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1 introduction
Evermore, novel and traditional business applications leverage the advantages of a
graph data model, such as the offered schema flexibility and an explicit representa-
tion of relationships between entities. The potential to derive new business insights
from graph-shaped data through graph analytics is increasingly attracting companies
from a variety of industries, ranging from web companies to traditional enterprises.
As a consequence, more and more companies are confronted with the challenge of
storing, manipulating, and querying potentially terabytes of graph-structured data
for enterprise-critical applications. Although graph structure is already latent in most
database schemata and inherently represented by foreign key relationships, managing
native graph data is moving into the focus as it allows rapid application development
due to the absence of an upfront defined database schema.

Existing solutions performing graph operations on business-critical data either use
a combination of sql and application logic or employ a graph management system
(gms), such as Neo4j or Sparksee, or distributed graph systems, such as GraphLab or
Apache Giraph. For the first approach, relying only on sql typically results in poor
execution performance caused by the functional mismatch between a graph algebra
and the relational algebra. The alternative is to process the data in a native gms to
overcome the unsuitability of the relational algebra to express complex graph queries
in an rdbms. Since the majority of these enterprise-critical applications exclusively run
on relational dbmss, employing a specialized system for storing and processing graph
data, however, is typically not sensible. Besides the maintenance overhead for keeping
the systems in sync, combining graph and relational operations is hard to realize as it
requires expensive data transfer across system boundaries. In the following we further
elaborate on the characteristics of modern data management system landscapes as can
be found in most large companies nowadays.

1.1 Heterogeneous Data Management System Landscapes

In the era of Big Data, companies face tremendous challenges when processing data
of different shape, size, and velocity. These challenges are the key drivers that led to
the separation of dbmss into isolated data silos and the proliferation of diverse dbms

landscapes. The heterogeneity of the dbms landscape and its separation into data
silos, however, poses the challenges of orchestrating query processing and assuring
data consistency across system boundaries.

Traditionally, row-oriented, disk-based rdbmss were designed for transactional busi-
ness processing with frequent updates to the database and short-running point que-
ries. They cannot, however, serve non-traditional workloads, such as graph process-
ing, stream processing, and statistical operations [1]. The recent NoSQL movement is
one indicator of this paradigm shift from traditional, row-oriented rdbmss tailored to
business transaction processing towards highly specialized systems for novel business
applications. Incoming transactional data is usually processed by a few operational
systems that rely on mature rdbms technology to store, manipulate, and query the
data. System stability, security, and reliability are of utmost importance for these sys-
tems since a database corruption or a security leak can have a tremendous negative
business impact. Specialized data management systems are usually not designed to
cope with these non-functional requirements, which is why they are mainly used to
run on replicated data only [1].
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Figure 1: System architecture and major components of Graphite.

1.2 Cross-Data-Model Query Processing

A graph does not consist of a topology only but also has a rich set of attributes
attached to vertices and edges. To issue queries that access data from different data
models and types seamlessly, the data should be ideally stored in a single dbms.

If one would want to issue a query than spans different data models against a
diverse system landscape, one would need a large number of specialized systems and
an additional orchestration layer to merge intermediate results. To cope with these
issues, there are ongoing efforts to consolidate the dbms landscape where possible and
to allow online querying even on the most recent data snapshot that is not necessarily
relational. One of the most promising possible solutions is the development of a data
platform [2], which is a multi-engine dbms accommodating native support for a large
variety of data models and query processing capabilities.

