
Faculty of Computer Science Institute of Software and Multimedia Technology

Software Technology Group

A FAMILY OF ROLE-BASED
LANGUAGES

Thomas Kühn
Born on: 11.09.1985 in Karl-Marx-Stadt (now Chemnitz)

DISSERTATION
to achieve the academic degree

DOKTOR-INGENIEUR (DR.-ING.)

Referee
Prof. Dr. Colin Atkinson
Supervising professors
Prof. Dr. Uwe Aßmann
Prof. Dr.-Ing. Wolfgang Lehner

Submitted on: 3.3.2017

2

ABSTRACT

Role-based modeling has been proposed in 1977 by Charles W. Bachman [Bachman et al., 1977], as
a means to model complex and dynamic domains, because roles are able to capture both context-
dependent and collaborative behavior of objects. Consequently, they were introduced in various
fields of research ranging from data modeling via conceptual modeling through to programming
languages [Steimann, 2000a]. More importantly, because current software systems are character-
ized by increased complexity and context-dependence [Murer et al., 2008], there is a strong demand
for new concepts beyond object-oriented design. Although mainstream modeling languages, i.e.,
Entity-Relationship Model, Unified Modeling Language, are good at capturing a system’s structure,
they lack ways to model the system’s behavior, as it dynamically emerges through collaborating ob-
jects [Reenskaug and Coplien, 2009]. In turn, roles are a natural concept capturing the behavior of
participants in a collaboration. Moreover, roles permit the specification of interactions indepen-
dent from the interacting objects. Similarly, more recent approaches use roles to capture context-
dependent properties of objects. The notion of roles can help to tame the increased complexity
and context-dependence. Despite all that, these years of research had almost no influence on cur-
rent software development practice. To make things worse, until now there is no common under-
standing of roles in the research community and no approach fully incorporates both the context-
dependent and the relational nature of roles [Kühn et al., 2014]. In this thesis, I will devise a formal
model for a family of role-based modeling languages to capture the various notions of roles [Kühn
et al., 2015a]. Together with a software product line of Role Modeling Editors, this, in turn, enables
the generation of a role-based language family for Role-based Software Infrastructures (RoSI).

Abstract 3

1 INTRODUCTION

“Modeling is one of the most fundamental processes of the human mind.”
– [Rothenberg et al., 1989]

In other words, Jeff Rothenberg reminds us that, modeling is the basic ability of abstracting aspects
of reality to better comprehend and reason about certain aspects of reality avoiding its complexity,
danger and irreversibility [Rothenberg et al., 1989]. In detail, he characterized modeling as activity
“to represent a particular referent cost-effectively for a particular cognitive purpose”. This is par-
ticularly true for conceptual modeling, which is “the activity of formally describing some aspects of
the physical and social world around us for purposes of understanding and communication.” [My-
lopoulos, 1992]. By extension, a conceptual model is a formal description of parts of a subject do-
main by means of concepts and their interrelations. In contrast to other models, such as street
maps or floor plans, conceptual models are not only required to be understood by humans, but
also by computers. Thus, this enables their use not only for communication and problem-solving,
but also for formal validation and artifact generation. Although most would assume that classical
conceptual modeling languages, such as the Entity-Relationship Model (ER) [Chen, 1976] or the
Unified Modeling Language (UML) [Rumbaugh et al., 1999], are appropriate conceptual modeling
languages, several researchers, e.g., [Steimann, 2000c, Atkinson and Kühne, 2002, Guizzardi et al.,
2004, Liu and Hu, 2009], have pointed out their deficiencies when used to model more complex,
context-dependent, and dynamic domains. This, in turn, makes these conceptual modeling lan-
guages inappropriate for such domains, and – in the words of Jeff Rothenberg – their use “can do
considerable harm” [Rothenberg et al., 1989].

The PhD thesis – A Family of Role-Based Languages – contributes to the field of conceptual mod-
eling by investigating role-based modeling languages (RMLs) as promising approach to more ap-
propriately model nowadays complex, context-dependent and dynamic domains.

Both role-based modeling languages (RMLs) and role-based programming languages (RPLs) have
been investigated for several decades.1 The first account for the application of roles to modeling
dates back to 1977, when Bachman and Daya proposed the Role Data Model [Bachman et al., 1977].
They facilitate roles as “a defined behavior pattern which may be assumed by entities of different
kind” [Bachman et al., 1977, p.45] to handle different entity types playing the same role type co-
herently [Bachman et al., 1977]. Till the year 2000, the term “role” has occurred in multiple areas
within computer science, e.g., access control,2 knowledge representation, conceptual modeling,
data modeling, as well as object-oriented design and implementation [Steimann, 2000a]. How-
ever, after Steimann surveyed the contemporary literature on roles [Steimann, 2000b], he correctly
observes that by 2000 “the influence of the role data model on modelling has at best been mod-
est” [Steimann, 2000b, p.85]. While Steimann is right when he claims that roles as behavioral pat-
tern were not adopted in modeling, most modeling languages feature roles as named places at the
end of relationships, e.g., ER [Chen, 1976] and UML [Rumbaugh et al., 1999]. Thus, while roles
are well-established in modeling languages their semantics differ and their full potential is rarely
utilized. Since Steimann’s survey, more elaborate applications of the role concept have been pro-
posed ranging from knowledge representation [Loebe, 2005, Guarino and Welty, 2009], via data
modeling [Halpin, 2005, Liu and Hu, 2009, Jäkel et al., 2015], and conceptual modeling [Guizzardi
and Wagner, 2012, Hennicker and Klarl, 2014] through to object-oriented design and implementa-
tion [Baldoni et al., 2006, Herrmann, 2005, Balzer et al., 2007]. Although these approaches employ

1By the 8th of October 2017, it will be exactly 40 years.
2Throughout this thesis we consider Role-Based Access Control (RBAC) [Ferraiolo et al., 1995] as a special application

for roles with a rather narrow scope.

4 1 Introduction

roles to model, reason, and implement context-dependent behavior of objects to cope with the re-
quirements of mobile and pervasive applications [Herrmann, 2005, Liu and Hu, 2009], their propos-
als had almost no impact on mainstream modeling and programming languages. Reenskaug and
Coplien perfectly put this into perspective, when they emphasize that “Object-oriented program-
ming languages traditionally afford no way to capture collaborations between objects” [Reenskaug
and Coplien, 2009] and that “roles [could] capture collections of behaviors that are about what ob-
jects do” [Reenskaug and Coplien, 2009]. In other words, the past years of research on roles had next
to no influence on current software development practice, in spite of clear evidence that roles can
tame the increased complexity and context-dependence of current context-adaptive, distributed
software systems.

From the previous discussion, one could argue that the introduction of roles failed due to the in-
sufficiency of the role concept. While it is true that no big case study has shown the sufficiency of
role-based modeling and programming, it does not necessarily follow that the lack of adoption in
practice is a result of its insufficiency. In my opinion, there are four basic reasons why roles have
not been adopted by more researchers and practitioners. First, until now there is no common un-
derstanding of roles in the research community [Steimann, 2000b, Kühn et al., 2014]. Instead, each
approach focuses on certain features attributed to roles. Second, the research field itself suffers
from discontinuity and fragmentation of the various role definitions [Kühn et al., 2014]. In particu-
lar, most approaches did not take previous results into account and did not continuously improve
role-based modeling. Third, there are only few approaches, e.g., [Genovese, 2007, Zhu and Zhou,
2006, Hennicker and Klarl, 2014], that provide a formal foundation for their RML incorporating
most of the features of roles [Steimann, 2000b, Kühn et al., 2014]. Last but not least, most role-based
modeling and programming languages are not readily applicable, because of their complexity, level
of abstraction, and/or missing tool support. These issues not only hinder researchers improving
previous approaches, but also software practitioners exploring new modeling and programming
languages. The first two issues can be tackled by developing a family of role-based modeling lan-
guages by means of the features of roles. However, the third and fourth issue must be addressed by
providing a comprehensive formal foundation for roles, a role-based modeling language incorpo-
rating most features of roles, and, finally, readily applicable tools that support its use for the design
of future role-based software systems.

To achieve these goals, the PhD thesis makes the following contributions to the research areas on
role-based modeling and programming languages:

1. It extends the initial list of features of roles by adding 12 new features retrieved from contem-
porary approaches, discussed in Chapter 2 of the thesis.

2. Based on these features a Systematic Literature Review (SLR) [Kitchenham, 2004] was con-
ducted to survey the contemporary literature on RMLs (Chapter 4) and RPLs (Chapter 5).

3. Next, it establishes the foundations of the RMLs (Chapter 7) by introducing the Compartment
Role Object Model (CROM), a framework for conceptual modeling that incorporates most of
the features of roles into a coherent, graphical modeling language and provides a set-based
formalization of roles.

