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1 Introduction

Recent advances in 3-D scanning technology have fostered the research in many application are-
as related to 3-D mesh processing including 3-D content based retrieval, reverse engineering and
more recently the digital manufacturing of implants and prosthetic devices. Particular examples of
the latter include dental implants and hearing aids. Existing computer aided design (CAD) software
systems often provide various mesh processing algorithms to support a wide range of customized
design workflows. These digitized workflows typically involve cumbersome manual work carried out
by experienced domain experts.

In this work we consider the problem of semantic part-labeling of 3-D meshes of ear implants
since this helps to automate the design of hearing aids. In particular, we present a new conditional
random field (CRF) framework that outperforms previous approaches for this task. Many problems in
computer vision including semantic segmentation can be cast as labeling problems for which random
field models provide a principled way to accommodate higher-level constraints of an object class. In
particular, the semantic part-labeling of ear implants requires an understanding of the anatomy and
of the hearing aid (HA) design rules.

Our work involves three major topics related to 3-D mesh processing of ear implants: representation
of 3-D objects using local descriptors, registration and shape clustering of 3-D objects, semantic part-
labeling of 3-D objects.

2 Problem statement

HA design involves interpreting the anatomy of the human outer ear. A domain expert interactively
transforms a 3-D surface mesh into a hearing aid shape based on hearing aid design rules. A large
number of CAD operations in HA design depend on cuts. A cut is defined by a plane passing through
the mesh. Five principal cuts (see Fig. 1(left)) drive the design of nearly all types of hearing aids (see e.g.
Fig. 1(right)). The spatial arrangement of the principal cuts induces a compositional and hierarchical
part structure of the ear (described below).

The manual placement of the cutting planes (orientation, location, normal direction) is (1) cum-
bersome, (2) not reproducible, (3) dependent on the skills of a human operator. Therefore, the goal is
to automate the process, aiming at reproducibility, faster HA design and better fitting devices.

Existing solutions for this task rely on anatomical features of the ear [BMF+10, SBB+09]. Firstly, a
comprehensive set of characteristic features (e.g., peaks, concavities, elbows and bumps) is detected
and represented through points, simple contours and areas on the surface. Secondly, the detected
features are used to automatically initialize various types of CAD tools, such as the cuts shown in Fig. 1.

Automatic shape analysis of the human outer ear is extremely challenging: (1) existing algorithms
often fail to recognize the anatomical features consistently across individuals due to the anatomical
variability and due to ambiguities arising from subtle shape variations, (2) the design of hearing aids
involves numerous free parameters with complex dependencies and constraints that must be satisfied.
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Abbildung 1: (Left) Principal cuts in hearing aid design. (Right) Final mesh (transparent) with electronic components inserted
(source: [BMF+10]).

Part-based recognition of 3-D ear implant objects
The spatial arrangement of the principal cuts induces a compositional structure of the ear (see

Fig. 2). The recognition of this part structure may be cast as semantic part-labeling problem, i.e.,
given a surface X =(V ,E ,F ) the objective is to assign discrete part-labels to the vertices in V or to
the faces in F . In this work we develop a semantic part-labeling framework of 3-D meshes of ear

Abbildung 2: Hierarchical structure of the human outer ear. A human outer ear (Obj) is composed of a spindle-shaped Canal (C)
that sits deep in the outer ear and a base that resides in the External Ear (E). The two are separated by a narrow opening called
Aperture. Three cutting planes, passing through Aperture, First Bend and Second Bend, decompose the Canal structure into
three constituent parts denoted as Canal Tip (CT), Canal Middle (CM), and Canal Base (CB). A horizontal cut passing through
the External Ear separates the Helix (HE) and the Conchae (CO) from the External Ear Base part (EB) which forms the base of
the surface. Helix (HE) and Conchae (CE) are divided by a cut passing through the Crus. Compositional constraints (dashed)
between sibling nodes of the part hierarchy. Colors indicate the anatomical interpretation of the parts.