1.3 Contributions

In the course of this thesis, we describe the system architecture and the core com-
ponents of Graphite as part of an operational rdbms. Graphite is a performance-
oriented graph data management system allowing to seamlessly combine processing
of graph data with relational data in the same system. We develop Graphite as an ex-
tension of an rdbms that is competitive in terms of execution performance with native
graph processing systems while retaining strong guarantees required by enterprise-
critical applications, including transaction support, backup & recovery, and security
management. Figure 1 illustrates our major contributions in the context of Graph-
ite. We propose a columnar storage representation for graph data to leverage the
already existing and mature data management and query processing infrastructure
of relational database management systems. At the core of Graphite we propose an
execution engine solely based on set operations and graph traversals. Our design is
driven by the observation that different graph topologies expose different algorithmic
requirements to the design of a graph traversal operator. We derive two graph traver-
sal implementations targeting the most common graph topologies and demonstrate
how graph-specific statistics can be leveraged to select the optimal physical traversal
operator. To accelerate graph traversals, we propose two graph-specific, updateable
secondary index structures to improve the performance of vertex neighborhood ex-
pansion. Finally, we introduce a domain-specific graph query language called TraveL,
which offers an intuitive programming model to extend graph traversals with custom
application logic at runtime.
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2 graph storage
In this section we discuss the physical storage representation of graph data in Graph-
ite and a data reorganization technique to improve the overall memory consumption.
Parts of the material have been developed together with Michael Rudolf, Radwan
Deeb, and Wolfgang Lehner and have been partly published in [3].

2.1 Physical Graph Representation

Graphite supports the property graph model, which has emerged as the de-facto stan-
dard data model for general purpose graph processing in enterprise environments [4].
The property graph model describes a multi-relational, directed graph by a set of ver-
tices and a set of edges. Both, vertices and edges, can have an arbitrary number of
attributes assigned as key/value pairs.

We store a graph in two physical column groups, one for the vertices and one for
the edges, respectively. A column group is a vertically partitioned physical universal
table, where a new attribute can be added by appending a new column to the column
group. Figure 2 depicts an example representation of a small data graph. We map
each vertex and edge to a single entry in the column group and each attribute to a
separate column. Each vertex has a unique identifier as the only mandatory attribute.
An edge is drawn from the columns Vs and Vt that represent the source vertex and the
target vertex of an edge, respectively.

id type name title . . .

1 User John – . . .

2 Product – Shining
3 Product – It . . .

4 Category Horror –
5 Category Literature – . . .

(a) Vertex column group.

Vs Vt type rating . . .

2 3 similar – . . .

2 4 belongs –
3 4 belongs – . . .

1 3 rated 5.0
1 2 rated 4.0 . . .

4 5 category –

(b) Edge column group.

Figure 2: Mapping of a property graph to column groups.

read- and write-optimized storage We divide the graph storage into a read-
optimized and a write-optimized data container. Such a separation is commonly used
in columnar rdbms to allow fast read operations on the compressed read-optimized
store while retaining a high data ingestion rate on the write-optimized store [5–7].
Therefore, we store a dynamic graph in Graphite in two read-optimized column
groups for vertices and edges, respectively, and two write-optimized column groups
for vertices and edges, respectively.

We employ two levels of data compression, the first level is dictionary encoding,
the second level uses lightweight compression techniques to compact reoccurring val-
ues. We apply dictionary encoding on each column and map each distinct value in
the column to a fixed-length numerical value code. Consequently, each column is
a composite structure of a dictionary providing mappings between values and their
corresponding value codes and a data vector only containing the value codes instead
of the actual values.

A dictionary creates a dense domain by guaranteeing that all value codes are drawn
from [1, |D|], where |D| refers to the number of distinct values in the column. On
the second compression level, we apply lightweight compression on the data vec-
tor, for example to compact reoccurring values through run-length encoding. The
read-optimized column group is immutable, i.e., all data insertions and updates are
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redirected to the write-optimized column group. We handle deletions through a va-
lidity vector, which indicates whether a record is visible and accessible in the specific
transaction context. To guarantee fast query processing, we periodically merge the
write-optimized column group into the read-optimized column group.

2.2 Graph Data Compression Techniques

Our proposed columnar graph storage has two major shortcomings: (1) through the
explicit representation of NULL values in sparsely populated columns, the memory
consumption is higher than for an equivalent normalized database schema and (2) the
materialization of a complete row is more expensive since more columns have to be
accessed although most of them only contain NULL values.