4. Additionally, a corresponding graphical modeling editor, called Full-fledged Role Modeling
Editor (FRaMED), is presented that allows the creation, manipulation and provisioning of
CROM models.

5. To approach the discontinuity and fragmentation of the research area on roles, this PhD thesis
proposes a metamodeling approach for the creation of a family of RMLs (Chapter 8).

Henceforth, this summary highlights key contributions of the thesis.

5

name:String creationtime:DateTime
amount:Money

Bank Transaction

Account
id:int
balance: Money

trans1 1

BankAccounts (1..1)

Person
title: String
firstName: String
lastName: String
address: String

Company
name: String
legalForm: String
addresses: String[]
POBox: String

own_ca

1

0..*

own_sa1..* 0..*

2..20..*
Participants (1..1)

0..*

0..*

1..*

advises

0..*

1..*

Natural Type Role Type

Fills-Relation

Compartment Type RSTCardN CardM

RoleGroup (n..m)

Card

Data Type

RST Constraint

irreflexive

id:int
name:String

Customer

TargetSource

limit:Money

CheckingAccount

transactionFee:Double

SavingsAccount

execution:DateTime

MoneyTransfer

phone:String

Consultant

∃ Existential Role
Implication

∃

Figure 1: Role model of the banking application with additional constraints.

2 BACKGROUND

The notion of roles is very old. Yet, there is still no common understanding of roles in the litera-
ture [Steimann, 2000b, Kühn et al., 2014]. On the contrary, [Steimann, 2000b], [Kühn et al., 2014],
and this PhD thesis identified 27 features attributed to roles that are grouped into the three natures
of roles, e.g., the behavioral, the relational, and the context-dependent nature of roles.

2.1 RUNNING EXAMPLE

Before briefly introducing the natures of roles, Figure 1 introduces the example role model of a
banking application that is used throughout the PhD thesis and this document. It describes a Bank
as a compartment managing Customers, who own CheckingAccounts and SavingsAccounts.
They can be advised by one or more Consultants. However, the advises relationship is constrained
to be irreflexive, to prohibit self advising consultants. The Transaction compartment is specified
to orchestrate the transfer of money between exactly two Accounts by means of the roles Source
and Target. Moreover, a unique Target counterpart for each Source has to exist. This is ensured
by the one-to-one cardinality of the trans relation. Additionally, the role group with 1..1 cardinal-
ity enforces that one account cannot be Source and Target in the same Transaction. Finally,
Persons can play the roles Consultant and Customer; Companies only Customer; and Accounts
the roles CheckingAccount, SavingsAccount, Source, and Target. Last but not least, each Ac-
count referenced in a transaction must be a valid account in a Bank. In sum, this scenario is small
enough to serve as a comprehensive running example, however, it still imposes several design chal-
lenges for application designers. These challenges will be addressed in the following sections, to
motivate the different natures of roles.

6 2 Background

2.2 NATURE OF ROLES

The behavioral nature establishes that unrelated objects can play roles and roles adapt the behav-
ior of playing objects [Steimann, 2000b, Kühn et al., 2014]. Additionally, objects can play roles of
a different type multiple times. Consider, for instance, the role of a customer of a bank that can
be played by either a person or a company and allows them to make transactions, deposits, and
withdrawals. Obviously, one person can be a customer in several banks. This nature is usually cap-
tured by the fills relation between classes and role types denoting those classes whose objects can
play roles of the given type. In contrast, the relational nature states that roles denote the bind-
ing ends of relationships. This nature is present in most modeling languages, e.g. ER [Chen, 1976]
and UML [Rumbaugh et al., 1999]. Still, these languages do not foster the dynamism and flexibil-
ity of roles, as roles degenerate to named placeholders. Hence, [Bachman et al., 1977, Steimann,
2000b, Halpin, 2005, Balzer and Gross, 2011, Jäkel et al., 2015] introduced roles tied to relationships
as first-class citizens permitting them to be played by unrelated objects and having relationship
specific properties. To model that consultants advise customers, one can specify a relationship type
advises between the consultant and customer role types and add relationship specific fields. How-
ever, all these modeling languages assume that relationships are context-independent and cannot
play roles themselves. Thus, transactions between accounts managed by a bank cannot be mod-
eled properly. To resolve this, RMLs have incorporated the context-dependent nature of roles,
e.g., [Genovese, 2007, Reenskaug and Coplien, 2009, Hennicker and Klarl, 2014, Jäkel et al., 2016],
that characterizes roles and relationships as context-dependent. Both are encapsulated in a con-
text as definitional boundary. Yet, different approaches use different terms for this conceptual en-
tity. Consequently, compartments were introduced in [Kühn et al., 2014] to generalize the different
terms. Compartments can have properties and behavior, as well as play roles themselves. In accor-
dance, a transaction for the transferal of money from a source to a target account would be mod-
eled as compartment type and would play the role of a money transfer within a bank compartment.
In contrast to context-dependent roles, only few approaches also include context-dependent rela-
tionships, e.g., [Hennicker and Klarl, 2014, Jäkel et al., 2016]. Including these natures into one RML
already leads to a rich modeling framework, yet its expressiveness is determined by the available
kinds of constraints. These range from classical relationship cardinalities, e.g., [Chen, 1976, Rum-
baugh et al., 1999], over mathematical relationship constraints, e.g., [Balzer and Gross, 2011, Halpin,
2005], to role constraints, e.g., [Riehle and Gross, 1998; zhu2006; Hennicker and Klarl, 2014]. Within
a bank compartment type, for instance, one could specify that each consultant advises at least one
customer with relationship cardinalities, that no consultant advises himself as a customer with an
intra-relationship constraint, and that each bank must have at least one consultant [Kühn et al.,
2015a]. Although various RMLs have introduced different kinds of constraints, only CROM [Kühn
et al., 2015a] includes most of them into a coherent model. Consequently, FRaMED is founded on
its notation and definitions.

2.3 CLASSIFICATION OF ROLES

The classification proposed by Steimann [2000b] encompasses a list of 15 features attributed to
roles. This list, enumerated in Table 1, mostly captures the behavioral and relational nature of roles.
In fact, only Feature 2 denotes that “roles depend on relationships” [Steimann, 2000b, p.86]. Hence,
all the other features contribute to the behavioral nature of roles. In general, Steimann’s classifica-
tion has proven to be useful and has been employed to classify several contemporary approaches,
e.g., [Herrmann, 2007, Boella and Van Der Torre, 2007]. Nevertheless, his classification scheme has
two major shortcomings. First, several features concern either the type and/or the instance level.

2.2 Nature of Roles 7

Table 1: Steimann’s 15 classifying features, extracted from [Steimann, 2000b].

1. Roles have properties and behaviors (M1, M0)

2. Roles depend on relationships (M1, M0)

3. Objects may play different roles simultaneously (M1, M0)

4. Objects may play the same role (type) several times (M0)

5. Objects may acquire and abandon roles dynamically (M0)

6. The sequence of role acquisition and removal may be restricted (M1, M0)

7. Unrelated objects can play the same role (M1)

8. Roles can play roles (M1, M0)

9. Roles can be transferred between objects (M0)

10. The state of an object can be role-specific (M0)

11. Features of an object can be role-specific (M1)

12. Roles restrict access (M0)

13. Different roles may share structure and behavior (M1)

14. An object and its roles share identity (M0)

15. An object and its roles have different identities (M0)

For instance, Features 4, 5, 9, 10, 12, 14, and 15 only apply to role instances [Kühn et al., 2014]. Es-
pecially, Feature 5 and 12 are usually not applicable to modeling languages, as they do not provide
an operational semantics. To indicate the affected level, Table 1 appends M1 and M0 to each fea-
ture denoting whether the type or the instance level is affected. Finally, it cannot fully distinguish
contemporary RMLs and RPLs, as it does not capture the context-dependent nature of roles and
the various modeling constraints. In conclusion, the following paragraph introduces the additional
characteristics of roles found by investigating the contemporary literature.

In accordance to Steimann’s pragmatic approach, the investigation of contemporary RMLs and
RPLs, published in [Kühn et al., 2014, Sec.3.2] has uncovered the following features of roles. As
this thesis studies the representation of roles and role models in role-based languages, we focused
on the type level representation of roles rather than their implementation. In detail, these addi-
tional features, summarized in Table 2, not only incorporate the context-dependent nature of roles,
but also the various constraints found in contemporary RMLs and RPLs. Accordingly, Steimann’s
initial list encompasses both the behavioral and relational nature of roles, the additional features
extend the relational nature and add the context-dependent nature to roles. Consequently, while
Steimann’s 15 features are still applicable, they need to be accompanied by 12 additional features
to sufficiently assess the diversity of the contemporary role-based languages. As a result, this list
of 27 characteristic features allows for a fine-grained distinction of the various definitions of roles
presented in the contemporary literature. Henceforth, this classification scheme is employed to
review, compare and classify the various contemporary RMLs and RPLs.

