some threshold structure metabolism can’t be maintained prop-
erly causing pathological changes of tissue [17]. A shortage of oxygen and glucose for 60 s
to 90 s causes neurons to pause functional activity. Irreversible damage is induced after a
nutrition shortage of about 3 h. In 2008, 196,000 Germans suffered from a first-time stroke
with 63,000 cases of death [8]. Latter makes a stroke the third most cause of death in Ger-
many right after heart diseases and cancer.

1.3 THESIS CONTRIBUTION

Intraoperative thermal neuroimaging is used to measure the emitted heat radiation of the
cerebral cortex which allows to draw conclusions regarding cortical perfusion. We enrich
these information by an efficient 2D - 3D image fusion framework to combine preoperative
structural information from volumetric MRI recordings with intraoperative thermal neuroimag-
ing data. The quality of thermal imaging data is further improved by filtering camera motion
based on the recognition of characteristic patterns in time-frequency domain. Based on these
findings we developed a FPGA-based motion correction scheme resting upon hardware op-
tical flow estimation. These building blocks now enable us to quantify cortical perfusion
in a standardized way using a machine learning framework that detects cortical rinsings at
minimal delay. This framework is employed for intraoperative classification of the cortical per-
fusion state in case of ischaemic strokes. Latter might enable novel research regarding the
prediction of infarct demarcations and potential future intraoperative therapies for hypoper-
fused tissue. Perfusion changes induced by neurovascular coupling also allow neural activity
monitoring. We propose a semiparametric regression framework that incorporates experi-
mental conditions (like nerve stimulations) and non-deterministic random artefacts that are
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1.3 Thesis Contribution

specific to thermal imaging devices. This approach allows us to unveil and visualize neural
activity of the primary somatosensory cortex and provides surgeons a tool to differentiate
functionally active tissue from tumour tissue. In case of tumour resections, this information
is important to predict and minimize potential post-operative functional deficits and preserve
the patient’s quality of living as long as possible.
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2 IMPROVING PREDICTIVE ACCURACY
AND PERFORMANCE OF THERMAL
NEUROIMAGING

This chapter discusses novel aspects for improved quality, signal to noise ratio and visual-
ization of intraoperative thermal imaging data. A feature representation scheme that allows
foreground-background segmentation is discussed in section 2.1. This approach depicts a
basic building block towards learning representations of thermal data to discriminate tissue
state based on intrinsic thermal properties. Since thermographic images contain weakly
differentiated anatomic information and are prone to artefacts originating from physiological
and environmental sources, further data correction methods are required. In section 2.2,
approaches to the estimation and correction of motion artefacts are discussed. We also pro-
pose an efficient FPGA-based hardware motion correction scheme in section 2.3 allowing
online correction of motion artefacts. Thermal neuroimaging systems measure the emitted
heat of the exposed cerebral cortex, which in turn is mainly influenced by tissue perfusion.
This hampers the visual matching of specific area of thermal images with other modalities
like intraoperative optical imaging or preoperative MR or CT imaging. We approach this chal-
lenge by a generic image registration and image fusion framework in section 2.4. Multimodal
image fusion further allows the surgeon to better assess the quality of the gained results
and depicts an important foundation stone to integration of anatomical and morphological
information into data analytics to quantify functional connectivity, detect focal epileptic sites
or for improved tissue differentiation.

2.1 LEARNING THERMAL PROCESS REPRESENTATIONS FOR
CLASSIFICATION OF CEREBRAL CORTEX

Intraoperative imaging imposes several changes to the employed algorithms. One such is
to minimize the intraoperative delay. This constraint can be approached by restricting the
analysis to foreground objects. For this purpose we note that the thermic time-behaviour of
the exposed cerebral cortex is influenced by artificial noise sources like baseline drift of the
thermographic signal. Cortical perfusion further contributes to the overall thermic signal, yet
the actual influence to the measured thermographic signal is not fully understood yet. To



2.1 Learning thermal process representations for classification of cerebral cortex

(a) (b)

Figure 2.1: Thermal neuroimaging is typically done just after exposure of the cerebral cortex
as shown in (a). This recording was then subject to the AE-CRF classifier and the
results are shown in (b). Expert classification of the cerebral cortex is indicated
by the yellow solid line and the classification result is shown in turquoise.

approach this issue an unsupervised autoencoder is trained to learn latent thermic represen-
tations of the cortex’ dynamic temporal behaviour[12]. The probability distribution of these
high-level features is then learnt by a random forest. The regular and neighbourhood structure
of the imaging data is further exploited by integrating the local probabilities in a conditional
random field with pairwise Potts model potentials. Summarizing, the framework learns char-
acteristic thermodynamic features which are afterwards employed to classify intraoperative
thermal recordings.
Prior to recovering a representation we have to estimate and remove the smooth background

signal T bg = B2d α̂ first by regressing vec(T ) = B2dα using least squares:

α̂ = (BT
2dB2d )−1BT

2dvec(T ) (2.1)

with column stacked version vec(T ) ∈ Rnm of the thermal data T and the tensor product
B2d = Bxy ⊗ Bt of two 1D B-Spline bases (see [4] for details). High-level features f (ci ) are
now learnt from the background corrected and wavelet transformed signal ci (j, k) of pixel i at
scale j and point k given some wavelet function φ

ci (j, k) =
∑

j

∑
k

(Ti (k) − T bg
i (k))2−j / 2φ(2−jn − k) (2.2)

with an linear autoencoder[22] (AE). This AE consists of an encoding f (ci ) and decoding func-
tion g(f (ci )) so that (g ◦ f )(ci ) = AE(ci ) ≈ ci . The functions g,f are commonly modelled as
sigmoid function with weight matrix W ∈ Rd ′×m, bias vector x ∈ Rd ′ . The decoding function
g(x) is constructed by a tied weight W ′ = W T :

f (ci ) = sigm(W ci + b) (2.3)

g(ci ) = sigm(W ′ci + b′) (2.4)

It has to be noted that the output of f (ci ) is a lower-dimensional d ′ � m compact representa-
tion of ci meaning that the decoder g(f (ci )) has to reconstruct the higher-dimensional ci from a
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2.1 Learning thermal process representations for classification of cerebral cortex

lower-dimensional projection f (ci ). This approach preserves information while dropping noise
terms. Recent developments aim to stack multiple AEs and train each layer independently[1].
The learning task is to minimize the reconstruction error of the input data whilst sparsity con-
straints are imposed to prevent overfitting[22]. Commonly, this learning is realized by mini-
mizing a penalized squared loss function.
The probability distribution pi (yi |f (ci )) of the unveiled high-level features for pixel i is then
learnt by a bagged random forest given a bootstrap sampled training set (f (ci ), yi ) of 1 ≤
i ≤ nt elements and labels yi ∈ Y with Y = {fg, bg}. In our case pi (yi |f (ci )) represents
the (un-)certainty that the encoded signal f (ci ) belongs to state foreground p(yi = fg|f (ci )) or
background p(yi = bg|f (ci )). By exploiting the intrinsic regular structure of imaging data by a
conditional random field we further improve the overall accuracy. A discriminative CRF model
allows us to infer a global consistent state zi depending only on the local probability pi (yi ) and
of a probability distribution p(zf |yf ) factored given the neighbour’s f ∈ Ni of pixel i. In general,
the posterior distribution p(Y |FC ) of latent variables yi ∈ Y and observations f (ci ) ∈ FC can
be formulated in terms of unary Ψ and pairwise terms Φ on a undirected graph G = (V, E) as
of

log p(Y |FC ) =
∑
i∈V

Ψi (yi , f (ci )) +
∑

(i ,i ′)∈E

Φ(yi , yi ′ , f (ci ), f (ci ′ )) (2.5)

Note that since only adjacent pixels i , i ′ are connected by an edge in E efficient factoring
of equation 2.5 and therefore fast inference is achieved. The unary potential encodes the
prior probability learnt by the RF classifier whilst the pairwise potential encodes structural
information. To simplify computations and exploit the structure of the imaged data we employ
a Potts model:

Φ(yi , yi ′ , f (ci ), f (ci ′ ) = C · 1yt=yt′ (2.6)

with indicator function 1 and C being a smoothness penalty. Since we are dealing with binary
labels and Potts model equation 2.5 is submodular allowing the application of very efficient
inference method based on graph cuts. Minimizing equation 2.5 now corresponds to finding
a maximum a-posteriori estimate for the labelling Y .

We found that introducing these latent feature representations yielded significant perfor-

RF accuracy [%] µT BoW PCA AE SAE
test 81.1 92.8 96.5 95.5 92.1

validation 81.1 87.4 88 87.3 85.1

Table 2.1: Using a single Random Forest classifier, there is a clear gain in accuracy by the
application of learnt high-level dynamic thermal features.

mance improvements compared to a only temperature-based model for segmentation of
foreground to background pixels. The results indicate that thermodynamic parameters of cor-
tical tissue allow more fine-grain reasoning about tissue. This approach might be a first step
towards fine-grained tissue characterization by means of its dynamic temperature behaviour.
In contrary to classical machine learning approaches, no explicit feature crafting is required
since discriminative features are learnt independently. Therefore, the framework is not lim-
ited to the discussed segmentation task but introduces enough flexibility to unveil various
pathological patterns, if these can be characterized by thermal behaviour.
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2.2 Filtering of camera movement artefacts

CRF accuracy [%] µT BoW PCA AE SAE
test 86.1 94.4 98.5 98 94.8

validation 87.7 89.1 88.8 89.2 88

Table 2.2: The RF-CRF model compensates false negatives of the plain RF classifier and im-
proved its performance considerably.