We introduce Tetris, a row reordering technique to improve the overall data com-
pression ratio for wide and sparse vertically partitioned tables. Since NULL values
are the most frequent value in such scenarios, Tetris compresses the table by pro-
ducing long runs of NULL values within a column and by subsequently applying
run-length compression on each column. In contrast to traditional row reordering
approaches based on lexicographical sorting and heuristics for candidate column se-
lections, Tetris relies on clustering techniques applied on a row level.

Naturally, Tetris groups records with a similar set of exposed attributes close to
each other in the table, resulting in a logical partitioning of records semantically be-
longing to the same type. This observation can be used to implement advanced scan
routines that restrict the scan range to certain groups of records in the table.

(1) Generate
Fingerprints

(2) Apply
Clustering

(3) Reorder
Rows

(4) Apply Run-length
Encoding

Figure 3: Tetris workflow.

Figure 3 depicts the overall workflow of Tetris. First, we generate for all records in
the table a representative fingerprint, which is used in a subsequent step to compute
a normalized distance measure and to apply the k-means clustering algorithm by
assigning each row to a cluster. As a result, all entities belonging to the same cluster
expose a similar set of attributes and are more likely to represent entities of the same
semantic type. In contrast to the basic k-means algorithm, Tetris does not require
an upfront defined number of target clusters k, but instead adjusts the number of
clusters automatically during the clustering phase using Bayesian statistics. In the
reordering phase, we sort the table by cluster identifier and apply further sort order
optimizations. Finally, we apply run-length compression on the sorted columns.

3 graph traversal operators
In this section we introduce the notion of a graph traversal operator and propose two
traversal strategies on the columnar graph storage, a level-synchronous and fragmented-
incremental graph traversal. Parts of the material have been developed together with
Wolfgang Lehner and have been published in [8].

A graph traversal operator receives a traversal configuration and returns a set of
discovered vertices. Figure 4 depicts a set of traversal queries and their corresponding
results on the given example graph.

graph traversal operator implementations We subdivide the processing of a
traversal operation into three processing phases—a preparation phase, a traversal phase,
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Traversal configuration Result

({A } , “type = a”, 0, 1,→) {A,B,C,D }

({A } , “type = a”, 1, 1,→) {B,C,D }

({A } , “type = a”, 2, 2,→) { F }

({A } , “type = a”, 1,∞,→) {B,C,D, F }
({ E } , “type = b”, 2, 2,←) {D }

({A } , “type = a OR type = b”, 2, 2,→) { E, F }

Figure 4: Example traversal queries and their corresponding results.

and a decoding phase. Traversal algorithms appear in many variations favoring different
graph topologies and types of traversal queries. While a dense graph with a high
average degree and a skewed degree distribution benefits from a skew-resilient, level-
synchronous traversal algorithm, a sparse graph with a low average degree takes
advantage from a more fine-granular traversal strategy. We select the optimal traversal
operator implementation based on collected graph statistics and the properties of the
traversal query. We propose two functionally equivalent traversal strategies, namely a
level-synchronous (ls) traversal and a fragmented-incremental (fi) traversal, which target
different graph properties and traversal queries.

Graph Topology Traversal Query

Degree
Distribution

Average
Degree

Diameter Depth Predicate

ls-traversal power-law large small small unselective
fi-traversal uniform small large large selective

Table 1: Overview of traversal strategies and their targeted graph topologies and query charac-
teristics.

Table 1 summarizes the characteristics of both traversal strategies. The level-synchro-
nous traversal works particularly well on graphs with a small graph diameter, a power-
law degree distribution, and for short-running traversal queries with a large average
outdegree and a small traversal depth. In contrast, the fragmented-incremental traver-
sal favors a large graph diameter, a very sparse graph with a small average vertex
degree, and long-running traversal queries with a large traversal depth.

3.1 Level-Synchronous Traversal

The ls-traversal operates in a level-synchronous manner and discovers vertices in a
strict breadth-first ordering. It operates on an edge list represented by the columns Vs
and Vt, which store source and target vertices of edges, respectively. For each traversal
iteration, the ls-traversal scans the complete edge list to retrieve neighboring vertices
and returns a set of vertices adjacent to the vertices of the input set. We use a set-
based formalization of the graph traversal and implement the ls-traversal based on
set operations.