3 COMPARISON OF ROLE-BASED LANGUAGES

The PhD thesis conducted a SLR that uncovered, evaluated and compared 27 relevant contem-
porary role-based languages. This section only briefly elucidates the findings and results of the
conducted literature review. In general, as shown in Table 3 and 4, the survey provides evidence
that both the research field on role-based modeling and role-based programming languages suffer

8 3 Comparison of Role-based Languages

Table 2: Additional classifying features, partially published in [Kühn et al., 2014].

16. Relationships between roles can be constrained (M1)

17. There may be constraints between relationships (M1)

18. Roles can be grouped and constrained together (M1)

19. Roles depend on compartments (M1, M0)

20. Compartments have properties and behaviors (M1, M0)

21. A role can be part of several compartments (M1, M0)

22. Compartments may play roles like objects (M1, M0)

23. Compartments may play roles which are part of themselves (M1, M0)

24. Compartments can contain other compartments (M1, M0)

25. Different compartments may share structure and behavior (M1)

26. Compartments have their own identity (M0)

27. The number of roles occurring in a compartment can be constrained (M1)

from fragmentation and discontinuity [Kühn et al., 2014]. Especially, as most approaches reinvent
the notion of roles without taking previous definitions into account. Although this might be the
result of negligence, I argue that this is due to a lack of a common understanding of roles among re-
searchers. In fact, researchers attribute different features to roles that fit their particular use case or
application domain without being aware of the relations to features of related works. This becomes
evident when answering the research questions.

First, is there a common subset of features all contemporary approaches satisfy? Yes, but it only
consists of Feature 1 stating that roles have properties and behaviors, as well as Feature 3 declaring
that objects can play multiple roles simultaneously. Besides these two, the investigation of the rows
of both tables indicate that neither the set of RMLs nor the set of RPLs share a significant amount
of common features. This, in turn, is surprising due to the fact that Steimann [2000b] already es-
tablished such a set by defining Lodwick as the lowest common denominator. Second, how did
Steimann’s seminal work influenced the research field? In fact, his work had only a limited influence
on contemporary RMLs and RPLs. In particular, only few role-based languages actually applied
his classification scheme [Kim et al., 2003, Herrmann, 2005, Zhu and Zhou, 2006, Boella and Van
Der Torre, 2007, Pradel and Odersky, 2009]. Nonetheless, none of the role-based languages used or
extended Lodwick’s definition of roles. In sum, less than half (11 of 26) of the approaches referenced
[Steimann, 2000b] as related work. Evidently, his work did not harmonize and foster the research
on role-based languages as he intended [Steimann, 2000b]. Finally, have advances in RMLs been
adopted by later RPLs and vice versa? In the same way as Lodwick was overlooked, most RMLs only
considered other modeling languages as related work. Conversely, most RPLs relate themselves
to other programming languages, but, at least ObjectTeams/Java (OT/J) [Herrmann, 2005], power-
Java [Boella and Van Der Torre, 2007], and Scala Roles [Pradel and Odersky, 2009] founded their
notion of roles on the conceptual framework provided by Steimann [2000b]. In consequence, the
SLR uncovered the following problems in the research fields on RMLs and RPLs:

• There is neither a common understanding nor common feature set shared among the different
contemporary role-based modeling and programming languages.

• The research fields on RMLs and RPLs are characterized by an ongoing discontinuity and
fragmentation. Specifically, most approaches reinvent the role concept without taking the
definitions of preceding related approaches into account.

9

Table 3: Comparison of role-based modeling languages, extended from [Kühn et al., 2014]

Fe
at

u
re

s
[K

ü
h

n
et

al
.,

20
14

]

L
o

d
w

ic
k

[S
te

im
an

n
,2

00
0b

]

G
en

er
ic

R
o

le
M

o
d

el
[D

ah
ch

o
u

r
et

al
.,

20
02

]

TA
O

[D
a

Si
lv

a
et

al
.,

20
03

]

R
B

M
L

[K
im

et
al

.,
20

03
]

R
o

le
-B

as
ed

P
at

te
rn

s
[K

im
an

d
C

ar
ri

n
gt

o
n

,2
00

4]

O
R

M
2

[H
al

p
in

,2
00

5]

E
-C

A
R

G
O

[Z
h

u
an

d
Z

h
o

u
,2

00
6]

M
et

am
o

d
el

fo
r

R
o

le
s

[G
en

ov
es

e,
20

07
]

IN
M

[L
iu

an
d

H
u

,2
00

9]

D
C

I
[R

ee
n

sk
au

g
an

d
C

o
p

li
en

,2
00

9]

O
n

to
U

M
L

[G
u

iz
za

rd
ia

n
d

W
ag

n
er

,2
01

2]

H
el

en
a

A
p

p
ro

ac
h

[H
en

n
ic

ke
r

an
d

K
la

rl
,2

01
4]

1 � � � � � � � � � � � �
2 � � � � � � � � � � � �
3 � � � � � � � � � � � �
4 � � � � � � � � � � ∅ �
5 � � ∅ ∅ ∅ � � � ∅ � ∅ �
6 � � ∅ ∅ � � � ∅ � � � �
7 � � � � � � � � � � � �
8 � � � � � � � � � � � �
9 � � � ∅ ∅ ∅ � � ∅ � ∅ �

10 � � � ∅ � ∅ � � � � � �
11 � � � � � � � � � � � �
12 ∅ � � � ∅ ∅ � ∅ ∅ � ∅ �
13 � � � � � � � � � � � �
14 � � � � � � � � � � � �
15 � � � � � � � � � � � �
16 � � � � � � � � � � � �
17 � � � � � � � � � � � �
18 � � � � � � � � � � � �
19 � � � � � � � � � � � �
20 � � � � � � � � � � � �
21 � � � � � � � � � � � �
22 � � � � � � � � � � � �
23 � � � � � � � � � � � �
24 � � � � � � � � � � � �
25 � � � � � � � � � � � �
26 � � � � � � � � � � � �
27 � � � � � � � � � � � �

�: yes,�: possible,�: no, ∅: not applicable

10 3 Comparison of Role-based Languages

Table 4: Comparison of role-based programming languages, extended from [Kühn et al., 2014]

Fe
at

u
re

s
[K

ü
h

n
et

al
.,

20
14

]

E
p

si
lo

n
J

[U
b

ay
as

h
ia

n
d

Ta
m

ai
,2

00
1]

C
h

am
el

eo
n

[G
ra

ve
rs

en
an

d
Ø

st
er

b
ye

,2
00

3]

R
IC

A
-J

[S
er

ra
n

o
an

d
O

ss
ow

sk
i,

20
04

]

JA
W

IR
O

[S
el

çu
k

an
d

E
rd

o
ğa

n
,2

00
4]

O
T

/J
[H

er
rm

an
n

,2
00

5]

R
av

a
[H

e
et

al
.,

20
06

]

p
ow

er
Ja

va
[B

al
d

o
n

ie
ta

l.,
20

06
]

R
u

m
er

[B
al

ze
r

et
al

.,
20

07
]

Fi
rs

t-
C

la
ss

R
el

at
io

n
sh

ip
s

[N
el

so
n

et
al

.,
20

08
]

Sc
al

a
R

o
le

s
[P

ra
d

el
an

d
O

d
er

sk
y,

20
09

]

N
ex

tE
J

[K
am

in
a

an
d

Ta
m

ai
,2

00
9]

Ja
va

St
ag

e
[B

ar
b

o
sa

an
d

A
gu

ia
r,

20
12

]

R
el

at
io

n
s

[H
ar

ke
s

an
d

V
is

se
r,

20
14

]

1 � � � � � � � � � � � � �
2 � � � � � � � � � � � � �
3 � � � � � � � � � � � � �
4 � � � � � � � � � � � � �
5 � � � � � � � � � � � � ∅
6 � � � � � � � � � � � � �
7 � � � � � � � � � � � � �
8 � � � � � � � � � � � � �
9 � � � � � � � � � � � � �

10 � � � � � � � � � � � � �
11 � � � � � � � � � � � � �
12 � � � � � � � � � � � � ∅
13 � � � � � � � � � � � � �
14 � � � � � � � � � � � � �
15 � � � � � � � � � � � � �
16 � � � � � � � � � � � � �
17 � � � � � � � � � � � � �
18 � � � � � � � � � � � � �
19 � � � � � � � � � � � � �
20 � � � � � � � � � � � � �
21 � � � � � � � � � � � � �
22 � � � � � � � � � � � � �
23 � � � � � � � � � � � � �
24 � � � � � � � � � � � � �
25 � � � � � � � � � � � � �
26 � � � � � � � � � � � � �
27 � � � � � � � � � � � � �

�: yes,�: possible,�: no, ∅: not applicable

11

Table 5: Ontological classification of concepts

Concept Rigidity Foundedness Identity Examples
Natural Types yes no unique person, account
Role Types no yes derived customer, consultant
Compartment Types yes yes unique rransaction, bank
Relationship Types yes yes composite advises, own_ca

• Only four RMLs provide a sufficient formal foundation for roles able to incorporate all natures
of roles, i.e. [Da Silva et al., 2003, Genovese, 2007, Liu and Hu, 2009, Hennicker and Klarl, 2014].
Regardless, none of them is able to support all features of roles.