2.2 FILTERING OF CAMERA MOVEMENT ARTEFACTS

Intraoperative recordings of thermal imaging systems require object distances below 30cm
to minimize the influence of external noise sources. For this purpose, the camera is mounted
at the operating table by a system consisting of several freely moveable hinges. This camera
setup is prone to vibrations, for example caused by the initial orientation of the camera or
during electrical stimulations. These induce a periodic shift of the whole camera introducing
artefacts into the time course of each pixel. In case of weak signal to noise ratio, the induced
motion artefact might superimpose existing signals at same frequency range. We solve this
challenge by detecting and removing characteristic components in time-frequency domain
that originate from global camera motion[9]. The camera movement leads to a linear shift
of all pixels in the same direction at small time scales. Therefore, all pixels follow the same
trajectory and show similar behaviour. The amplitude of the error strongly depends on the
pixels Jacobian matrix. High values and therefore distinct gradients induce strong artefacts.
Let the time course of n pixels be modelled by Xraw ∈ Rn×m with m = 2jmax+1 and jmax ∈ N+.
Let further denote X j ∈ Rn×m the wavelet transformed Xraw (see the previous section) at
wavelet scale j. Various components superimpose the data in this domain, for example
periodic heart rate patterns, neural activity and global motion artefacts. One approach to
differentiate latter artefacts from actual data is principal component analysis. PCA requires
a eigenvalue decomposition of the empiric covariance matrices of the wavelet coefficients
X j ∈ Rn×2j

at wavelet scales 1 ≤ j ≤ jmax . Each of the 1 ≤ k ≤ 2j eigenvectors v j
k describes

a characteristic frequency pattern. By a change of basis of X j given Φ = [v j
1 · · · v j

2j ] into

W j = X jΦ =

w1(1) . . . w2j (1)
...

...
...

w2j (n) . . . w2j (n)


we represent all pixel’s wavelet coefficients at scale j in terms of the eigenvectors v j

k and
score wk . Eigenvector k describes a global time-frequency pattern that contributes to the
overall time-frequency content of pixel i by wk (i) ∈ R.
Now we can form two sets of pixels. One containing pixels in distinct X + and another
containing pixels in a rather smooth X − neighbourhoods. Distinct neighbourhoods lead to
larger amplitudes of the error pattern compared to the expected strength of the artefacts in
smooth neighbourhoods. We quantify this assumption by the subspace contribution ratio rk

(see figure 2.2):
rk = wk (X +) / wk (X −) (2.7)

Eigenvectors that resemble global motion artefacts lead to a skewed ratio of wk (X +) to
wk (X −) hence cause significantly deviating values of rk . In order to isolate these eigenvec-
tors, we form a global motion impact factor Rj = (r1, r2, ..., r j

2) for each scale j. This factor is
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2.3 Object-based motion correction by hardware optical flow estimation
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Figure 2.2: The subspace contribution ratio is modelled to take significantly outlying values in
case of motion artefact specific components in time-frequency domain.

modelled as Gaussian random variable: R ∼ N(ax + b,σ). The parameters are fitted using
iteratively-reweighted least squares and outlying rj ’s are found by a t-Test with Bonferroni cor-
rected significance level α = 0.05/ m and m being the number of tests (pixels). Eigenvectors
with outlying rj ’s are then wiped and the motion corrected estimate is achieved by inverse
PCA and inverse discrete wavelet transform.
This procedure was applied to representative intraoperative imaging data. We used average
spectral density as accuracy metric since no groundtruth information is available. Dataset
1 was recorded during an ECoG measurement consisting of high-frequent vibrations of the
camera system at a spatial extent of 5 pixels (∼ 1cm). After application of the proposed
method any motion artefact visually disappeared. The average spectral density was further
significantly lowered by the proposed method. The second dataset consists of weak mo-
tion artefacts at strong spatially varying thermic background noise. Even in this case, the
average spectral density was highly reduced and any motion visually disappeared. Using the
discussed motion correction scheme, we are able to estimate the actual error pattern and in-
tegrate it into subsequent data analysis workflows. It further allows us to differentiate global
artefacts from local periodic effects with similar spectral bandwidth. Latter is especially use-
ful since it is now able to differentiate motion terms from pulse-rate frequency components.