implants. The labeling represents the part structure of the underlying physical object where both labels
and transition boundaries between the segments capture the essence of the underlying HA design
process. Consequently, the labels must agree with the semantic interpretation of the object pattern.
An object is recognized if its constituent parts have been recognized thereby satisfying the constraints
imposed on their spatial arrangement. We hereby assume that the part structure is consistently present
among all individuals of the object class under consideration. Requirements and assumptions of each
component of the framework are determined by the HA manufacturing application. Key requirements
of the proposed framework include to the anatomical variability of the ear, invariance to similarity
transformations of an object as well as generalizability to other classes of 3-D meshes.

Overview of approach An overview of the proposed recognition framework is depicted in Fig. 3. We
have divided the work according to the main components: section 3 considers the representation
of 3-D objects using local shape descriptors, section 4 is concerned with the registration and shape
clustering of ear implants, section 5 introduces the semantic labeling model and section 6 addresses
the joint shape classification and labeling of 3-D objects.
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Abbildung 3: 3-D object recognition for shape modeling in HA manufacturing.

3 Representation of 3-D objects using local descriptors

Local 3-D shape descriptors capture the regional or global shape of an object relative to a point on the
surface. The choice of descriptor is driven by invariance requirements and the need for robustness to
non-ideal conditions, such as noisy 3-D scans. We study several descriptor schemas regarding their
discriminative performance for surface registration and semantic labeling. Our performance criterion
is the ability of a descriptor to discriminate between different object parts in descriptor space. Many
of the considered solutions perform poorly on the ear data. Please note, that this section provides a
condensed version of the corresponding chapter in the dissertation.

The investigated descriptor schemas include: curvatures at a point x on a surface (principal cur-
vatures:κ1

x,κ2
x, mean curvature: Hx, Gaussian curvature: Kx) [Rus04], global geodesic function (GGF)

[HK03], 3-D shape context (SC) [KPNK03], intrinsic shape context (ISC) [STdZ+07], spin image (SPI)
[JH99] and the shape image (SHI). The key idea of the shape image descriptor is to capture the shape
of a surface in terms of how similar a local descriptor is to other local descriptors in its geodesic neigh-
borhood. This requires a suitable (dis)similarity measure in descriptor space. We define the average
value of the distance between the local descriptor at a reference point and a local descriptor residing
in the geodesic neighborhood of the reference point as the shape function at this point. Larger values
of the shape function suggest that the considered region tends to be more salient compared to smaller
values. Since real-world objects are typically composed of different structures at different scales it is
reasonable to compute the shape function for different neighborhood sizes. There is no way, however,
to know a priori what scales are appropriate for capturing the interesting structures. This is why we
compute the shape function at different scale levels which we collectively refer to as shape image.

In our experiments we compare the discriminative performance of several local descriptors men-
tioned above. The evaluation was done regarding the ability of the descriptors to find anatomically
meaningful correspondences between two surfaces under a bipartite matching model. Ambiguous
descriptors, for example, tend to produce matchings for which the semantic labels at corresponding
points disagree. In this case the point correspondences may not be anatomically meaningful.

There are three main insights gained from this analysis: (1) on average 3-D shape contexts give rise
to the lowest number of mismatches on the ear data; (2) purely local descriptors (e.g. curvatures, global
geodesic function) tend to be less discriminative compared to descriptor schemas that represent larger
neighborhoods (e.g. spin image, shape image, 3-D shape context). The main reason for this is that orga-
nic surfaces usually undergo subtle variations in form of bends. This implies that the geometry barely
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varies within smaller neighborhoods; (3) the computational complexity of the considered descriptor
schemas increases with their discriminative performance. From this it follows that more complex
descriptor schemas (e.g. 3-D shape contexts, shape images) are better suited for off-line recognition
tasks. In the following sections we will use 3-D shape contexts as local descriptors of the ear anatomy.

