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Large-scale distributed systems are at the core of every successful online service on the
Web. Operating such systems at scale comes with a number of challenges related to fault
tolerance. Since machine and process crash failures are common in production, many systems
critical to Web-scale services are using techniques such as state-machine replication [Sch90]
to guarantee availability and integrity despite crash failures. Real-world examples of such
systems are Chubby [Bur06], ZooKeeper [Hun+10], and Megastore [Bak+11].

Although occurring less often than crash failures, hardware errors also occur in produc-
tion [SPW09; HSS12] and are expected to happen more frequently in future hardware genera-
tions [BC11]. A non-negligible number of these errors is uncorrectable by hardware techniques
such as error-correcting codes (ECC) [SPW09] and manifest to the application as state corrup-
tions. As consequence, a process might commit a so-called value failure by externalizing
corrupted state, for example, by sending a corrupted message out.

In spite of crash-tolerant systems being successfully deployed and extensively used in prac-
tice, their underlying crash-failure model does not include value failures. Consequently, one
may expect value failures to propagate across the system, bringing the system to inconsistent
states and even causing outages. Recent events have shown large distributed services being
disrupted by failures of this nature, resulting in long periods of unavailability, e.g., the Amazon
S3 case in 2008 [Das08].

In this work, we argue that preventing end-to-end error propagation due to state corrup-
tion should be a first-class requirement for large-scale fault-tolerant distributed systems. We
design, formalize, proof correct, implement, and evaluate hardening techniques that enable ex-
isting crash-tolerant protocols to handle state corruption with minimal developer intervention.
In particular, we define hardening as any transformation of distributed system processes that
allows each process to locally detect its own faults and “virtualize” them into benign failures
such as process crashes and message omissions.

In this short version of the dissertation, we start by discussing the causes and effects of
hardware errors in distributed systems. Next, we briefly describe our contributions.

1 HARDWARE ERRORS IN THE WILD

Hardware errors can be caused by several reasons such as cosmic rays, aging, heat and
production failures [SPW09] as well as electromagnetic coupling [Kim+14], hardware/software
incompatibility [Ker07], and even incorrect use of dynamic voltage/frequency scaling. The
cause of an error is called fault. Hardware faults can be transient or permanent, depending
on whether they are bounded or continuous in time [Avi+04]; and they can affect different
hardware components, in particular, sequential-logic circuits used in memory elements as
well as combinational-logic circuits used in computation units.

Regardless of the specific hardware faults, the caused errors manifest at the application
level as state corruptions, which in turn may propagate as crash failures or, in the worst case,
as value failures.

Unfortunately, the consequences of state corruption in distributed systems are rather unpre-
dictable due to the inherent complexity of communication patterns among processes. Con-
sider the following anecdotal examples.

• Chandra et al. have observed hardware errors corrupting the state of processes in some
instances of the Google’s Chubby locking service [CGR07], resulting in at least one com-
plete failure of the service; the duration of the outage was however not reported.

• In July 2008, a single flipped bit in a machine propagated via messages to other pro-
cesses, contaminating them and finally causing an 8-hour outage of Amazon S3 service
in US and Europe [Das08]; a severe service disruption to most clients of the S3.
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• Ma.gnolia, a social bookmarking website, had a major date corruption episode in Jan-
uary 2009 [Mag09], losing all its data from all its users; an event that finally led to the
company’s shutdown at the end of 2010.

Hardware errors might not only disrupt the availability and integrity of systems. Hardware
errors have also been successfully used to compromise the security of systems. Govindava-
jhala and Appel have have shown how to gain control over a Java Virtual Machine using a heat
lamp pointed to the memory modules of a computer [GA03].

In some cases, attackers do not even have to tamper with the hardware; instead, they
can simply wait for the errors to happen. Recently, Dinaburg has proposed a new form of
attack called bitsquatting [Din11]. The attacker registers DNS entries pointing to addresses
with potentially dangerous content, as in typosquatting attacks. The registered names differ
from well-accessed website names by single flipped bits instead of differing by a typo – e.g.,
mic2osoft.com results from microsoft.com by bitflipping the one bit in its fourth character1.
Dinaburg has collected evidence that such domain names receive a non-negligible number of
hits per day, and suggested that the reason for that are hardware errors during the resolution
of domain names in one of the many resolvers or even in the local caches at the clients.
Nikiforakis et al. have recently shown that the number of such domains registered has been
increasing continuously [Nik+13], corroborating the claim that such attacks are feasible and
successful.

While undetected state corruptions are hard to track down beyond single episodes like the
one mentioned above due to the need of application-specific information, some work has
studied the frequency of detected errors at the hardware level in large populations of comput-
ers. Hwang et al. recently analyzed hardware error detection logs coming from 300 TB/year
worth of DRAM memory from Google’s servers and other large server systems [HSS12]. They
showed a high rate of detected state corruptions in memory of up to 167,066 FIT2. Nightin-
gale et al. analyzed Windows Error Reporting logs collected over 8 months from nearly one
million machines; they observed that the likelihood of a first detected CPU subsystem error oc-
curring in a machine is nearly an order of magnitude higher than of the first detected memory
error [NDO11]. These and other studies – e.g., Schroeder et al. [SPW09], and Dinaburg [Din11]
– confirm the intuition that faults that would be very unlikely in a small cluster become much
more likely at scale.