• Last but not least, most role-based modeling and programming languages are not readily
applicable, due to their complexity, ambiguous terminology, and/or missing tool support.
Even though OT/J represents a feature rich, practically usable programming language, there
is no corresponding readily applicable modeling language.

To approach these problems, the second part of the PhD thesis aims at harmonizing both research
fields by providing the formal foundations of combined role-based modeling languages, as well as
a family of RMLs supported by a flexible modeling editor.

4 FOUNDATIONS OF ROLE-BASED MODELING LANGUAGES

To provide a coherent understanding of roles, the PhD thesis provides both the ontological founda-
tion and a comprehensive formal model for roles, denoted Compartment Role Object Model (CROM),
that combines all natures of roles as well as various modeling constraints [Kühn et al., 2015a,b].
Moreover, the lack of tools that support the design, validation, and generation of role-based soft-
ware systems is addressed by developing a corresponding Full-fledged Role Modeling Editor [Kühn
et al., 2016], a fully functional modeling editor that includes all natures and proposed modeling
constraints. In conclusion, both CROM and FRaMED provide all means necessary to allow both
researchers and practitioners to model, reason about, and implement role-based software systems.

Moreover, to provide a clear ontological distinction for the various concepts, the PhD thesis uti-
lized three well-established ontological metaproperties: rigidity, identity and foundedness (depen-
dence) [Guarino and Welty, 2000, 2009, Guizzardi, 2005, Mizoguchi et al., 2012]. Accordingly, these
three metaproperties are sufficient to distinguish the concepts found in RMLs. Table 5 summarizes
the ontological classification of natural types, role types, compartment types, and relationship types
with respect to the introduced metaproperties.

Henceforth, the initial formalization of the Compartment Role Object Model (CROM) is high-
lighted that combines the behavioral, relational, and context-dependent nature of roles into a com-
prehensive and coherent formal framework [Kühn et al., 2015a]. Additionally, this formalization
incorporates most of the modeling constraints found in the literature as well as global role con-
straints as additional class of role constraints. By extension, the framework is easy to comprehend
and implement as it is only based on set theory and first-order logic. In sum, the formal framework
is separated into three parts, as outlined in Figure 2. For simplicity, both fields and methods have
been omitted from the following definitions, however, the necessary additions are presented in Sec-
tion 7.4 of the PhD thesis. Henceforth, the discussion only highlights the core aspects of a modeling
language that are captured on the model and constraint level.

12 4 Foundations of Role-Based Modeling Languages

Type Level

Instance
Level

Constraint
Level

Model
M

Instance
i

Con-
straints

C

well-
formed

compliant to

compliant to

valid wrt.

Meta-
model

Figure 2: Overview of the presented formal model

Definition 4.1 (Compartment Role Object Model). Let N T , RT , C T , and RST be mutual disjoint sets
of natural types, role types, compartment types, and relationship types, respectively. Then a Compart-
ment Role Object Model (CROM) is a tuple M= (N T,RT,C T,RST,fills,rel) where fills ⊆ T ×C T ×RT
is a relation and rel : RST ×C T → (RT ×RT) is a partial function. Here, T := N T ∪C T denotes the set
of all rigid types, i.e. all natural and compartment types.

A CROM is denoted well-formed if the following axioms hold:

∀r t ∈ RT ∃!ct ∈C T ∃t ∈ T : (t ,ct ,r t) ∈ fills (7.1)

∀ct ∈C T ∃(t ,ct ,r t) ∈ fills (7.2)

∀r st ∈ RST ∃ct ∈C T : (r st ,ct) ∈ domain(rel) (7.3)

∀(r t1,r t2) ∈ codomain(rel): r t1 6= r t2 (7.4)

∀(r st ,ct) ∈ domain(rel): rel(r st ,ct) = (r t1,r t2)∧ (_,ct ,r t1), (_,ct ,r t2) ∈ fills (7.5)

In this definition, fills denotes that rigid types can play roles of a certain role type in a given com-
partment type and rel captures the two role types at the respective ends of a relationship type de-
fined in a compartment type.3 Accordingly, the well-formedness rules restrict both the fills relation
and the rel function. On the one hand, the first two axioms ensure that each role type participates in
exactly one compartment type and is filled by at least one rigid type (7.1) as well as that each com-
partment type defines at least one participating role type (7.2). On the other hand, the other axioms
make sure that each relationship type is defined at least in on compartment type (7.3). Moreover,
the rel function is restricted to an irreflexive codomain (7.3), such that the two related role types
participate in the same compartment type the relationship is defined in (7.5). Notably though,
although a relationship type can occur in multiple compartment types with different definitions,
each role type belongs to exactly one compartment type. Using this definition, a formal model of
our running example can be created, as follows:

3For a given function f : A → B , domain(f) = A returns the domain and codomain(f) = B the range of f .

13

Example 4.1 (Compartment Role Object Model). Let B = (N T,RT,C T,RST,fills,rel) be the model of
the bank (Figure 1), where the individual components are defined as follows:

N T := {Person,Company,Account}

RT := {Customer,Consultant,CA,SA,Source,Target,MoneyTransfer}

C T := {Bank,Transaction}

RST := {own_ca,own_sa,advises, trans}

fills := {(Person,Bank,Customer), (Company,Bank,Customer), (Bank,Bank,Customer),

(Person,Bank,Consultant), (Account,Bank,CA), (Account,Bank,SA),

(Transaction,Bank,MoneyTransfer),

(Account,Transaction,Source), (Account,Transaction,Target)}

rel := {(own_ca,Bank) → (Customer,CA), (own_sa,Bank) → (Customer,SA),

(advises,Bank) → (Consultant,Customer), (trans,Transaction) → (Source,Target)}

The bank model B is simply created from Figure 1 in three steps. First, all the natural types, com-
partment types, role types, and relationship types are collected into the corresponding set.4 Second,
the set of role types contained in each compartment type and the corresponding player types are
collected in the fills relation. Finally, the rel function is defined for the role types at the ends of each
relationship type in each compartment type, accordingly. Thus, a CROM model can be retrieved
from its graphical representation.

The constraint level, in turn, augments the formal model to represent the various constraints
found in the literature review. In detail, the PhD thesis presents Role Groups [Kühn et al., 2015a] as
a novel construct to specify local role constraints and Quantified Role Groups as a corresponding
global role constraint. In sum, a constraint model defines local role constraint, intra- and inter-
relationship constraints declared for a specific compartment type, as well as global role constraints
declared for a whole CROM.

Definition 4.2 (Constraint Model). Let M= (N T,RT, C T,RST,fills,rel) be a well-formed CROM and
IRC := {E,⊗} the set of inter-relationship constraints. Then C = (rolec,card, intra, inter,grolec) is a
Constraint Model over M, where rolec : C T → 2Card×RG , and card : RST ×C T → (C ar d ×C ar d) are
partial functions, as well as intra ⊆ RST ×C T ×E and inter ⊆ RST ×C T × I RC ×RST are relations
with E as the set of functions e : 2O ×2O ×2O×O → {0,1} ranging over the set of objects O. Additionally,
grolec ⊆ QRG is a finite set of quantified role groups. A Constraint Model is compliant to the CROM
M if the following axioms hold:

∀ct ∈ domain(r ol ec)∀(_, a) ∈ rolec(ct): atoms(a) ⊆ parts(ct) (7.10)

domain(card) ⊆ domain(rel) (7.11)

∀(r st ,ct ,_) ∈ intra: (r st ,ct) ∈ domain(rel) (7.12)

∀(r st1,ct ,_,r st2) ∈ inter : (r st1,ct), (r st2,ct) ∈ domain(rel)∧ r st1 6=r st2 (7.13)

Here, parts(ct) := {r t | (t ,ct ,r t) ∈ fills} collects all role types defined within a compartment type.

Specifically, rolec collects all local role constraints imposed on specific compartment types. Each
local role constraint, in turn, defines both a cardinality and a role group, such that the cardinality
specifies the occurrence of objects satisfying the given role group. In accordance to that, card as-
signs a cardinality to a relationship type defined in a compartment type. Additionally, intra defines

4Henceforth, SA and CA are abbreviations for savings account and checking account, respectively.