4 Registration and shape clustering of 3-D objects

A capable recognition approach copes with the anatomical variability in order to consistently interpret
the ear anatomy across individuals. The nature of the variation of the ear, however, tends to be complex
and is difficult to model. In order to capture the anatomical variability of the human outer ear we adopt
the idea in [ZBA+09] and partition the surfaces into non-overlapping clusters of objects with a similar
shape. The clusters implicitly capture the anatomical variability in a non-parametric way. This is much
simpler than defining a parametric model for all possible shapes an object may take but it requires a
larger number of training examples to capture the variability reasonably well.

Registration In this paragraph our objective is to transform the ear shapes into a common frame of
reference with the ultimate goal of deriving a notion of distance between shapes as a cost function for
clustering.

In order to ensure that all given surfaces reside in the same space we solve the correspondence
problem jointly across the surfaces to bring them into alignment. In the literature this task is referred
to as groupwise registration problem. Groupwise registration typically involves iteratively improving
the registration between shapes and an evolving average shape. After the registration is complete,
correspondences between any point on one shape and any point on another shape are known via
the common reference model. If we assume that the surfaces in our data set are independent given a
reference object representative of the ear population then the groupwise registration problem reduces
to a pairwise registration between each candidate surface and the reference model. We developed and
tested three pairwise registration techniques with application to ear shapes: (1) binaural registration
using feature correspondences [ZUF+06], (2) registration via correlation of extended Gaussian images
[MID06], (3) registration via bipartite shape matching [BMP02].

The binaural registration algorithm and the correlation based alignment yield excellent performan-
ce in intra-patient registration. The two methods were successfully integrated into an existing CAD
software system. However, the two methods were found insufficient for the inter-patient registration of
ear shapes due to the inconsistent occurrence of characteristic surface features across individuals. The
bipartite matching method overcomes this limitation by establishing surface correspondence between
points using rich local descriptors under a bipartite matching model similar to [BMP02]. The points
were sampled from the surfaces at random with a roughly uniform spacing. In general such points will
not and need not correspond to characteristic surface features.

Shape distance After transforming the surfaces into a common reference space the shape distance
between any two surfaces X1,X2 may be estimated via the corresponding points on the reference
modelXr. Specifically, let i, 1≤ i≤|P| be a vertex onX1 and let j, 1≤ j≤|Q| be a vertex onX2. When the
corresponding point of i on Xr is equal to the corresponding point of j on Xr then i and j are regarded
as corresponding points. A meaningful notion of shape distance, say, dist(X1,X2) between X1 and X2
derives from the matching cost d(ξi ,ξ j)≥0 via

dist(X1,X2) =
1
N ∑

i∈V1

∑
j∈V2

{
d(ξi ,ξ j), ifξi ,ξ j match onXr,
0, otherwise, (4.1)

where in this case N is the number of corresponding points on the reference model. Fig. 4 illustrates
the matching performance by showing the two closest surfaces in the data set (a),(b) and the two most
distant surfaces (c),(d) in terms of Eqn. (4.1) where we have used 3-D shape contexts as descriptors and
the χ2 measure as distance function between the descriptors. The distance value between the surfaces
(a),(b) is 0.025 and the distance value between the surfaces (c),(d) is 0.391. The differences between
the former two are barely visible. In fact, the two surfaces seem to represent the same anatomy. Note,
that the right surface in the bottom row in Fig. 4 contains a lot of excess material at its base which is
not part of the anatomy.
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(a) (b) (c) (d)

Abbildung 4: Shape matching and distance. The first two surfaces (a), (b) give rise to the smallest distance in Eqn. (4.1) with a
value of 0.025. The second two surfaces (c), (d) yield the largest distance with a value of 0.391. A visual inspection confirms the
notion of distance between the shapes.

Despite the presence of mismatches between the point sets we find that the quantity in Eqn. (4.1)
supports the visual intuition of shape similarity, i.e., with increasing values the shapes look more
similar and more different otherwise.