Given that the hardware error rate is expected to increase in the future [Shi+02; Bor05;
Fen+10; BC11], such errors might become more frequently at a small scale as well. According
to researchers from Intel, the reliability per bit tends to decrease by 8% in every generation
of processors [Bor+04; Bor05]. The rate of transient errors for processors is rising and it
might reach up to one user-visible failure per day per chip with 16 nm technology [Shi+02;
Fen+10]. New processor generations have traditionally achieved higher performance through
higher circuit density and lower energy consumption, but this trend has reached physical limits
where reliability starts to be negatively affected [Bor05].

2 CONTRIBUTIONS

The dissertation is mainly divided in four chapters. The chapter Error isolation and hardening
states the problem of this work and defines the theoretical model used by our hardening
techniques. Each of following chapters – Encoded processes, Scalable error isolation and
Hardened state-machine replication – describe a hardening technique, defines its algorithms,
and present a prototypical implementation, which is then evaluated in terms of performance
and fault coverage.

1In ASCII code, the binary value 1110010 represents the letter r, while 1100010 represents the number 2.
2Failures in time (FIT) is the number of failures expected in 109 device-hours of operation.
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We now overview the contributions of each of these chapters.

2.1 ERROR ISOLATION AND HARDENING

Error isolation is a central concept of this dissertation. We define error isolation as the property
in which corrupted messages do not propagate errors between processes of the system,
i.e., corrupted messages might be sent in the system, but they are always discarded by
correct receiver processes. Error isolation can be achieved with traditional techniques such as
Byzantine-fault-tolerant algorithms. Nevertheless, we are interested in techniques that achieve
error isolation locally, i.e., exchanging no additional messages among processes. We define
hardening as a transformation of a program p into a program ph, such that if all processes of
the system run such a program ph, then error isolation is guaranteed locally. We then show
that if error isolation holds, crash-tolerant distributed systems can also tolerate arbitrary faults
in environments free of malicious attacks and bugs.

To design hardening techniques, we have to first model the effect and extent of arbitrary
faults inside processes. Therefore, we introduce a new fault model upon which the hardening
techniques presented in this work are constructed: the arbitrary state corruption (ASC) fault
model. Correia et al. first proposed the ASC fault model as the underlying fault model for the
PASC algorithm [Cor+12]. In contrast to their ASC fault model, the model recasted here is (1)
more precise by using a cleaner notation and structure; (2) more general by having one main
assumption, namely, fault diversity, and (3) decoupled from any specific hardening algorithm
such as PASC. To show the expressiveness of our ASC fault model, we sketch an ASC-based
formalization of the error model used in the AN-encoding literature.

2.2 ENCODED PROCESSES

The first hardening technique presented in this work is an adaptation of AN-encoding [Sch11].
One of the known problems with AN-encoding and other error-detection techniques is a lack of
a formalism [Per+07]. We do the first steps in modeling and proving AN-encoding correct in a
formal framework for distributed systems. First, we define a simplified AN-encoding technique
that only supports a small instruction set. We call the technique Perfect AN-encoding, or PAN-
encoding. We then refine the ASC fault model with assumptions specific for PAN-encoding,
and prove the technique correct. Next, we estimate the coverage of our assumptions, pinpoint
the formalization limitations and difficulties, and discuss existing approaches to increase the
assumption coverage.

Despite requiring some strong assumptions, AN-encoding turns out to be very effective in
practice. We show that by designing and implementing a framework capable of automati-
cally encoding distributed applications developed on top. Our framework extends the scope
of AN-encoding to distributed systems in a systematic way. Moreover, a practical issue not
considered in previous work is the excessive network traffic overhead caused by sending en-
coded messages out. We propose a bandwidth optimization to reduce the network overhead
to a constant factor of 8 bytes per message.

To evaluate our approach, we implement two well-known algorithms on top of our frame-
work: the Highly-available Leader Election Service by Fetzer and Cristian [FC99]; and the multi-
instance Paxos by Lamport [Lam98], which is widely used in replicated systems [Bol+11]. Our
experimental results illustrate the possible trade-off between fault coverage and CPU uti-
lization. Encoded Paxos variants show virtually no network overhead: They reach the same
request throughput as the native variant with 5 acceptors at the cost of extra CPU cycles and
higher response time. Under a load between 1 k and 5 k.req/s, for example, encoded variants
of Paxos provide response times, varying from 20 to 105 ms; an overhead of at least 4 times
in relation to the native variant. The encoded variants of the leader election provide excellent
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election times, while consuming at most 11% more CPU cycles. Finally, our fault injection re-
sults suggest that AN-encoding can successfully guarantee error isolation: An encoded Paxos
proposer has its probability of undetected errors (given that a failure occurred) decreased two
orders of magnitude, from 16% to about 0.34%.

