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Introduction

According to Wikipedia, logic can be considered as “the use and study of valid

reasoning”. In mathematics and computer sciences one is usually interested in formal

logic, i.e. “the study of inference with purely formal content. An inference possesses

a purely formal content if it can be expressed as a particular application of a wholly

abstract rule, that is, a rule that is not about any particular thing or property.”

The formality of the content under logical consideration allows one for examining

the reasoning without references to particular entities. Hence, formal logic offers a

uniform approach to reasoning in all possible domains.

An attempt to formalize a domain and bring it to logical discourse leads to an

idea of logical theories, i.e. a set of axioms describing the domain. We can classify

logical theories with respect to the expressive power of the logical language used

to construct the theory. Although very expressive languages are being successfully

investigated, and modern computer system are able to arguably efficiently reason

using very expressive languages, the composition of queries to the theories and the

interpretation of the results of reasoning are left to humans. Thereby, the most

intuitive and easy to understand axioms are of a great value. However, the most

simple theory is an empty theory. Hence, a good trade-off between expressiveness

and complexity of a language should be kept. Arguably the most useful theories

should mimic the way people organize knowledge in their minds. With this in mind
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we focus on logical theories containing only implications, i.e. logical connectives

corresponding to the rule of causality “if . . . then . . . ”. We call these theories

implicative theories. Such theories not only correspond to our requirements, but

also have certain theoretical advantages (e.g. polynomial complexity of standard

reasoning tasks).

Another advantage of implicative theories is that they can be constructed

from data – collection of facts about particular entities from a domain. However,

if the data is not complete, the obtained theory may contain invalid implication.

Namely, some implications may be violated by further facts. Entities violating

the implications are called counter-examples. This suggests an idea of constructing

implicative theories through refinement of existing theories via adding new data.

Moreover, any implicative theory may be compactly represented through its

(implication) basis. All the valid implications of the implicative theory are logical

consequences of the basis. In [GD86] a minimal in cardinality implication basis

was introduced (the canonical basis). Therefore, it is possible to use this basis

representation and look for counter-examples to the implications from the basis.

The iterative procedure of computing an implication basis from examples, looking

for a counter-example, and refining the data with a newly found counter-example is

called Attribute Exploration (AE) [GW99].

The mathematical domains are probably the most suitable domains for per-

forming AE, because the mathematical statements, if decidable, are either true or

false. Moreover, we may try to generate the desired counter-examples algorithmi-

cally.

Structure of Current Study

Formal Concept Analysis (FCA) [GW99] is extensively used in the current investi-

gation as the main toolbox for derivation, analysis, and representation of knowledge.

Moreover, developed in the frames of the current study methods add to the method-

ology of FCA. We represent the data in form of a triple (G,M, I) called a formal

context ; the set G is called the set of object ; M – the set of attributes ; I – (binary)

relation between objects and attributes.

The study contains a theoretical introduction (Chapter 1) and descriptions

of two investigations about automation of the explorations of knowledge in two

domains: parametric expressibility of logical functions and interrelations between

algebraic identities.
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The domains of application of AE are chosen such that the respective implica-

tive theory is of an interest for experts from respective domain. The goal of both

investigations is to explore the implicative theory of the domain, i.e. find all valid

implications (in basis form) over selected attributes.

The present study is in a large part based on two articles [Rev14, Rev15]. Fur-

ther concepts and ideas are borrowed from the articles [KR15, RK12, Rev13]. The

main results of the articles are embedded into this study, which represents them

coherently in a more wholistic way. The results of the current study were com-

municated at international conferences (ICFCA 2014, submitted to CLA 2015), at

international workshops (AAA 89, EPCL Workshop 2013), and at research seminars

(Institut für Algebra TU Dresden, Knowledge Systems group TU Dresden, Theory

and Logic group TU Wien, School of Data Analysis and Artificial Intelligence HSE

Moscow).

The program code written for the execution of the current investigations is

stored at https://github.com/artreven.

Chapter 2: Lattice of P-Clones

The expressibility of functions is a major topic in mathematics and has a long history

of investigation. The interest is explainable: when one aims at investigating any kind

of functional properties, which classes of functions should one consider? If a function

f is expressible through a function h then it often means that f inherits properties of

h and should not be treated separately. Moreover, if h in turn is expressible through

f then both have similar or even the same properties. Therefore, partition with

respect to expressibility is meaningful and can be the first step in the investigation

of functions.

With the development of electronics and logical circuits a new question arises:

if one wants to be able to express one possible function which minimal set of functions

should one have at hands? One of the first investigations in this direction was

carried out in [Pos42]. There all the Boolean classes of functions closed under

expressibility are found and described. Afterwards many important works were

dedicated to related problems such as the investigation of the structure of the lattice

of functional classes, for example, [Yab60]. However, it is known that the lattice of

classes of functions closed under expressibility is in general uncountably infinite. In

[Kuz79] a more general type of functional expressibility was introduced – parametric
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expressibility. A significant advantage of this type of expressibility is that for any

finite domain Ak (k is the size of domain) the lattice of all classes closed under

parametric expressibility classes of functions (p-clones) is finite [BW87]. However,

finding this lattice is an extremely complex task. For k = 2 the lattice of p-clones

was known. For k = 3 in a thorough and tedious investigation [Dan77] it was proved

that a system of 197 functions forms the lattice of all p-clones.