2.3 OBJECT-BASED MOTION CORRECTION BY HARDWARE OPTICAL
FLOW ESTIMATION

Based on the promising results of the just discussed approach we will now discuss our exten-
sion towards online motion correction[19], [20]. Online methods are a favourable extension
since they do not introduce further delay to intraoperative workflows. The approach bases
on estimating object-based optical flow between adjacent frames on FPGA hardware using
cellular non-linear networks.
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2.4 Image fusion of intraoperative thermal imaging with preoperative MRI

The translation (∆x,∆y ) of a pixel is modelled given

(I(x, y, t + 1) − I(x, y, t)) ≈ δI
δx
∆x +

δI
δy
∆y (2.8)

Object-based optical flow estimation requires a slight modification to former equation yet
yields an algorithm being more robust to noise. Suppose global motion has occurred and we
are given pixels ki ∈ W with 1 ≤ i ≤ N of an arbitrary partition k ∈ X of the set X of pixels.
Solving the basic equation of object-based optical flow estimation (equation 2.9) using least
squares now yields an estimate for global motion in ∆x and ∆y direction within time points t
and t + 1: K (t; w1)

...
K (t; w4)

 =

KX1(t) KY 1(t)
...

...
KX4(t) KY 4(t)

[∆x
∆y

]
(2.9)

given 4 windows, K (t; w ) =
∑

p∈w Ip(t + 1) − Ip(t) and KXj , KYj being the summed partial
derivates of window j.
The approach was implemented on a novel CNN FPGA hardware platform for high-speed
signal processing[2]. The approach was applied to intraoperative data and compared to the
just discussed PCA-based method. Run times of 4.7 ms (8Bit) and 13.3 ms (12 Bit) per
frame validate the demanded online performance since the thermal imaging system records
data at 50 Hz. The evaluation yielded results with accuracy being comparable to the offline
PCA-based method. We found that for larger cortex images an improved window selection
scheme must be employed. In summary the approach is an efficient and generic scheme
for hardware optical flow estimation and motion correction which is applicable to thermal
imaging data recorded during arbitrary neurosurgical interventions.

2.4 IMAGE FUSION OF INTRAOPERATIVE THERMAL IMAGING WITH
PREOPERATIVE MRI

Thermal images originate from the emitted heat of a body leading to smooth images without
distinct gradients. This hampers the exact correlation with structural (anatomic) features to
some extent. In order to combine information recovered from analysing the heat distribution
with structural features, image registration of the imaging modalities must be done. We
approach this idea by a generic 2D-3D calibration based image registration and image fusion
framework[14].
Guided tumour resections are typically supported by intraoperative Neuronavigation systems.
These systems require the registration of the patient with preoperative imaging modalities by
matching the position of so called fiducial markers in preoperative datasets and during op. It
is further possible to track the spatial position of a so called instrument adapter, which in turn
can be attached to arbitrary devices. By exploiting this fact, the main task of the developed
framework is to establish a projection of the spatial position of the instrument adapter to the
position of the sensor array of the imaging device in MRI coordinate space. The following
compound affine transformation T maps the spatial position of the instrument adapter onto
the position of the imaging system’s sensor array and corrects the dimensions of the virtual
image plane:

T = Mscale * Mc * Ma * MBrainlab (2.10)

9



2.4 Image fusion of intraoperative thermal imaging with preoperative MRI

(a) Orthogonal Projection
(b) Image Fusion MRI - Ther-

mography

Figure 2.3: By using an orthogonal projection as seen in (a), it is possible to map 2D planes
onto 3D surfaces (b).

given camera calibration matrix Mc, additional transformations Ma, the spatial position and
orientation of the instrument adapter MBrainlab and virtual pixel size correction denoted by
Mscale. The parameters are estimated once by an offline calibration scheme. Subsequent im-
age fusion is realized by an orthogonal projection that maps 2D coordinates onto the nearest
coordinate in MRI coordinate system (see figure 2.3).
Our experiments were realized using a novel imaging phantom[23] which was recorded by

a 3D MRI Siemens Magnetom Verio scanner. Accuracy analysis was done by an exhaustive
evaluation suite to quantify influence factors like calibration of the instrument adapter, track-
ing beam accuracy, MRI accuracy, orientation of the camera wrt. the surface. We identified
that the mounting of the instrument adapter affects the overall system accuracy the most.
In order to estimate the worst-case accuracy, we placed the IA at extremal positions and
measured a worst-case inaccuracy of 1 cm. In thermal imaging this would be a uncertainty
of about 5 pixel. The average accuracy of the system is 2.46 mm.
In [10] we proposed a segmentation algorithm to isolate vessel structures in thermal imaging
data by their characteristic thermal behaviour. In combination with recovering such structures
in optical imaging data, feature-based co-registration of both modalities might be achievable
so that the discussed 2D-3D framework is not limited to a single intraoperative 2D imaging
device. Given the achieved accuracy, the discussed image fusion framework enables the
intraoperative multimodal image fusion, so that extracted information from 2D intraopera-
tive imaging devices like thermal- or optical imaging can be combined with and integrated
into intraoperative neuronavigation systems. This allows the surgeon to validate the gained
results by means their anatomic localization as well as to combine rather abstract thermal
information with morphological structures. Another future approach depicts the extraction
of anatomic and tissue information from preoperative 3D imaging like CTI or MRI for their
integration as prior into data analytics frameworks. The influence of vascular disease to the
arrival time of intraoperative arrival time of perfusion tracers could now be modelled by ex-
ploiting structures from preoperative magnetic resonance angiography recordings. Another
future aspect might be the utilization of specific information from human brain atlases, like
the localization of Broadman areas relative to the exposed cerebral cortex, for analysis of
neural activity in order to improve statistical hypothesis testing.
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3 TIME-RESOLVED THERMOGRAPHY
FOR TISSUE PERFUSION ANALYSIS
IN NEUROSURGERY