2.3 SCALABLE ERROR ISOLATION

Our second hardening technique is Scalable Error Isolation (SEI), a new hardening technique
that wraps a process of a distributed system and executes redundant checks to prevent the
process from propagating local errors to other processes. SEI is scalable in three dimensions.
For memory, SEI can leverage hardware error detection such as ECC to virtually eliminate
the memory footprint of redundant information. For computation, SEI supports multithreading
and, thus, covers complex error propagation patterns among threads sharing the same state.
For development effort, SEI enables hardening real-world applications with minor developer
involvement. Moreover, SEI is designed to formally guarantee error isolation in presence of
ASC faults under two main assumptions: fault diversity and a fault frequency assumption,
which asserts that at most one ASC fault may occur per traversal.

In this chapter, we start by refining the ASC model and presenting a specification of SEI,
assuming single-threaded applications. Next, we prove SEI correct. We then extend the
model, algorithms and proofs to support multithreaded applications.

We also present an implementation of our hardening technique called libsei. Hardening
processes with libsei is a semi-automated task, requiring the developer to manually mark
the regions of the program that represent handlers and messages. Nevertheless, libsei
allows for hardening existing systems with a small amount of effort. We demonstrate that by
hardening two real-world applications: memcached and a recursive DNS resolver. We discuss
our experience hardening these applications in detail.

We conducted extensive fault injection experiments, both software- and hardware-based,
and performance evaluation of our hardened applications. SEI presents an excellent trade-
off between fault coverage and performance. It makes the likelihood of error propagation
negligible: down by two orders of magnitude from 44% to only 0.15% of the errors using
targeted fault injection, and no undetected errors when reducing the CPU voltage. For mul-
tithreaded memcached, the throughput overhead is almost zero with value sizes of 128 bytes
or larger, while the memory overhead is about 30 KiB (the number of bytes modified during
event handling).

2.4 HARDENED STATE-MACHINE REPLICATION

State-machine replication is a well-known fault-tolerance technique, applied in industry-level
systems such as Chubby, ZooKeeper, and Megastore. All these systems assume a crash-stop
failure model, where processes only fail by silently crashing; they cannot withstand arbitrary
state corruptions.

Byzantine fault-tolerant (BFT) algorithms can tolerate state corruptions, but typically incur un-
justifiable ownership and maintenance costs. In contrast, AN-encoding (encoded processes)
and SEI-hardening can harden crash-tolerant systems against state corruptions without requir-
ing the systems to be replicated. These approaches, however, have a space and/or perfor-
mance cost associated with their generality.

In this chapter, we suggest that if an application already employs replication, one can opti-
mize these hardening approaches to incur a smaller overhead. In particular, we show that, by
hardening only part of the underlying atomic broadcast algorithm, benign-fault-tolerant SMR
systems and the service running on top can tolerate state corruptions, while incurring little
state, throughput and response time overhead.

5



We propose HardPaxos, a variant of the Paxos, an algorithm widely used to implement
SMR-like systems. In HardPaxos, critical functions and state variables are factored out of the
algorithm and kept in a module called HardCore. We then describe how to satisfy the Paxos
invariants given a trustworthy HardCore.

If HardCore is an ordinary software module, it is also subject to hardware errors. HardCore
is made trustworthy by hardening with AN-encoding (used in the encoded processes tech-
nique) and duplicated execution (a largely simplified version of SEI’s approach). If a hardware
error affects the state or computation of HardCore, the whole process is aborted with a high
probability. Moreover, all messages exchanged in HardPaxos are augmented with end-to-end
error detection codes that allow the receiver’s HardCore to detect the incorrect execution of
a non-silent faulty process.

Finally, we perform extensive fault injection experiments to evaluate the fault coverage of
our hardening. The experiments show a decrease of undetected errors from 15% without
hardening down to 0.9% with AN-encoding and further down to 0.02% with AN-encoding
plus duplicated execution. We also show that the hardening does not hamper performance.
Even with the strongest hardening, the throughput loss is at most 4% for small messages
(64 bytes) and close to zero for messages of 1 KiB or larger; the increase in the single response
time does not exceed 5%.

3 CONCLUSION

Hardware errors may cause state corruptions, which are a threat to distributed systems that
can have catastrophic consequences. In this dissertation, we propose hardening as a class of
general techniques for protecting distributed systems against state corruptions in an end-to-
end fashion, while requiring changes strictly local to each process of the system. Hardening
techniques guarantee error isolation, the property in which no faulty process propagates in-
ternal errors and contaminates correct processes. With hardening in place, developers can
employ existing benign-fault-tolerant algorithms to implement systems tolerant not only to
crashes and message loss, but also to a wide range of hardware errors. Our hardening tech-
niques do not require any trusted software or hardware components and are systematic: They
are fully- or semi-automatic, requiring minor effort from the developer to employ them.
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