In this chapter we are interested in “minimal” (with respect to parametric

expressibility) logical functions. Namely, we are busy with the question “which

functions do we need to add to the context in order to be able to reconstruct the

lattice of p-clones?” We introduce, develop, and investigate the methods and tools

for automation of the exploration of the lattice of p-clones. In this case objects and

attributes are the same functions and the role of I plays the commutation between

functions. The standard AE is not suitable for such investigation, therefore, an

extension is introduced and investigated. Therefore, this chapter “applied” to A3

can be seen as complementing the work [Dan77] where a proof of the correctness of

the results obtained using the elaborated in this chapter tools can be found. Namely,

in this chapter we answer the question how to find all the p-clones, whereas in

[Dan77] it is proved that certain functions allow us to construct the desired lattice.

The presented methods and tools are extendable to larger domains as well.

In this chapter we face the task of violating implicative constraints with fi-

nite counter-examples to implications over functions. We introduce two competing

strategies to finding counter-examples and investigate and compare the resulting

algorithms.

The first strategy is to start from the premise of the implication (H → j), find

functions satisfying the premise H, and afterwards find those of them that do not

satisfy the conclusion j. In order to satisfy H a function f has to commute with all

functions from H.

The second strategy is to start from the conclusion of the implication (H → j),

find functions violating the conclusion j, and afterwards find those of them that

satisfy the premise H. In order to violate the conclusion, i.e. f 6⊥ j, there has to

exists a matrix M such that f(Mj) 6= (fM)j.

It is shown that the algorithms explore search space in different manners and,

therefore, may arrive at different solutions. Moreover, it is shown that none of the

algorithms uniformly outperforms the other. Therefore, the best results are obtained

when using both algorithms simultaneously.

Further on the necessary extension of AE is introduced and discussed. The
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extension is particularly suitable for discovering p-indecomposable functions. The

resulting procedure is further investigated. According to the proved propositions

it is necessary to look for not more than two (second-order irreducible) functions

at once in order to find all p-indecomposable functions. This task is infeasible as

there exist too many functions. Fortunately, it is feasible to find not only counter-

examples to implications over functions, but also find single (first-order irreducible)

functions that are not counter-examples, but alter the concept lattice. Moreover, if

it would be possible to prove that the undiscovered so far functions are not second-

order irreducible then we can guarantee that all the p-indecomposable functions will

eventually be discovered. We show that if we start from all unary functions on A3

all the p-indecomposable functions on A3 will eventually be discovered.

At the end of the chapter the results are discussed. The elaborated methods

and tools allow for successful completion of the exploration. The experiment on A3

was run. All 197 p-indecomposable functions and 2986 p-clones were successfully

found.

Contributions

• New original approach to exploring the lattice of p-clones introduced;

• Two approaches to finding finite counter-examples are introduced;

• Corresponding algorithms are described, compared, implemented;

• An extension of the standard exploration procedure is introduced and investi-

gated;

• The whole procedure is implemented and executed; the obtained results con-

firm with the previously known results;

• It is proved that for certain starting conditions the desired lattice will neces-

sarily be eventually discovered.

Chapter 3: Implicative Theory of

Algebraic Identities

Algebraic identities describe different classes of algebraic structures (equational

classes) and therefore play one of the central roles in algebra. The field of research
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that studies common patterns of algebraic structures is called universal algebra

[Bir35]. As noted in [Tay79]: “The role of algebraic equations was pronounced from

the start”. The studying of equational classes is essentially important for mathe-

matics.

A central question one could ask about equational classes is the following:

if the class satisfies a given set of identities which other identities are necessarily

satisfied by all the members of the class? The strength and importance of equational

deduction can be well appreciated from the words from [CT51]: “it has even been

shown that every problem concerning the derivability of a mathematical statement

from a given set of axioms can be reduced to the problem of whether an equation is

identically satisfied in every relation algebra. One could thus say that, in principle,

the whole of mathematical research can be carried out by studying identities in the

arithmetic of relation algebras.” It is well known that in general it is not possible

to decide if an identity is deducible from a given set of identities, see e.g. [Tar41].

Even for a finite set of equations this question can be undecidable [Tay79, p. 28].

However, there are special classes of identities for which the questions is decidable,

for example, groups [Deh11]. The modern field of science called automated theorem

proving has made a big progress in equational deduction (as a part of deduction in

first order logic). To be more precise equational deduction is semidecidable, meaning

that it is not always possible to say if the answer is negative, i.e. when an identity

does not hold. As a counterpart of automatic theorem provers, automatic model

finders are also actively developed. However, modern tools concentrate on finite

models.