Shape clustering The nature of the underlying variation of organic shapes tends to be complex and
is often unknown. Non-parametric clustering is a common way to explore the structure of a data set
with the objective to arrange the objects into groups with strong internal similarities. Like in [ZBA+09]
we attempt to cluster the ear data into non-overlapping subsets of objects with a similar shape thereby
assuming that the number of clusters is significantly smaller than the number of data examples. The
surfaces inside a cluster are expected to look more similar compared to those residing in different
clusters.

Non-parametric clustering typically involves defining (1) a measure of (dis)similarity between the
data examples, (2) a criterion function for clustering, (3) an algorithm which optimizes the clustering
criterion. The choices are largely driven by the underlying application.

We use affinity propagation (AP) [FD07] to cluster the ear shapes while simultaneously identifying
object candidates (prototypes) that best represent other cluster members. AP solves a combinatorial
optimization problem in which the distance function in Eqn. (4.1) gives rise to a clustering objective
referred to as net similarity S(c). The vector c=(c1, ...,cN) denotes a configuration of N hidden labels
with ci∈{1,...,N} indicating the prototype (the cluster) to which each of the N data examples Xi has
the highest affinity. Please refer to the dissertation for more details about the clustering objective.

Experiments In this paragraph we use AP to cluster the ear data into distinct groups of surfaces
with a similar shape. The data set contains about 500 surfaces. Our main objective here is to examine
how similar the shapes inside the clusters are and how well the clusters are separated. Input to AP
is a square matrix of pairwise similarities between the surfaces for which we employed the negative
pairwise distance in Eqn. (4.1) with d(·,·) denoting the χ2 matching cost between the corresponding 3-
D shape contexts. Fig. 5 plots the value of the clustering objective S(c∗) against the number of clusters

Abbildung 5: Clustering objective S(c∗) (see dissertation for details) plotted against the number of clusters. Note how the value
of S(c∗) increases more rapidly to the point of five clusters.
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where c∗ is a vector in which the elements denote “optimal” assignments of the surfaces to K clusters.
From the figure one can see that the value of the objective function increases more rapidly to the point
of K=5, decreasing much more slowly thereafter. We therefore assume that the data are grouped into
K=5 reasonably well separated clusters.

(a) (b) (c)

(d) (e) (f)

Abbildung 6: Visualization of the intra-cluster variability. Shown are the cluster prototypes for K=1 (a) and for K=5 (b)–(f). The
color map encodes the intra-cluster variability ranging from low (blue) to high (red) variability. The surface regions with a larger
variability tend to become more localized when the number of clusters increases from K=1 to K=5.

Fig. 6 illustrates the intra-cluster variability for K=1 (Fig. 6(a)) and for K=5 (Fig. 6(b)–(f)). Shown is
the cluster prototype together with a color map which encodes the local variation of the shapes within
the clusters ranging from zero (blue, small variation) to one (red, high variation). The color values
capture the variance of the matching cost between the corresponding points relative to the cluster
prototype.

From the color maps one can see that the regions of higher variability (yellow, red) become more
localized when the number of clusters K increases from K=1 to K=5. For K=1 we observe the largest
variation alongside the canal structure, near the tip of the helix and in the transition area between the
two. The largest residual variation for K=5 occurs in the aperture region (Fig. 6(f)) and at the tip of
the auditory canal (Fig. 6(e)). Notice, that the cluster prototype for K=1 shown in Fig. 6(a) is also a
prototype for K=5 shown in Fig. 6(b). The reduced intra-cluster variability suggests that the shapes
inside a cluster tend to look more similar than those residing in different clusters. In section 6 we use
the clusters as a non-parametric shape model.

5 Semantic part-labeling of 3-D objects

In this section we consider the problem of sematic part-labeling of 3-D meshes of ear implants. Our
contribution is a new framework which outperforms existing approaches for this task. To achieve the
boost in performance we introduce the new concept of a global parametric transition prior. To our
knowledge, this is the first time that such a generic prior is used for 3-D mesh processing, and it may
be found useful for a large class of 3-D meshes.