14 4 Foundations of Role-Based Modeling Languages

a set of intra-relationship constraint imposed on a relationship type in a compartment type, such
that each constraint is given as an evaluation function. This function takes the domain A, range B ,
and the tuple set R⊆ A ×B of a relationship and returns either zero or one. For instance, to define
that the advises relationship type is irreflexive, a corresponding evaluation function returns one if
∀x ∈ A∪B : (x, x) 6∈R and zero otherwise. Of course, these evaluation functions directly correspond
to mathematical properties of relations, e.g., reflexive, total, cyclic, and acyclic. In the same way,
inter denotes a set of relationship implications and exclusions declared between two relationship
types defined in the same compartment type. In particular, a relationship implication imposes a
subset relation upon the two relationships, whereas a relationship exclusion enforces their disjoint-
ness. Notably, all these constraints are defined locally to a compartment type, i.e., no constraint
crosses the boundary of a compartment type. Finally, grolec declares a set of quantified role groups
that each object in a given Compartment Role Object Instance (CROI) must satisfy. In conclusion,
the constraint model captures not only most modeling constraints introduced in RMLs, but also
global role constraints as novel kind of role constraint. Naturally, a constraint model can be easily
defined for the constraints of the banking application, depicted in Figure 1.

Example 4.2 (Constraint Model). Let B be the bank model from Example 4.1 and i r r e f lexi ve an
evaluation function for relationships. Then CB = (rolec,card, intra, inter,grolec) is the constraint
model, where the components are defined as:

rolec := {Bank → {(1..∞,Consultant), (0..∞,bankaccounts)},

(Transaction → {(2..2,participants)}}

card := {(own_ca,Bank) → (1..1,0..∞), (own_sa,Bank) → (1..∞,0..∞),

(advises,Bank) → (0..∞,1..∞), (trans,Transaction) → (1..1,1..1)}

intra := {(advises,Bank, irreflexive)}

inter := {(own_ca,Bank,⊗,own_sa)}

grolec := {accounti mpl }

A constraint model can be obtained by basically mapping the graphical constraints to their formal
counterparts. Within each compartment type, role groups with cardinalities are added to the rolec
mapping, relationship cardinality to the card function, intra-relationship constraints to the intra
relation, and relationship implications/exclusions to the inter relation. Afterwards, the global role
constraints are translated to quantified role groups, e.g., the accountimpl, and added to rolec. For
the sake of argument, the example additionally introduces a relationship exclusion between own_ca
and own_sa to the constraint model. Using this definition, the notion of validity is introduced for
CROIs with respect to a given Constraint Model to specifying when a given instance fulfills the im-
posed constraints.

4.1 FULL-FLEDGED ROLE MODELING EDITOR

Conversely, this section highlights the first Full-fledged Role Modeling Editor (FRaMED), a graphical
modeling editor for the design of Compartment Role Object Models. Introduced in [Kühn et al.,
2016], the editor embraces all natures of roles as well as most of the presented modeling constraints.
Besides providing a full-fledged modeling editor, FRaMED also features distinction code generators
generating formal representations of CROM, data definitions for a role-based database or source
code of role-based programming languages. Consequently, FRaMED is able to provide all means
necessary to allow practitioners to model, reason about, and implement role-based systems.

4.1 Full-Fledged Role Modeling Editor 15

Editor UI

Transformation

Code Generator

FRaMED

Xtend

Build Generate

GEF

UI

Epsilon(ETL)

Trans-
former

initiate

read create

initiate

Metamodel

Ecore

read

CROM
Ecore

GORM

edits

Edit
Policies

Trans.
Rules

Figure 3: Architecture of FRaMED, extracted from tep@kuehn2016framed.

In general, FRaMED is built on the Eclipse platform5 and is available on GitHub.6 The editor was
implemented using a model-driven approach and employs the Eclipse Modeling Framework (EMF)7

and most of the following discussion has been published in [Kühn et al., 2016]. Figure 3 provides an
overview of its software architecture.

First, both the formalization of CROMs and constraint models have been encoded into a single
corresponding Ecore metamodel. The resulting CROM metamodel is maintained in a separate plu-
gin8 and represents the central artifact for the editor and adjunct tools. However, this metamodel
only represents the structure of CROMs and is void of any layout information, e.g. positions, rectan-
gles, and bend points. To further decouple FRaMED from this metamodel, the editor represents a
separate plugin, which only emits instances of the CROM metamodel. Within the FRaMED plugin,
the Editor UI handles all user interactions and is implemented employing the Graphical Editing
Framework (GEF).9 Internally, the plugin uses a custom Ecore metamodel for the graphical repre-
sentation of CROM, denoted Graphical Object Relation Model (GORM). This metamodel is tailored
towards the graphical aspects of role models, such as shapes, relations, segments, and bend points.
As a result, FRaMED’s implementation only depends on the GORM, simplifying the development
and extension of the editor. Nonetheless, whenever a GORM instance is saved (as a *.crom_dia
file), another plugin is tasked with its transformation to the corresponding CROM (saved as *.crom
file). The Transformation plugin, in turn, utilizes the Epsilon framework,10 a rule-based model-to-
model transformation engine, to declaratively specify the translation of GORM files to CROM files.
Finally, once a CROM file is created, a user can trigger the Code Generator plugin to either generate
a formal representation of the role model or generate corresponding source code. While the former
can be used to validate the designed CROM, the latter can be completed to a working role-based
application or a role-based database. Granted, this architecture is rather complex, however, it facil-
itates separation of concerns by establishing the CROM metamodel as central representation of the
foundation for RMLs. This permits the separate evolution of the metamodel, editor, and code gen-
erators, as well as the development of additional tools, while assuring that all adhere to the structure
and terminology defined in the CROM metamodel and, by extension, the presented formalization.

5https://eclipse.org
6https://github.com/leondart/FRaMED/releases/tag/v2.0.3
7https://eclipse.org/modeling/emf
8https://github.com/Eden-06/CROM
9https://eclipse.org/gef

10http://www.eclipse.org/epsilon

16 4 Foundations of Role-Based Modeling Languages

Figure 4: Banking application modeled in FRaMED, from [Kühn et al., 2016].

Figure 5: Focus view of the Transaction compartment type, from [Kühn et al., 2016].

The visual representation of CROMs is separated into two distinct levels: the top-level view and
focus view. In the top-level view of FRaMED, shown in Figure 4, the user can create natural, data,
and compartment types; specify their inheritance relation; as well as create and refine the fills rela-
tion [Kühn et al., 2016]. Model elements are added by selecting them in the palette, dragging them
to the canvas, and naming them accordingly. In contrast to the common graphical notation, the
fills relation is drawn from the player type to the compartment type, first. Afterwards, the role types
filled by a fills relation can be selected using the “Fulfill Roles” dialog (accessible via its context
menu) and are then listed adjacent to the fills relation. Finally, the user is able to step into a se-
lected compartment type by clicking on the “Step In” context menu item. As a result, the focus view
is opened showing the internals of the selected compartment type, as depicted in Figure 5. Here,
one can create role types, role groups, and relationship types between two role types, as well as
specify various role constraints, intra-relationship constraints, and inter-relationship constraints.
While most of these model elements are selected and drawn from the palette, intra-relationship
constraints are added by selecting the relationship type to constrain and opening the “Relationship
Constraints . . . ” dialog via the context menu. Last but not least, to exit the focus view the user sim-
ply clicks on the “step out” context menu item. Besides all that, whenever the current role model is
saved, the corresponding crom file is generated.

4.1 Full-Fledged Role Modeling Editor 17

Figure 6: Overview of tool support for CROM.

While it is true that a modeling editor alone is useful for domain analysts and researchers, soft-
ware practitioners strive for more tool supported integrated into the development environment.
In particular, practitioners require code generators for various target languages to quickly validate
or implement their domain model. To gratify their needs, FRaMED comes equipped with a set of
code generators, as illustrated in Figure 6. These are available upon right-clicking on a CROM file
(*.crom) and expanding the “Generate” context menu item to “RSQL Data Definition”, “SCROLL
Code”, “OWL Ontology”, and “Formal CROM”, which triggers the corresponding code generator.

In conclusion, FRaMED is not just a graphical modeling editor for the CROM modeling language,
but also the first role modeling editor that supports all natures of roles and the various constraints
presented in the literature. Moreover, it enables the design of role-based software systems by pro-
viding additional means for validation and code generation. Furthermore, FRaMED is open source
and freely available, in order to let both researchers and practitioners harness the power of role-
based modeling. Additionally, FRaMED (v2.0.3) has been packaged as a virtual machine,11 to guar-
antee simple installation for practitioners and reproducibility for researchers.