Active dynamic thermography denotes the method of applying temperature gradients to an
object in order to analyse its time-dependent thermal behaviour. In medical thermal imag-
ing, this method was used for analysis of burned skin[16], tumour tissue[7] and cortical
perfusion[21]. We extend these findings by seamless intraoperative workflow in combination
with a generic mathematical framework for detection of NaCl rinsings of the cortex surface
and subsequent standardization and classification of cortical perfusion[11]. This framework
is applied to the analysis of tissue perfusion of cases with ischemia. We propose to evaluate
the heat distribution of the exposed cortex after application of a cold NaCl solution to the
surface.

3.1 RINSING DETECTION AND CLASSIFICATION FRAMEWORK

Cortical rinsings are a common method in neurosurgery as they prevent dehydration of ex-
posed tissue and therefore don’t impose any harm to the patient or require special tools.
All rinsing events were detected and candidate selection for subsequent heating analysis is
achieved by a novel machine learning detection framework. The main idea is to partition the
data into overlapping windows and recognize learnt characteristic rinsing features (see fig-

Figure 3.1: Overview of the proposed rinsing detection framework.



3.1 Rinsing detection and classification framework

ure 3.1). Learning the respective parameter configuration is realized by Markov-Chain Monte
Carlo sampling. The framework was optimized so that it is possible to detect rinsing events
intraoperatively by minimizing delay time.

3.1.1 STREAMING RINSING DETECTOR

We observed that neurosurgeons apply cortical NaCl rinsings in very heterogeneous ways
making the streaming detection of rinsing events a challenging task. In the following we
will give a schematic overview to the rinsing event detector for continuous thermal measure-
ments. A detailed discussion can be found in [11].
A rinsing event denotes the point of time after a cold NaCl solution was applied to the cortex.
This event causes a characteristic pattern into sorted thermal data s(p, i) = tj of pixel p, index
i ∈ [1, .., n] and time stamp tj . The quality of a rinsing event of pixel i is quantified by matchi :

matchi = fnorm ×
xstep∑
i=x1

|T (p, s(i)) − corr (i)| < thrdiv (3.1)

given normalization factor fnorm, measured temperature T (p, s(i)) of pixel p at time index i.
xcorr denotes a correlation function (following the shapelet idea of Ye and Keogh[24]) that
is used to compute the similarity of the measured thermal signal with a single exponential
function relative to the threshold thrdiv. The chosen single exponential function can be seen
as approximation to tissue heating[16].
We integrate information about detected rinsing events of adjacent pixels into the framework
by

score(i , j) = factor (matchi , matchj ) × max(dTi , dTj ) (3.2)

with dTi and dTj being the maximum temperature differences in the analysed temporal
windows of pixels i and j while match represents the similarity of both cooling events.
scoresum(j) integrates the local score of pixel j over its neighbours Nj

scoresum(j) =
∑
i∈Nj

ln(||i − j||22 + 1)−1score(i , j) (3.3)

A rinsing event is flagged as detected iff scoresum(j) is greater than a learnt threshold. Since
several rinsings can occur during continuous thermal imaging a selection scheme is required
for comparable data analysis. The basic idea is to match the rinsing event’s time stamp with
an estimated reference time stamp tsref

tsref = argmax
tj∈C

{
i=2∑

i=−2

h(tj+i )

}
(3.4)

which resembles the time stamp of a cooling event that affected the highest number of
pixels. The detector’s parameters are learnt once by an offline Metropolis-Hasting Markov
Chain Monte Carlo sampler[6].
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3.2 Application and conclusion

id sex/age pathology result comment
1 f/61 MCA infarct negative too low contrast
2 f/61 MCA+ACA infarct negative liquid too hot
3 m/59 MCA infarct positive
4 f/50 MCA infarct questionable classification unclear
5 f/63 vasoplastic infarct positive
6 f/75 MCA infarct positive

Table 3.1: Overview of results from classifying the decay constant of tissue heating after
application of an intraoperative rinsing to the cortex.