We employ data parallelization in the ls-traversal on the vertex level and on the ad-
jacency level by splitting the source vertex (Vs) and target vertex (Vt) columns into n
equal-sized logical edge partitions, respectively. Each traversal iteration is composed
of a full column scan, followed by a positional value fetch operation to retrieve adja-
cent vertices for a given set of vertices. The final result collection phase performs cycle
handling and merges intermediate results. The traversal algorithm either terminates
if the recursion boundary is reached or no more vertices have been discovered and
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forwards its output to the materialization phase, or continues with the next traversal
iteration.

If the performed number of traversal iterations or the diameter of the graph is small
and all available hardware resources can be utilized, a scan-based graph traversal
can provide a reasonable execution performance. In this case we can diminish the
computational overhead imposed by the ls-traversal for reading edges multiple times
through parallelized scan operations on the edge list. If, however, a single traversal
query cannot leverage all available parallelization capabilities of the dbms—caused
by a high query workload with possibly hundreds of traversal queries running in
parallel—, the ls-traversal suffers from the work inefficiency of the algorithm.

3.2 Fragmented-Incremental Traversal

In this section we propose an alternative traversal strategy, which reduces the number
of accessed edges compared to the ls-traversal significantly. We build on the gen-
eral observation that the size of the frontier set in each traversal iteration is not uni-
formly distributed across all traversal iterations, but instead grows until the traversal
reaches a certain traversal depth—the traversal iteration where most of the vertices are
discovered—and then shrinks again afterwards [9]. While for scale-free graphs with a
skewed degree distribution and a small graph diameter the increase of the size of the
frontier set is steeper, for very sparse graphs, such as road networks, the increase of
the size of the frontier set is smoother. The fi-traversal avoids to scan the entire edge
column group for each traversal iteration by consulting during each traversal itera-
tion a light-weight secondary index structure—the transition graph index. The transi-
tion graph index provides detailed information about column fragments and potential
transitions between them during the traversal. Thereby, it employs a fragment-at-a-time
processing model and processes the traversal asynchronously.

general idea The fi-traversal divides the edge list represented in columns Vs and
Vt into non-over-lapping, disjoint column fragments and executes the traversal fragment-
wise instead of column-wise. A column fragment contains a subset of the edges of
the graph and can be seen as a logical partition of the edge list. The fi-traversal
accesses only those column fragments that are relevant for the traversal and skips
all other column fragments. Based on the frontier set, the fi-traversal determines
the next column fragments to read. In contrast to the ls-traversal, which operates
level-synchronously, the fi-traversal runs level-asynchronously and reads in each traversal
iteration only a small portion of the graph instead of the complete edge list. More
specifically, the ls-traversal collects frontiers from a single traversal iteration during
the scan of the complete edge list; the fi-traversal collects frontiers from multiple
traversal iterations during a single read of a column fragment. To determine the
set of candidate fragments, the fi-traversal leverages a secondary data structure, the
transition graph, which stores transitions between column fragments.

Figure 5 depicts two example edge tables with and without edge clustering enabled
and their corresponding transition graphs. A transition between two column frag-
ments indicates the existence of (at least) one path of length two with one edge
e1 := 〈u, v〉 ∈ EF1

and one edge e2 := 〈v,w〉 ∈ EF2
. For example, in Figure 5 (c)

there is a transition between F2 and F3 since there is a path 13 ; 12 ; 15 with
〈13, 12〉 ∈ EF2

and 〈12, 15〉 ∈ EF3
.