5 FAMILY OF ROLE-BASED MODELING LANGUAGES

Thus far, one would assume that the introduction of a foundational role-based modeling language
able to fulfill most of the features of roles is sufficient, to convince other researchers to adopt and
utilize the modeling language. However, when considering the history of RMLs and RPLs, it be-
comes evident that this is, generally, not the case. In fact, both Taming Agents and Objects [Da Silva
et al., 2003] and Scala Roles [Pradel and Odersky, 2009] serve as counter example, i.e., role-based
languages that have not been adopted, in spite of their superior feature set. To put it bluntly, after
introducing yet another RML, there is still no common RML able to capture these divergent defini-
tions of roles. In fact, this appears to be one of the main reasons for the apparent fragmentation and
discontinuity within the research fields on RMLs and RPLs. Thus, instead of requiring all researcher
to agree on a common definition of roles, the solution is to introduce a family of role-based model-
ing languages that harmonizes and reconciles their divergent views. In particular, the 27 classifying
features of roles were utilized to identify the commonalities and differences of the contemporary

11http://st.inf.tu-dresden.de/intern/framed/framed-ubuntu.ova

18 5 Family of Role-Based Modeling Languages

role-based languages. Moreover, to directly address the discontinuity among contemporary role-
based approaches, the family of metamodels for role-based languages was introduced in [Kühn et al.,
2014]. Specifically, it is able to generate compatible metamodel variants for arbitrary role-based lan-
guages. Thus, researchers can simply generate a metamodel for their specific approach and, more
importantly, for previous approaches they intend to combine or reuse [Kühn et al., 2014]. Further-
more, to tackle the fragmentation of the various contemporary RMLs, FRaMED is upgraded to a
fully dynamic Software Product Line (SPL) for the family of RMLs. As a result, researchers can tailor
FRaMED to support their particular language variant. In conclusion, the family of RMLs addresses
both the fragmentation and discontinuity, present in the research on roles.

5.1 FEATURE MODEL FOR ROLE-BASED LANGUAGES

Following a feature-oriented software design (FOSD) methodology, the first step is to generate a fea-
ture model as a hierarchical representation of the 27 identified features of roles (cf. Chapter 2.3).
This, in turn, elucidates the various implicit dependencies of the classifying features of roles.

Figure 7 depicts the resulting feature model for RMLs, published in [Kühn et al., 2014]. To bet-
ter trace, how the classifying features of roles have been mapped to the feature model, the fea-
ture nodes have been annotated with the corresponding number in the feature list (cf. Figure 1
and Figure 2). In detail, the feature model specifies three main feature arcs, e.g., Role Types,
Relationships, and Compartment Types, to group all features dependent on the existence of
these modeling concepts. Notably though, those features that are essential for the existence of
a concept, are marked as mandatory. The mandatory feature Naturals of Player, for instance,
denotes that role types can always be played by naturals. In conclusion, the feature model encom-
passes all 27 classifying features of roles. Besides that, the model additionally includes features
for Riehle’s role constraints [Riehle and Gross, 1998], i.e., Role Implication, Role Exclusion,
and Role Equivalence, and two options for compartment identity, i.e., Composite Identitiy,
and Own Compartment Identity. In conclusion, the feature model manages to arrange all 27
features of roles with respect to their dependencies to roles, relationships, and compartments. In
addition to the dependencies of features visible in the feature model, four additional cross-tree con-
straints [Thüm et al., 2014] have been defined, as shown in Figure 8. Conversely, these constraints
ensure that a configuration contains all entities on which the Role Type depends (8.1 and 8.2),
that Role Equivalence is included, whenever the Role Implication is selected (8.3), and that
Compartment Types are supported, if Compartments can be players (8.4).

It follows, then that the presented feature model faithfully captures and elucidates the depen-
dencies of the 27 classifying features of roles. Henceforth, the feature model is used to define a
configuration by selecting the various features.

5.2 FAMILY OF METAMODELS FOR ROLE-BASED MODELING LANGUAGES

To facilitate the generation of metamodel variants, a corresponding feature-oriented metamodel
generator, denoted RoSI CROM, has been implemented and published in [Kühn et al., 2014]. In
general, the generator was developed utilizing two Eclipse plugins designed to support FOSD: Fea-
tureIDE and DeltaEcore. In particular, FeatureIDE12 [Thüm et al., 2014] provided the foundation
for the metamodel generator by offering dedicated editors for the specification of feature models
and configurations. In fact, the feature model, depicted in Figure 7, was designed within the Fea-
tureIDE. However, the RoSI CROM was implemented following a delta modeling approach using
DeltaEcore [Seidl et al., 2014].

12http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide

5.1 Feature Model for Role-Based Languages 19

1

1

5

13

8

22

11

3

4

7

19

6

14

15

16

26

23

21

24

25

20

20

17

2

9

10

12

18

27

Figure 7: Feature model for role-based modeling languages, extended from [Kühn et al., 2014].

RoleT y pes.Dependent .OnRel ati onshi ps ⇔ Rel ati onshi ps (8.1)

RoleT y pes.Dependent .OnCompar tment s ⇔ Compar tmentT y pes (8.2)

RoleImpli cati on ⇒ RoleE qui valence (8.3)

RoleT y pes.Pl ay able.Pl ayer s.Compar tment s ⇒ Compar tmentT y pes (8.4)

Figure 8: Cross-tree constraints of the feature model for RMLs.

20 5 Family of Role-Based Modeling Languages

Specifically, DeltaEcore13 allows for declaring the changes associated with selecting a feature within
delta modules. These modules, in turn, manipulate a given base model by adding, modifying, or
removing model elements. Additionally, the feature mapping connects features to delta modules
by specifying their application conditions.14 Consequently, RoSI CROM employs a feature mini-
mal metamodel as its base model; features 34 distinct delta modules; and implements the feature
mapping, accordingly. Figure 9 establishes the general architecture of the metamodel generator.

In conclusion, RoSI CROM is a feature-oriented generator able to generate all variants of the fam-
ily of metamodels. Moreover, due to the good integration of DeltaEcore into FeatureIDE, the meta-
model generator is incredibly easy to use, once the RoSI CROM project is imported. Furthermore,
the employed delta modeling approach ensures the scalability and evolvability of the metamodel
family, as it permits researchers to easily add new features to the metamodel family by providing
corresponding delta modules and modifying the feature mapping. Finally, RoSI CROM makes it vi-
able for researchers to generate metamodels for arbitrary role-based modeling and programming
languages simply by providing the corresponding configuration to the metamodel generator. Be-
sides all that, RoSI CROM is open source and available on GitHub,15 as well.

5.3 FIRST FAMILY OF ROLE MODELING EDITORS

So far, there exists no graphical modeling editor able to support the family of role-based modeling
languages. Thus, the PhD thesis proposes the development of the first family of role modeling edi-
tors. That is a feature-oriented, dynamic SPL of graphical modeling editors that enables the flexible
configuration of RML variants, as well as the creation, manipulation, validation, and code gener-
ation of the corresponding CROM models. To achieve these goals, the Full-fledged Role Modeling
Editor (FRaMED) is upgraded to a dynamic, feature-oriented SPL, accordingly. As a result of this ex-
tension, researchers will be able to tailor the FRaMED SPL to support their particular RML variant
that corresponds to their understanding of roles.

Before discussing the underlying architecture of the FRaMED SPL, it is important to conceptual-
ize the user’s interaction with the modeling editor. In general, it should behave just like the original
role modeling editor, FRaMED, however, it must permit its users to change the configuration of the
underlying RML at any point in time. Additionally, it is conceivable that a user wants to edit multi-
ple CROM models simultaneously, wheres each can belong to a different RMLs, i.e., with different
feature configurations. It follows, then that each GORM model must additionally carry the config-
uration of the corresponding RML. By extensions, the modeling editor must change its behavior
dynamically in accordance with the configuration of the currently opened GORM instance. As a
result, the FRaMED SPL includes a “Configuration” tab for each opened editor canvas that allows
for modifying the configuration of the underlying RML.

After describing the intended use of the family of role modeling editors, this section describes the
necessary extensions to upgrade FRaMED to a dynamic SPL. As it turns out, the previously estab-
lished architecture (cf. Figure 3) makes it a viable target for the creation of an SPL. In fact, most of
the original implementation can be reused as is, whereas only key modules had to be replaced or
extended. Accordingly, Figure 9 provides an overview on the modified architecture of FRaMED. Ba-
sically, the editor has been modified in four ways. First and foremost, the editor now loads the effec-
tive feature model for RMLs and the edit policy mapping upon startup. Secondly, the GORM model
is extended to incorporate the current configuration of the language variant. Thus, when loading a

13http://deltaecore.org
14https://github.com/Eden-06/RoSI_CROM
15https://github.com/Eden-06/RoSI_CROM

5.3 First Family of Role Modeling Editors 21

Editor UI

Family of
Transformations

Metamodel
Generator

FRaMED SPL

DeltaEcore

Feature
Mapping

Delta
Modules

GEF

UI

Epsilon(ETL)

Trans-
former

initiate

read create

initiate

RoSI CROM

GORM
+

Config
Ecore

edits

Edit
Policy

Handler

Flexible
Trans.
Rules

creates metamodel

Ecore

CROM
Variant

RML
Feature
Model

XML

Edit
Policy

Mapping
Ecore

read

read

Figure 9: Architecture of the family of modeling editors.

graphical model (*.crom_dia), the editor also loads its feature configuration. Internally, each fea-
ture configuration is managed by a Configuration object (provided by the FeatureIDE) that veri-
fies and ensures its validity. Third, the transformation rules have been adapted to take the feature
configuration of the given GORM instance into account. Finally, FRaMED SPL includes the RoSI
CROM generator as additional plugin to create the corresponding metamodel for a given feature
configuration. Accordingly, whenever a GORM instance is saved, the metamodel generator is trig-
gered first to create the corresponding metamodel variant, if not already present. Afterwards, the
transformation plugin uses this metamodel variant as target to generate the corresponding model.