3.1.2 TISSUE STATE CLASSIFICATION

Tissue perfusion is then approximated by Antoni Nowakowski’s double exponential model[16]:

T (t) = Tequ + ∆T1exp(−tλ1) + ∆T2exp(−tλ2) (3.5)

Tequ depicts the tissue’s equilibrium temperature while ∆T1 and ∆T2 are scaling coefficients.
The temperature decay constants λ1 and λ2 characterize the tissue’s temperature change
rate. At least two sources influence the tissue’s heating behaviour: temperature change
caused by the applied fluid and the temperature change induced by subcortical tissue and
perfusion. We assume that λ1 of the fluid is larger than λ2 of the imaged tissue since fluid
drains quite fast compared to tissue heating.
Suppose λ2 describes the heating behaviour of underlying tissue, then we expect very char-
acteristic values in case of ischaemic stroke. An increased perfusion or even overperfusion
of tissue yields significantly increased λ2 at respective sites. Suppose λ2 is sampled from
latent tissue state S = {ischaemic, uncertain, healthy}. The expected behaviour of λ2 is
approximated by

λischaemic
2 ∼ N(µi ,σi )

λuncertain
2 ∼ N(µu,σu)

λ
healthy
2 ∼ N(µh,σh)

Θ = (µi ,µu,µh,σi ,σu,σh) are estimated by Expectation-Maximization algorithm. The 3-GMM
yields p(λS

2 = λ2;Θ) which denotes the probability of λ2 belonging to any of the expected
classes. This allows the following greedy segmentation strategy:

s̃(p) = argmax
s∈S

p(λs
2 = λ2;Θ) (3.6)

Each state’s probability might be a reasonable indicator to further infer knowledge regarding
the progression of the ischaemic demarcation.

3.2 APPLICATION AND CONCLUSION

We applied the novel framework to several cases suffering from severe ischaemic strokes
with indicated decompressive craniectomy. The infarct demarcations were further segmented
in pre- and postoperative CT measurements by a neurosurgeon. A qualitative evaluation of
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3.2 Application and conclusion

Figure 3.2: A the infarct demarcation is segmented as green-blue in a post-operative CT
recording. Subimage B shows the orientation of the thermal image to the CT
dataset. C depicts the temperature distribution at equilibrium temperature after
the rinsing. D displays the spatial distribution of λ2 and E shows the histogram of
all λ2 values. F represents segmentation of perfusion properties. The estimated
hypoperfused tissue state (blue) correlates with postoperative infarct demarca-
tion. Some tissue is located near well perfused arteries (green) and might indicate
areas that might be affected by further ischaemic progression.

the resulting segmentations base on the categories positive, questionable and negative. Two
cases yielded rejected classifications caused by erroneous cortical rinsings, which enforces
the requirement for more robust cooling protocol to prevent this issue. Analysis of one
dataset yielded a questionable result, meaning that more tissue was classified as healthy
than the CT infarct demarcations indicate. We suspect the necessity for more fine-grained
classification of uncertain tissue states being related to this issue. In three cases we found a
correlation of the segmented perfusion parameters with infarct demarcations as observed in
pre- and postoperative CT measurements. The developed novel rinsing detection framework
grounds on optimized machine learning based detector to classify thermal characteristics of
cortical rinsings with minimum delay. This detector allows us to quantify and analyse corti-
cal perfusion (state) during cerebral infarction by a commonly used intraoperative approach
even in unperfused tissue. In conjunction with preoperative CT recordings, the framework
provides the surgeon valuable information regarding the progression of infarct demarcations.
Latter might be used a building block for research of future local intraoperative therapies.
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4 PENALIZED REGRESSION SPLINES
FOR INTRAOPERATIVE FUNCTIONAL
THERMOGRAPHY

Functional imaging is a common and important task in neuroscience. Commonly used math-
ematical frameworks like SPM[5] allow the integration of arbitrary experimental conditions
into a linear model and provide statistical inference methods to infer significant responses
to these conditions. Our model extends this idea by integrating piecewise-linear character-
istic noise patterns and time-behaviour of thermal imaging, which would otherwise prevent
reliable statistical inference on intraoperative thermal imaging data.

4.1 SEMIPARAMETRIC MODELLING OF EVOKED NEURAL ACTIVITY

In order to minimize post-operative functional deficits we propose to visualize neural activity
by intraoperative thermal imaging[13]. This grounds on the fact that neural activity induces a
neurovascular coupling chain, leading to an increase of regional cerebral blood flow (rCBF) at
functionally active sites. This change in rCBF also correlates with small temperature changes,
that can be measured by high-sensitive thermal imaging devices. We now extend prior find-
ings of Gorbach et al.[7] by a sound semiparametric model (see [18] for an introduction to
semiparametric regression) for thermographic data. The proposed semiparametric model
consists of experimental and random effects. The random effects map both high-frequent
behaviour like periodic motion and other artefacts and low frequent non-linear temporal drift
behaviour.
FMRI experiments have shown that neural activity initiates the neurovascular coupling chain.
Latter also induces deviating thermal behaviour into thermal time courses caused by altered
regional perfusion. This is typically propagated through several tissue layers, for what reason
we expect the thermal signal to resemble a smooth bell-like curve. We propose to approxi-
mate this curve by a Gaussian function with µ resembling the time-to-peak and σ being its
width:

1

σ
√

2π
exp((−(ti − µ)/ 2σ)2) (4.1)

The semiparametric model consists of two random effects with both resting upon B-Spline



4.1 Semiparametric modelling of evoked neural activity

Figure 4.1: The left image shows the 3d cortex reconstruction from a preoperative MRI
dataset. The tumour is demarcated in purple color. Analysing thermal imaging
data by our novel semiparametric regression framework now allows to unveil sen-
soric activity at fine-grain resolution compared to prevalent phase reversal.

basis functions. The first random component consists of less knots to approximate the
low-frequent temporal drift. The second random component approximates unwanted high-
-frequent behaviour. Both are modelled as degree k B-Spline by Zj = B•,k (j ∈ {1, 2}, see [3] for
details) and the experimental conditions are modelled as of equation 4.1 (depending on the
actual experimental protocol) and plugged into X . All of them are stacked into G = [X, Z1, Z2].
In order to prevent the second component to account for low-frequent patterns and by this
hiding the experimental conditions, we add an additional frequency penalty to the respective
model formulation:

min
b

||Gb − y ||22 + λ||PW GSb||22 (4.2)

given the wavelet transformation matrix W and the signal estimate Gb containing fixed and
random effects.

S = blkdiag(0noFixedEffects, 1noRandomEffects) (4.3)

P = blkdiag(I128, 0m−128) (4.4)

Finally, P and S restrict the penalty to lower wavelet scales (dyad 1 through 6) of the random
effects to decrease the low-energy power of the respective estimate. This model can be
solved analytically by the penalized normal equations

b̂(λ) = (GT G + λST GT W T PT PW GS)−1GT y (4.5)

The non-uniformity correction of thermal imaging system introduces regular discontinuity
points into the data. To account for this issue, we estimate the temporal position tjs of each
non-uniformity correction event and add an additional B-Spline knot at each tj to the high-fre-
quent B-Spline model. This approach introduces additional flexibility into the model since it
is possible to account for steep changes at respective time points.
Finally, hypothesis testing at Bonferroni corrected level αbonf is employed to unveil statis-
tically significant parameter estimates of the experimental conditions (see figure 4.1) that
correlate with evoked neural activity.
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4.2 Results

Table 4.1: Results of intaoperative SSEP analysis.
case sex / age pathology location preop. clinical condition activation TI IOI

1 m / 58 metastasis adeno-ca. precentral l. hemiparesis r. (4/5) positive correlation
2 f / 33 metastasis mamma-ca. parietal l. facioplegia positive no OI
3 m / 79 metastasis melanoma frontoparietal r. hemiparesis l. arm (3/5) l. leg (4/5) positive correlation
4 f / 72 glioblastoma parietal r. hemiparesis l. leg (3/5) weak weak correlation
5 m / 69 glioblastoma parietooccipital l. symptomatic seizures positive correlation
6 m / 72 astrocytoma grade III parietal l. hemiparesis brachiofacial none weak signal
7 f / 60 metastasis RCC parietal l. no paresis weak no OI
8 f / 70 glioblastoma parietal l. hypesthesia 4th and 5th finger r. none strong signal
9 f / 84 anaplastic meningioma frontoparietal l. progressing half-side-disability positive no OI