Additionally, we store a column fragment synopsis attached to each column fragment
in the transition graph. A column fragment synopsis SFi

:=
{
u
∣∣ 〈u, v〉 ∈ EFi

}
is a

concise representation of the distinct source vertices in the edge set EFi
. For example,

the column fragment synopsis of the column fragment F2 in the transition graph
depicted in Figure 5 (c) is the set {13, 14}.
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(c) Transition graph (clustered)

F1 F2

F3 F4

{1, 7, 8} {13, 14}

{12, 15} {17, 18, 19}

(d) Transition graph (unclustered)

F1 F2

F3 F4

{1, 7, 8} {13, 14}

{8, 15, 19} {12, 15, 17, 18}
(a) Edge table

(clustered)

Vs Vt

F1

7 8

1 7

8 1

8 13

8 14

F2

13 12

14 19

14 15

14 13

F3

12 15

15 19

15 17

15 18

F4

19 18

18 17

17 16

(b) Edge table
(unclustered)

Vs Vt

F1

1 7

8 1

7 8

8 13

F2

13 12

14 19

14 15

14 13

F3

8 14

15 19

19 18

15 18

F4

12 15

15 17

18 17

17 16

Figure 5: Edge tables and corresponding transition graphs with column fragment size 4.

In summary, the fi-traversal outperforms the ls-traversal for graphs with a low den-
sity and short traversal queries by up to two orders of magnitude. In contrast, the
ls-traversal performs significantly better than the fi-traversal, if the graph is dense or
the query traverses a large fraction of the whole graph.

4 secondary index structures for graphs
In Graphite, the primary graph storage is organized in column groups—so we con-
sider adjacency lists as secondary index structures. For other native graph manage-
ments systems (gms), however, an adjacency list might be the primary storage of the
graph topology. Only a few graph indices can handle evolving graphs, which are
becoming increasingly the predominant graph workload pattern. The unpredictable
update performance and the large memory footprint make specialized graph index
structures unattractive for a general-purpose dbms.

Specifically, we define the major design goals of a general-purpose graph index
to be maintainability, applicability, and scalability. Based on the design goals we de-
vise two graph index structures, namely a block-based and an adjacency-based graph
index structure. Both index structures can be used interchangeably, but expose differ-
ent advantages and disadvantages in terms of construction time, index maintenance,
lookup time, and memory footprint. Parts of the material have been developed to-
gether with Sebastian Rode, Matthias Hauck, and Wolfgang Lehner and have been
published in [10] and [11], respectively.

4.1 Block-Based Topology Index

The block-based topology index extends the idea of an immutable csr data structure
with the ability to efficiently perform edge insertions at runtime. Instead of devising
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Figure 6: Updating the block-based topology index with minimal block size = 2 (modifications
colored in green).

an immutable csr data structure, we propose a lightweight, mutable, secondary in-
dex, which operates solely on the edge column group representation. To construct a
block-based topology index, we divide the clustered source vertex column into non-
overlapping, contiguous blocks of potentially varying size. Conceptually, we repre-
sent a block as a tuple 〈id, start, end〉, where id corresponds to a unique identifier, start
corresponds to the start position and end to the end position of the block in the edge
column group, respectively. In a subsequent step, we store for each distinct source
vertex a set of blocks.

construction and maintenance Before we construct the block-based topology
index, we cluster the edge column group by source vertex. We provide an adaptive
mechanism that allows handling low outdegree and high outdegree vertices—as they
appear in scale-free graphs—equally well. If the outdegree of a vertex is larger than
the minimal block size bmin, we extend the block accordingly to store all outgoing
edges of a vertex in a single block. If the outdegree of a vertex is smaller than the
minimal block size, we fill the block with other vertices until the minimal block size
is reached.

We handle edge deletions by marking invalid edges in a lightweight invalidation
data structure, which is part of the visibility and access control component of Graph-
ite. To insert an edge (cf. Figure 6), we add it to the end of the edge column group.
By appending an edge to the edge column group, however, we likely break the source
vertex clustering criterion. Although the block-based topology index does not rely
on a strict edge clustering, it shows the best performance for an optimal clustering,
as we can map each vertex in the column to exactly one block. If the column is
not optimally clustered, each vertex (and its outgoing edges) can appear in multiple
blocks and therefore points to a set of blocks.