These modifications suffice to upgrade FRaMED to an SPL. However, to establish the FRaMED
SPL as a dynamic product line, the editor must able to dynamically adapt its palette and its edit
policies in accordance with the current feature configuration. While it is feasible to implement
dynamically changing palette entries, it is impractical to modify each and every previously imple-
mented edit policy manually. Therefore, an edit policy handler is introduced that loads the edit
policy mapping and adapts the static edit policies, accordingly. The edit policy mapping, in turn,
maps features to specific edit policies, for instance, to prohibit inheritance relations between com-
partment types if compartment inheritance is not selected. In conclusion, the family of RMLs and
its implementation within the FRaMED SPL permits researchers to design role models tailor to their
use case. In fact, the FRaMED SPL is not only the first family of role modeling editors, but also the
first role modeling editor able to embody all contemporary role-based modeling languages. More-
over, it tames fragmentation by enabling researchers to design individual role-based approaches
with different features of roles, while maintaining that the models can be shared, combined, reused,
and extended by others. Furthermore, the FRaMED SPL still provides the necessary tool support for
validation and code generation. Although, the FRaMED SPL is a research prototype, it is made open
source and freely available on GitHub.16

6 SUMMARY OF THE PHD THESIS

Throughout the course of the PhD thesis, it became evident that although roles have been used for
conceptual modeling for almost 40 years, their underlying nature and formal foundations have not
been fully uncovered. Besides Steimann’s seminal paper on the representation of roles [Steimann,

16https://github.com/leondart/FRaMED/tree/develop_branch

22 6 Summary of the PhD Thesis

2000b], this thesis finally establishes the underlying natures of roles, as well as their formal founda-
tion. However, instead of providing yet another role-based modeling language (RML) for concep-
tual modeling, this PhD thesis established a complete and coherent family of role-based modeling
language, as well as the corresponding family of modeling editors.

In particular, this thesis surveyed the contemporary literature on roles in the first part and pre-
sented the foundations for RML, as well as the Family of RMLs in the second part. In detail, Chap-
ter 2 introduced the behavioral, relational, and context-dependent natures of roles; as well as ex-
tended Steimann’s list of classifying features of roles by including 12 new features that have been
retrieved from contemporary role-based languages. Based on these 27 features, a Systematic Lit-
erature Review (SLR) was designed and conducted to survey contemporary role-based languages
(Chapter 2). In fact, this literature review identified 12 distinct RMLs and 14 RPL published be-
tween the year 2000 and 2016. Afterwards, Chapter 4 and Chapter 5 discussed and evaluated each
of the contemporary RMLs and RPLs. Finally, Chapter 6 presented the results of the conducted
SLR and the corresponding evaluation of contemporary role-based languages. This evaluation, in
particular, identified four problems in the research fields on RMLs and RPLs. There is neither a
common understanding nor common feature set shared among the different contemporary role-
based modeling and programming languages. Moreover, the research fields on RMLs and RPLs are
characterized by an ongoing discontinuity and fragmentation. Specifically, most approaches rein-
vent the role concept without taking the definitions of preceding related approaches into account.
Furthermore, only four RMLs provide a sufficient formal foundation for roles able to incorporate
all natures of roles, i.e. [Da Silva et al., 2003, Genovese, 2007, Liu and Hu, 2009, Hennicker and Klarl,
2014]. Regardless, none of them is able to support all classifying features of roles. Finally, most
RMLs and RPLs are not readily applicable, due to their complexity, ambiguous terminology, and/or
missing tool support. Especially, there exists no feature rich, practically usable graphical model-
ing editor for an RML. Consequently, the second part addressed these issues by first providing the
foundations for RMLs and then introducing a the family of RMLs. Specifically, Chapter 7 estab-
lished the foundations of RMLs by providing both a comprehensive ontological foundation for roles
(Chapter 7.1) and a common graphical notation for RMLs. Above all, this chapter introduced and
extended the Compartment Role Object Model (CROM) (Chapter 7.3 and 7.4), a formal framework
for conceptual modeling that incorporated the three natures of roles and the modeling constraints.
Besides that, Chapter 7.5 additionally presented Full-fledged Role Modeling Editor (FRaMED) as a
readily applicable graphical modeling editor for CROM. In contrast, Chapter 8 addressed both the
apparent discontinuity and fragmentation in the research fields on RMLs and RPLs. On the one
hand, Chapter 8.1 established the family of metamodels for role-based languages that permits re-
searchers to easily generate metamodels for arbitrary role-based languages they intend to combine
and/or reuse. On the other hand, Chapter 8.2 finally introduced the family of RMLs and upgraded
FRaMED to a fully dynamic SPL to support the language family. Ultimately, both the metamodel
family and family of RMLs have been introduced to tackle the apparent fragmentation and discon-
tinuity within the research community.

In sum, the PhD thesis presented the following contributions to the field of conceptual modeling,
in general, and the field of role-based modeling and programming languages, in particular:

• A thorough literature survey on contemporary RMLs and RPLs published since the year 2000.

• The extension of the list of classifying features of roles [Steimann, 2000b] introducing 12 ad-
ditional features of roles [Kühn et al., 2014].

• The introduction of concise ontological foundation for RMLs [Kühn et al., 2015a].

• The formalization of both CROM [Kühn et al., 2015a,b] and CROMI as a comprehensive for-
mal foundation for RMLs.

23

• The development of an award winning Full-fledged Role Modeling Editor (FRaMED) [Kühn
et al., 2016].

• Introduction of the family of RMLs based on the feature model for RMLs.

• The implementation of the RoSI CROM metamodel generator to facilitate the family of meta-
models for role-based languages [Kühn et al., 2014].

• The extension of FRaMED to a dynamic SPL supporting the creation of language variants of
the family of RML, and thus introducing the first family of role modeling editors.

REFERENCES

Atkinson, C. and Kühne, T. (2002). Rearchitecting the UML Infrastructure. ACM Transactions on
Modeling and Computer Simulation (TOMACS), 12(4):290–321.

Bachman, C. W., Daya, M., Bachman, C. W., and Daya, M. (1977). The Role Concept in Data Models.
In Proceedings of the Third International Conference on Very Large Data Bases, volume 3, pages
464–476.

Baldoni, M., Boella, G., and Van Der Torre, L. (2006). Roles as a Coordination Construct: Introducing
powerJava. Electronic Notes in Theoretical Computer Science, 150(1):9–29.

Balzer, S. and Gross, T. (2011). Verifying Multi-Object Invariants with Relationships. In Mezini, M.,
editor, Lecture Notes in Computer Science, volume 6813 of 25th European Conference on Object-
Oriented Programming, pages 359–383. Springer.

Balzer, S., Gross, T., and Eugster, P. (2007). A Relational Model of Object Collaborations and Its Use
in Reasoning About Relationships. In Ernst, E., editor, ECOOP, volume 4609 of Lecture Notes in
Computer Science, pages 323–346. Springer.

Barbosa, F. S. and Aguiar, A. (2012). Modeling and Programming with Roles: Introducing JavaStage.
Frontiers in Artificial Intelligence and Applications, 246:124–145.

Boella, G. and Van Der Torre, L. (2007). The Ontological Properties of Social Roles in Multi-Agent
Systems: Definitional Dependence, Powers and Roles Playing Roles. Artificial Intelligence and
Law, 15(3):201–221.

Chen, P. (1976). The Entity-Relationship Model - Toward a Unified View of Data. ACM Transactions
on Database Systems, 1(1):9–36.

Da Silva, V., Garcia, A., Brandão, A., Chavez, C., Lucena, C., and Alencar, P. (2003). Taming Agents
and Objects in Software Engineering. In International Workshop on Software Engineering for
Large-Scale Multi-agent Systems, pages 1–26. Springer.

Dahchour, M., Pirotte, A., and Zimányi, E. (2002). A Generic Role Model for Dynamic Objects. In
Advanced Information Systems Engineering, pages 643–658. Springer.