4.2 RESULTS

The cohort consists of data recorded during tumour resection near somatosensory cortex.
The patients were under general anaesthesia and focal activations were provoked by con-
tralateral median nerve stimulation. The stimulation protocol consisted of 10 repeated 30 s
stimulation and 30 s rest phases. Besides statistical analysis of thermal imaging data fur-
ther validation was accomplished by concurrent optical imaging measurements allowing a
qualitative comparison of the achieved results, by electrophysiological measurements (phase
reversal) and anatomic localization of the estimated eloquent areas. We expect the accuracy
of optical imaging to be better than thermal imaging since the method provides increased
penetration depth compared to thermal imaging yet at cost of being sensitive to light scat-
tering and reflection. In all cases we validated the occurrence of sensory activity on the
exposed cortex by intraoperative phase reversal. The results of the proposed semiparamet-
ric regression framework are shown in table 4.1. Positive denotes a recovered clear delimited
statistically significant activation in thermal imaging (as shown in figure 4.1) and intraoperative
optical imaging, whereas the focal activation centres correlated in both modalities. By weak
we denote results with sparse clusters of active pixels whose spatial position correlates with
optical imaging. Weak and positive classified results were further validated by their anatomic
localization meaning that this label is only preserved if the found eloquent site corresponds
to the expected site being responsible for contralateral stimulations of median nerve. Nega-
tive means inconsistent results with thermal imaging rejecting activity while optical imaging
found activity. The only two negative results were caused by a suboptimal (skewed) orien-
tation of thermal camera while the cortex showed strong convexity and Gyrus postcentralis
being located at the boundary of the trepanation. All these suboptimal measurement condi-
tions degrade the overall accuracy and therefore prevent the detection of weak signals.
We were able to successfully unveil statistically significant somatosensory activity by a new
semiparametric regression framework that incorporates experimental conditions as well as
artefacts of thermal imaging systems. The model further enables the scientists to adopt the
experimental conditions to arbitrary stimulation protocols, so that the application domain is
not limited to the analysis of the primary somatosensory cortex. The surgeons gets a tool
to unveil and visualize cortical activity intraoperatively which in case of tumour resections
near eloquent areas supports the neurosurgical decision in terms of potential postoperative
functional loss or limitations.
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5 SUMMARY
Neurosurgery is a highly specialized and technologically demanding branch of surgery for
treatment of disorders of the central nervous system. In this work, we discuss methods to
improving the predictive accuracy of intraoperative thermal neuroimaging as well as provide
mathematical frameworks to analyse two specific pathologies intraoperatively: brain tumours
and ischaemic strokes. For this purpose we discussed necessary extensions to establish
thermal imaging as flexible and robust neurosurgical decision support system. Camera move-
ment artefacts are filtered by principal component analysis in time-frequency domain. We
further extended this approach by a realtime optical flow-based motion correction scheme
running on FPGA hardware. In order to correlate characteristic objects and functional infor-
mation of preoperative volumetric scans (like MRI) with results of intraoperative 2D imaging,
we developed a multimodal image registration and image fusion framework. One application
was demonstrated by integrating intraoperative thermal imaging into preoperative 3D MRI
scans at mean accuracy of 2.46mm.
In case of acute ischaemic strokes intraoperative analysis of cortical perfusion provides infor-
mation regarding the progression of infarct demarcations. In combination with the analysis
of tissue composition these information might be used to isolate hypoperfused tissue that
might be subject to future local intraoperative therapies to preserver or even recover func-
tionality. This long-term goal might decrease potential post-operative functional defects. For
this purpose we developed a machine learning framework for online detection of intraoper-
ative cortical NaCl rinsings. Latter induce a temperature gradient to cortical tissue which is
propagated into deeper tissue layers. After rinsing event classification, tissue heating is mod-
elled and quantitatively analysed to recover standardized perfusion parameters. In case of
patients suffering ischaemic strokes the results indicate that the temperature decay time of
heating processes allow to draw conclusions about tissue’s perfusion state. We showed that
these temperature decay constants correlate with the infarct demarcation as seen in post-op-
erative CT measurements of the same patient. Integrating this information with knowledge
from preoperative CT imaging the surgeon might yield valuable information regarding the pro-
gression of infarct demarcations. Latter might be a building block for research of future local
intraoperative therapies.
Tumour resections require the differentiation of functional from pathological tissue to pre-
serve the patient’s postoperative quality of living as long as possible. Somatosensory evoked
potentials (SSEP) are a common method to provoke neural activity on primary somatosen-
sory cortex. Neural activity also causes weak changes in cortical perfusion that correlate with



5 Summary

temperature changes in the emitted cortical heat. We analyse these temperature changes by
an advanced semiparametric regression framework that combines deterministic experimen-
tal SSEP conditions and random components describing low- and high-frequent background
signals. The promising results were validated by concurrently acquired intraoperative opti-
cal imaging data. Latter approach was only possible through our advanced hardware setup.
To the best of our knowledge, we are first to realize concurrent optical and thermal imaging.
Generally speaking the developed regression framework allows to incorporate arbitrary exper-
imental setups for the evocation of neural activity. The visualization of neural activity during
neurosurgical tumour resections allows to guide medical decisions regarding the extent of
tumour mass removal. Postoperative functional limitations or deficits significantly affect the
patient’s outcome for what reason tissue resections require robust intraoperative schemes
for the visualization of eloquent areas.
The methodical achievements of this thesis improve the predictive accuracy of thermal imag-
ing and hence allow demanding applications. Motion correction and multimodal image fusion
depict important building blocks of medical decision support systems. The proposed semi-
parametric regression framework was employed for monitoring of somatosensory activity.
The generic approach allows the integration of arbitrary intraoperative electrical stimulation
protocols. Future applications are the visualization of neural activity of the motor cortex, visual
cortex as well as during language processing tasks. Furthermore, the discussed approach to
quantify cortical perfusion yields a standardized representation of vascular processes. We
expect that optimized rinsing protocols might allow fine-grain differentiation of brain tissue
in the future. Some experiments in case of tumour detection were already done and under-
line this potential future direction. The application of distributed optimization schemes for
parameter estimation of the proposed semiparametric framework and for complex Bioheat
equations might be potential vectors for intraoperative thermal neuroimaging.
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