We use a measure—the health factor—to quantify the overall quality of the index
structure with respect to query performance. The health factor hv reaches its maxi-
mum (hv = 1.0), when all adjacent vertices of a vertex can be pulled from a single
block. If the health factor h of the index is below a threshold τ, we consider the index
as not beneficial anymore to considerably speed up neighborhood queries.

example index representation Figure 6 illustrates the insertion of two edges
〈4, 1〉 and 〈2, 4〉 at the end of the edge column group and the corresponding updates
to the index. The first insertion triggers the creation of a new block B3, which is
increased until the minimal block size is reached. While blocks residing in the static
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Eid Vs Vt A1
. . . An
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2 2 1 0.1 . . . –
3 1 3 0.5 . . . –
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5 4 4 1.3 . . . –
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Adjacency List Prefix
Array
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Figure 7: Mapping of rows in the edge column group to entries in the adjacency list.

fraction of the edge column group can vary in size, all blocks in the dynamic part
have a fixed, but configurable size. After inserting the edges into the edge group,
we update the mapping of vertices to blocks. The second case increases for a single
vertex the number of blocks to read. If the source vertex column is perfectly clustered
or the outgoing edges for each vertex can be fetched from a single block, we refer to
the index structure as being in a good health state. An index lookup achieves the best
possible query performance as for each vertex only a single block needs to be scanned.
Frequent edge insertions, however, pollute the index and degrade the index health. At
some point, the index health degradation is so severe that even a full-column scan
outperforms an index lookup.

4.2 Adjacency-Based Topology Index

The adjacency-based topology index is a secondary index structure, which allows an-
swering neighborhood queries directly and without the need to consult the primary
copy of the data. This is in contrast to the block-based topology index, where neigh-
borhood queries cannot be answered by index lookups only. In addition to the general
requirements for the block-based index, we pose the following supplementary require-
ments: support for bi-directional graph traversals, references to the attribute column groups,
index mutability, and delta merge stability.

The adjacency-based topology index holds internal mapping structures to allow ac-
cessing attribute values of vertices and edges from the adjacency list and to access the
graph topology based on a predicate evaluation on the vertex/edge column groups.
We build the core adjacency list from a projection of the edge column group to the
edge id, the source vertex, and the target vertex column. The algorithm is based on
three passes: a statistics gathering pass, a parallel sorting pass, and an parallel insertion
pass.

To combine graph with relational processing, such as filtering and aggregation on
the vertex and edge column groups, we add mappings between the adjacency list and
the corresponding vertex and edge column groups. Graphite keeps bidirectional,
light-weight, and updateable mapping tables between the adjacency list and the cor-
responding column groups.

Figure 7 depicts an exemplary mapping between the adjacency list and the corre-
sponding edge column group. For example, to access the adjacency list entry for the
edge with id 2, we first retrieve the corresponding mapping array entry at position
2 (in this case the mapping value is 2). Next, we use the prefix array and perform a
search to retrieve the largest element, which is lower or equal to the mapping value (in
this case o2). The index for the outer array (the source vertex) is the position o2 in the
prefix array. The index for the inner array—the index within the adjacency—can be
computed as the subtraction of the entry in the prefix array from the mapping value.
For the edge with id 2, we retrieve the tuple 〈2, 0〉.
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5 travel — a dsl for graph analysis
To implement a domain-specific graph algorithm in the context of a complex graph
application, simple graph traversals are typically not expressive enough nor do they
allow customization to the user’s needs. To cope with these issues, graph database
vendors provide—in addition to their declarative graph query languages—procedural
interfaces to write user-defined graph algorithms [12, 13]. Such imperative interfaces
offer a powerful abstraction to write user-defined, domain-specific graph algorithms,
but they also have major drawbacks. To the worse, writing graph algorithms in a
general-purpose language prevents exploiting data- and domain-dependent optimiza-
tions at runtime and certain query optimization and rewriting techniques, such as
selection push-down and leveraging intra-query parallelism cannot be applied.