Deductibility is not at all the only question of interest about equational classes.

As pointed out in [BS81, Recent Developments and Open Problems] finding (finite)

bases for equational theories and classification of equational classes are in scope of

current research activities. For the purpose of solving these two questions in a given

set of identities one could find all possible interrelations between identities inside this

set (implicative theory of identities). Up to now no automated knowledge processing

algorithm was offered to automatize the research of the implicative theory of a given

set of identities.

Automation of usage of AE for the exploration of identities and making it

efficient issues a number of unique challenges. For example, though only 70 identities

of size up to 5 are under investigation, it turns out that it is not possible to finish

the investigation considering only finite counter-examples. The structure of possible

infinite counter-examples is investigated and, based on this investigation, a method

for finding these counter-examples is introduced and implemented.
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In this chapter we consider the context of algebras and identities. In particular,

we describe an algorithm for checking the satisfaction of identities in finite algebras

and an algorithm for finding non-equivalent identities of a given size. The most

significant results of this chapter consist in introducing and proving the criteria

of the necessity of infinite counter-examples, investigating the structure of infinite

counter-examples, and introducing an algorithm for finding them.

We identify that infinite counter-examples are necessary and described classes

of implications that have only infinite counter-examples. We investigate possibilities

of finding these infinite counter-examples. This investigation starts from the anal-

ysis of their structure. We inspect the universe of an infinite counter-example and

introduce an infinite subuniverse corresponding to a particular term operation. We

prove that it suffices to consider only infinite algebras such that the only infinite sub-

universe is the introduced one. Afterwards we introduce a computational model and

an algorithm for finding the infinite counter-example with the discovered universe.

The algorithm is capable of finding all the needed infinite counter-examples.

In AE of algebraic identities two methods for finding counter-examples are

used: finite counter-examples are found using Mace4 [McC10], infinite counter-

examples are found using implementation of the introduced algorithm. Moreover,

before finding counter-examples the program Prover9 [McC10] makes an attempt

to prove implications. The exploration is successfully finished. The final context

after reduction contains 626 finite algebras and 1529 infinite algebras (altogether

2155 algebras). All 4398 unit implications from the canonical basis are proved.

Contributions

• An algorithm for finding non-equivalent identities is introduced and imple-

mented;

• The conditions of the necessity of infinite counter-examples are introduced and

proved;

• The structure of infinite counter-examples is investigated;

• A computational model and an algorithm for generating infinite algebras sat-

isfying a set of identities and not satisfying a given identity is developed and

implemented;

• The results of a successful exploration are discussed.
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Conclusion

In the frames of the current project general approaches to automatic constructions

of implicative theories for mathematical domains are investigated on two applica-

tions. The methodology of investigation is based on discovering knowledge from

(counter-)examples – the procedure of Attribute Exploration. The relevant proce-

dures are analyzed and implemented. The implementation is independent of the

domain of application, hence, may be used for further explorations.

In both applications we succeeded in automatizing the process of exploration

of the implicative theories. This goal is achieved thanks both pragmatical approach

of Attribute Exploration and discoveries in respective domains of application. The

structures of the attributes in the investigated domain is the key to developing

efficient methods of finding counter-examples – the core of Attribute Exploration.

In the current study the methods and algorithm for finding both finite and

infinite counter-examples are investigated and developed. In the case of infinite

counter-examples the preliminary knowledge about the structure of the desired so-

lution is essential for finding the counter-examples. In the case of finite models it is

necessary to develop competitive algorithms implementing different computational

strategies. The parallel run of the algorithms allows for finding counter-examples in

limited time.

In case of p-indecomposable functions it is necessary to extend the procedure

of Attribute Exploration and to investigate the extended version. It turned out that

in case of growing number of attributes it is difficult to state any assumptions about

the overall success of the exploration. However, we succeed in the exploration of

p-indecomposable functions on three-valued domain, and the developed tools and

methods may be used for an exploration on an even larger domains.

The two diverse application domains favourably illustrate different possible

usage patterns of Attribute Exploration – in one case the number of attributes

is fixed, however, counter-examples are infinite, in the other case the number of

attributes grow, but the counter-examples are finite. The elaborated approaches may

be further developed and used not only for constructing the complete implicative

theories, but also for a more widespread problem of finding counter-examples to

certain implications.

The choice of mathematical domains as domains of application is justified

by the fact that the considered in the project mathematical statements are either

true or false. Moreover, it is possible to generate the desired counter-examples
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algorithmically. The real life is usually more complex, the truth of many statements

is argued, in order to find a counter-example it is necessary to attract experts of

the respective domain. The current investigation (probably, together with methods

for finding mistakes in object intents [KR15, Rev13]) may be seen as the first step

to elaborating a system for organizing the knowledge and assisting experts from a

domain in working with this knowledge.
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