Ferraiolo, D., Cugini, J., and Kuhn, D. R. (1995). Role-Based Access Control (RBAC): Features and
Motivations. In Proceedings of 11th Annual Computer Security Application Conference, pages
241–48.

Genovese, V. (2007). A Meta-Model for Roles: Introducing Sessions. In Proceedings of the 2nd Work-
shop on Roles and Relationships in Object Oriented Programming, Multiagent Systems, and On-
tologies, pages 27–38. Technische Universität Berlin.

Graversen, K. B. and Østerbye, K. (2003). Implementation of a Role Language for Object-Specific
Dynamic Separation of Concerns. In AOSD03 Workshop on Software-engineering Properties of
Languages for Aspect Technologies.

Guarino, N. and Welty, C. (2000). A Formal Ontology of Properties. In Knowledge Engineering and
Knowledge Management Methods, Models, and Tools, pages 97–112. Springer.

24 References

Guarino, N. and Welty, C. A. (2009). An Overview of OntoClean. In Handbook on Ontologies, pages
201–220. Springer.

Guizzardi, G. (2005). Ontological Foundations for Structure Conceptual Models. PhD thesis, Centre
for Telematics and Information Technology, Enschede, Netherlands.

Guizzardi, G. and Wagner, G. (2012). Conceptual Simulation Modeling with Onto-UML. In Proceed-
ings of the Winter Simulation Conference, page 5. Winter Simulation Conference.

Guizzardi, G., Wagner, G., Guarino, N., and van Sinderen, M. (2004). An Ontologically Well-Founded
Profile for UML Conceptual Models. In Advanced Information Systems Engineering, pages 112–
126. Springer.

Halpin, T. (2005). ORM 2. In On the Move to Meaningful Internet Systems 2005: OTM 2005 Work-
shops, pages 676–687. Springer.

Harkes, D. and Visser, E. (2014). Unifying and Generalizing Relations in Role-Based Data Modeling
and Navigation. In International Conference on Software Language Engineering, pages 241–260.
Springer.

He, C., Nie, Z., Li, B., Cao, L., and He, K. (2006). Rava: Designing a Java Extension with Dynamic
Object Roles. In Engineering of Computer Based Systems, 2006. ECBS 2006. 13th Annual IEEE
International Symposium and Workshop on, pages 7–pp. IEEE.

Hennicker, R. and Klarl, A. (2014). Foundations for Ensemble Modeling – The Helena Approach. In
Specification, Algebra, and Software, pages 359–381. Springer.

Herrmann, S. (2005). Programming with Roles in ObjectTeams/Java. AAAI Fall Symposium Roles,
an interdisciplinary perspective, (FS-05-08):73–80.

Herrmann, S. (2007). A Precise Model for Contextual Roles: The Programming Language Object-
Teams/Java. Applied Ontology, 2(2):181–207.

Jäkel, T., Kühn, T., Hinkel, S., Voigt, H., and Lehner, W. (2015). Relationships for Dynamic Data Types
in RSQL. In Datenbanksysteme für Business, Technologie und Web (BTW).

Jäkel, T., Kühn, T., Voigt, H., and Lehner, W. (2016). Towards a Contextual Database. In 20th East-
European Conference on Advances in Databases and Information Systems.

Kamina, T. and Tamai, T. (2009). Towards Safe and Flexible Object Adaptation. In International
Workshop on Context-Oriented Programming, page 4. ACM.

Kim, D.-K., France, R., Ghosh, S., and Song, E. (2003). A Role-Based Metamodeling Approach to
Specifying Design Patterns. In Computer Software and Applications Conference, 2003. COMPSAC
2003. Proceedings. 27th Annual International, pages 452–457. IEEE.

Kim, S.-K. and Carrington, D. (2004). Using Integrated Metamodeling to Define OO Design Patterns
with Object-Z and UML. In Software Engineering Conference, 2004. 11th Asia-Pacific, pages 257–
264. IEEE.

Kitchenham, B. (2004). Procedures for Performing Systematic Reviews. Keele, UK, Keele University,
33(2004):1–26.

Kühn, T., Bierzynski, K., Richly, S., and Aßmann, U. (2016). FRaMED: Full-Fledge Role Modeling Ed-
itor (Tool Demo). In Proceedings of the 2016 ACM SIGPLAN International Conference on Software
Language Engineering, SLE 2016, pages 132–136, New York, NY, USA. ACM.

Kühn, T., Böhme, S., Götz, S., and Aßmann, U. (2015a). A Combined Formal Model for Relational
Context-Dependent Roles. In Proceedings of the 2015 ACM SIGPLAN International Conference on
Software Language Engineering, pages 113–124. ACM.

Kühn, T., Böhme, S., Götz, S., and Aßmann, U. (2015b). A Combined Formal Model for Relational
Context-Dependent Roles (Extended). Technical Report TUD-FI15-04-Sept-2015, Technische
Universität Dresden.

Kühn, T., Leuthäuser, M., Götz, S., Seidl, C., and Aßmann, U. (2014). A Metamodel Family for Role-
Based Modeling and Programming Languages. In Software Language Engineering, volume 8706

References 25

of Lecture Notes in Computer Science, pages 141–160. Springer.
Liu, M. and Hu, J. (2009). Information Networking Model. In Conceptual Modeling-ER 2009, pages

131–144. Springer.
Loebe, F. (2005). Abstract vs. Social Roles – A Refined Top-Level Ontological Analysis. In In Procs. of

AAAI Fall Symposium Roles, an interdisciplinary perspective. Citeseer.
Mizoguchi, R., Kozaki, K., and Kitamura, Y. (2012). Ontological Analyses of Roles. In Computer

Science and Information Systems (FedCSIS), 2012 Federated Conference on, pages 489–496. IEEE.
Murer, S., Worms, C., and Furrer, F. J. (2008). Managed Evolution. Informatik-Spektrum, 31(6):537–

547.
Mylopoulos, J. (1992). Conceptual Modelling and Telos. In Loucopoulos, P. and Zicari, R., editors,

Conceptual Modeling, Databases, and Case: An Integrated View of Information Systems Develop-
ment, pages 49–68. John Wiley & Sons, Inc.

Nelson, S., Pearce, D. J., and Noble, J. (2008). First Class Relationships for OO Languages. In Pro-
ceedings of the 6th International Workshop on Multiparadigm Programming with Object-Oriented
Languages (MPOOL 2008).

Pradel, M. and Odersky, M. (2009). Scala Roles: Reusable Object Collaborations in a Library. In
Software and Data Technologies, pages 23–36. Springer.

Reenskaug, T. and Coplien, J. O. (2009). The DCI Architecture: A New Vision of Object-Oriented
Programming. An article starting a new blog:(14pp) http://www. artima. com/articles/dci_vision.
html.

Riehle, D. and Gross, T. (1998). Role Model Based Framework Design and Integration. In Proceedings
OOPSLA ’98, ACM SIGPLAN Notices, pages 117–133.

Rothenberg, J., Widman, L. E., Loparo, K. A., and Nielsen, N. R. (1989). The Nature of Modeling,
volume 3027. Rand.

Rumbaugh, J., Jacobson, R., and Booch, G. (1999). The Unified Modelling Language Reference Man-
ual. Addison-Wesley, 1st edition.

Seidl, C., Schaefer, I., and Aßmann, U. (2014). DeltaEcore–A Model-Based Delta Language Genera-
tion Framework. In Modellierung, pages 81–96.

Selçuk, Y. E. and Erdoğan, N. (2004). JAWIRO: Enhancing Java with Roles. In International Sympo-
sium on Computer and Information Sciences, pages 927–934. Springer.

Serrano, J. M. and Ossowski, S. (2004). On the Impact of Agent Communication Languages on the
Implementation of Agent Systems. In International Workshop on Cooperative Information Agents,
pages 92–106. Springer.

Steimann, F. (2000a). Formale Modellierung mit Rollen. PhD thesis, Universität Hannover. Habili-
tation thesis.

Steimann, F. (2000b). On the Representation of Roles in Object-Oriented and Conceptual Modelling.
Data & Knowledge Engineering, 35(1):83–106.

Steimann, F. (2000c). A Radical Revision of UMLś Role Concept. In UML 2000 - The Unified Modeling
Language, pages 194–209. Springer.

Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., and Leich, T. (2014). FeatureIDE: An
Extensible Framework for Feature-Oriented Software Development. Science of Computer Pro-
gramming, 79:70–85.

Ubayashi, N. and Tamai, T. (2001). Separation of Concerns in Mobile Agent Applications. In Inter-
national Conference on Metalevel Architectures and Reflection, pages 89–109. Springer.

Zhu, H. and Zhou, M. (2006). Role-Based Collaboration and Its Kernel Mechanisms. Systems, Man,
and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 36(4):578–589.

26 References