We propose TraveL, a domain-specific query language for writing complex graph
algorithms. In contrast to a low-level programming interface, TraveL provides high-
level, graph-specific language constructs to formulate graph algorithms in a user-
friendly and intuitive way while retaining an equivalent execution performance to
manually optimized implementations written in c++. TraveL is statically typed and
exhibits a graph abstraction and natively supports fundamental graph data types,
such as vertices, edges, and paths, and operations thereon. It facilitates an imperative
programming model with control flow elements and data querying and manipulation
operations. The core programming concept of TraveL are traversal hooks, which allow
extending optimized, built-in graph traversal operators by user-defined program logic.
TraveL can be extended by exposing high-performance, built-in graph algorithms di-
rectly within a procedure script.

5.1 Model of Computation

A graph traversal discovers new vertices and traverses over edges in a deterministic
and well-defined manner. We use an event-oriented programming model and the
notion of traversal events to allow end users to extend the ordinary graph traversal
semantics with custom logic. By ordinary traversal semantics, we refer to the traversal
order of bft and dft, i.e., to discover vertices level-by-level (bft) or to discover vertices
recursively (dft).

Such traversal events include the discovery of new vertices and the traversal over
edges. Although it would be possible to define other, more specialized traversal
events, i.e., the repeated visit of a vertex/an edge, we argue that a restricted num-
ber of event types is sufficient to compose more complex traversal events.

Each traversal event triggers the execution of a user-defined action—called traversal
hook— that is defined for this event type. A traversal hook can produce and access
volatile and persistent state, which is shared between invocations. Additionally, a
traversal hook can change the semantics of the underlying graph traversal and steer
the traversal during runtime.

The traversal operator calls the traversal hook for each triggered traversal event; the
traversal hook can steer the traversal operation by either restricting/terminating or
extending the traversal. The traversal hook stores intermediate results in the traversal
state, which is shared across all traversal hook invocations. Data stored in the traver-
sal state is immediately visible in the logically subsequent traversal hook invocation.
Multiple traversal hooks can be associated with a graph traversal operator, where each
traversal hook is assigned to a traversal event type. For example, the user can specify
two traversal hooks reacting to the discovery of new vertices, where each traversal
hook by itself might perform a different action. Traversal hooks can either share the
traversal state or have exclusive state that is only visible within the specific traversal
hook. In each call, the traversal hook can read its traversal state and access the graph
through a common graph programming interface.
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Listing 1: Summarized bom explosion.

-- Preamble

CREATE TEMPORARY VERTEX ATTRIBUTE<INT> sum = 0;

-- hook definition

HOOK EDGE "H" (CONTEXT $e) {

$h = HEAD($e);

$t = TAIL($e);

UPDATE $t { SET sum = $t@sum + ($e@quantity * $h@sum); }

}

-- Traversal definition

TRAVEL "BOM" (VERTEX $root) GRAPH "G" {

UPDATE $root { SET sum = 1; }

TRAVERSE BFS $root-[*]->(*) HOOK "H";

}

example Query support for bill-of-materials (bom) applications is a common re-
quirement in business environments. A bom hierarchy is represented as an acyclic,
single-rooted graph and describes the relationships between product parts. The graph
contains an edge attribute quantity, which describes how many instances of the subpart
are required to manufacture the part. To illustrate the use of traversal hooks, we re-
visit a fundamental operation on bom hierarchies—summarized bom explosion. It
provides an answer to the question “What is the total quantity of each part required
to build part P1?”.

Listing 1 depicts a summarized bom explosion expressed in TraveL. A TraveL
script consists of an optional preamble, followed by a set of traversal hook definitions,
and a main clause. We use a temporary vertex attribute qnty to collect intermediate
results and initialize all values to zero, except for the root vertex P1. For each traversal
hook invocation, we extract the head and the tail vertex from the context edge $e and
store them in two temporary variables. We update the temporary vertex attribute qnty

with the sum of the qnty of the tail vertex $t and the multiplication of the edge weight
quantity and the vertex attribute qnty of the head vertex $h.

5.2 TraveL Compiler

We utilize the llvm compiler framework to generate llvm-ir code from a TraveL
script and use the llvm-ir code to orchestrate the execution logic, and to delegate
more complex functions, such as operators and resource management tasks, to the
graph backend. We identify two potential performance issues that arise in a general-
purpose graph storage with support for multiple data types and a varying set of
vertex/edge attributes: (1) support for multiple data types is typically implemented
either using dynamic polymorphism and virtual function calls or through function
overloading, and (2) to access the actual attribute data container, the high-level at-
tribute name has to be translated into a physical memory address for each access.

In the code generation step, we determine the data type of all accessed attributes
and automatically select the correct, type-dependent access function from the api. In
the graph api we provide specialized functions that allow retrieving single attribute
values without having to cast value types and having to resolve the attribute by name
in every function invocation.

A graph traversal operator could be naturally extended by passing a function object
to the traversal and calling the contained function for each event from within the
operator. Instead of keeping two separate compilation units, one for the traversal and
one for the traversal hook (cf. Figure 8 (a)), we create for a TraveL script a customized
traversal operator during runtime in a single compilation unit (cf. Figure 8 (b)). This
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Figure 8: Extending traversal operators in TraveL.

has the advantage that the jit compiler can perform a holistic code optimization by
tightly integrating the traversal hook code into the traversal operator.

5.3 Travel Query Rewriting

One of our main goals is to optimize the execution of the traversal hooks, i.e., the
code path that is executed for every discovered vertex or every traversed edge. There
are two main directions to enhance the performance of traversal hook invocations:
(1) reducing the number of instructions performed for each traversal hook invocation
and (2) batching multiple, independent traversal hook invocations.

The TraveL compiler automatically detects predicates in traversal hooks that do not
depend on runtime computations and moves them out of the traversal hook function
into the traversal operator. The rewriting logic of the TraveL compiler moves the pred-
icate evaluation out of the traversal hook and rewrites the traversal configuration to
use an additional edge filter restricting the traversal. Another fundamental rewriting
technique merges multiple traversal hooks registered for a single traversal operator
into a single traversal hook. Finally, the user is not forced to write TraveL scripts
using solely traversal hooks to express graph algorithms. To cope with this issue, we
search for code patterns in a TraveL script that mimic the intended functionality of
traversal hooks and rewrite them into canonical traversal hooks.

6 conclusion
In this thesis, we described Graphite, a performance-oriented graph data manage-
ment system at the core of an rdbms allowing to seamlessly combine graph data with
relational data in the same system. For customers, this offers an interesting alternative
to specialized gms that lack many of the features demanded by enterprise applications
and require expensive data replication and maintenance processes.

We proposed a relational storage representation for graph data based on column
groups to leverage the already existing query processing infrastructure of rdbmss.
Since the representation of vertices and edges in wide column groups might lead to
sparsely populated columns, effectively resulting in a higher memory consumption,
we developed a light-weight compression technique called Tetris. Tetris identifies
entities that expose a similar set of attributes automatically, reorders them within a
column group, and finally applies rle to compress NULLvalues in each column.

To support efficient query evaluation on large graphs, we proposed a logical graph
traversal operator that can be configured to run k-hop traversals on (sub) graphs and
an accompanying set of graph traversal implementations, namely the level-synchronous
(ls) and the fragmented-incremental (fi) traversal. The ls-traversal relies on repetitive
parallelized full-column scans on the edge column group and provides good perfor-
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mance for graphs with a low diameter and a power-law degree distribution resulting
in large intermediate results during the traversal. For extremely sparse graphs and
graphs with a large diameter, such as road networks, we developed fi-traversal, an
index-assisted graph traversal implementation. To accelerate neighborhood queries
and traversals, we developed two secondary graph index structures, namely the Block-
based topology index and the Adjacency-based topology index.

Finally, we developed a traversal-based programming model and an accompanying
domain-specific graph query language called TraveL. We build TraveL on traversal
hooks, which are well-defined extension points of traversal operators allowing the user
to execute custom code during a traversal query. We used the llvm compiler frame-
work to create a specialized graph traversal operator on-the-fly during runtime as the
combination of highly tuned, built-in traversal operators and user-specified code that
acts on a vertex- or edge level.
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