The problem is to partition a polygonal surface mesh into non overlapping subsurfaces each of
which represents a semantic part of the underlying object. Such decomposition into parts is extremely
challenging due to the anatomical variability. Moreover, it is typically not possible to consistently infer
the transition boundaries between adjacent segments solely from geometric cues, and the need of
strong boundary transition priors becomes immanent. Fig. 7 illustrates why this is the case in the
personalized computer-aided shape modeling of ear implants. Input to the process is a polygonal
surface mesh capturing a patient’s outer ear geometry. The essence of the hearing aid design process is
captured by a part-labeling of 6 anatomical surface regions and piecewise planar transition boundaries
between the labeled segments. The ultimate goal is to minimize the user interactions and to maximize
the label quality which involves the shape of the transition boundaries.

The most recent state of the art approaches segment and label 3-D surface meshes jointly. The
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Abbildung 7: Semantic 3-D labeling of ear implants in hearing aid (HA) design. (Top row): A domain expert manually places 5
cutting planes along anatomical lines based on hearing aid design rules. This manual procedure is very cumbersome. Part labels
(color) corresponding to 6 anatomical regions are derived from the cutting planes. Both, the cutting planes and the labeled regi-
ons play a key role in personalized hearing aid design. (Bottom row): Part-labeling using our algorithm. Labels and transition
boundaries between segments are optimized jointly (Bottom middle). Planes are derived from the labels (Bottom right).

authors in [KHS10], for example, collect statistics of neighboring surface features to learn a CRF with
local pairwise interactions. The prior model in [KHS10], however, is not well suited to adequately
constrain the transition boundaries between adjacent segments to an a-priori known parametric
form. Consider, for example, the case of subtle shape variations in form of bends which are typical for
organic surfaces. In this case the geometry dependent likelihood of a difference in labels, as proposed
in [KHS10], tends to be constant (or zero) across the surface.

Not much work exists on the labeling of ear shapes. Similar to [KHS10] the authors in [Zea10] use
data dependent pairwise terms to penalize inconsistent labels based on local feature statistics. An
alternative approach is presented in [ZSF13] where the authors employ multiple shape class specific
CRFs with pairwise Potts interactions to overcome the large variability of the ear. While both methods
achieve reasonable recognition rates the transition boundaries between adjacent segments tend to
deviate significantly from the ground-truth. By comparison, the work in [BMF+10] firstly detects a
set of generic features of the ear (concavities, elbows, ridges, bumps) which are then used to derive
anatomical features of the ear including points, curves, areas and cutting planes. A part labeling may
readily be derived from the cutting planes as illustrated in the top row in Fig. 7. Another completely
different approach would be to build a human digital ear atlas and to propagate the labels from the
atlas to the new data via surface registration (see e.g. [BZF10]). However, due to the variability of the
ear it is extremely challenging to consistently establish anatomical correspondence across individuals.

Inspired by the practical challenge of hearing aid design, we address the surface labeling problem
by jointly optimizing the part-labels and the piecewise planar transition boundaries between labeled
segments as illustrated in the bottom row in Fig. 7. For this we consider 3-D surface meshes of ear
implants without additional appearance information, such as color or texture. The main idea in this
paper is to model the label distribution as a CRF with local pairwise interactions between labels along
with a consistency term that penalizes incompatible arrangements between labels and parametric
representations of the segment transition boundaries thereby emphasizing on the global consistency
of a labeling. This is why we refer to the latter term as global parametric transition prior. Incorporating
such a prior into a CRF has several advantages. Firstly, the prior encourages long range compatibility
between labels giving rise to a globally consistent part layout. Secondly, the desired shape of the
transition boundaries is explicitly enforced. Thirdly, the underlying energy function may be optimized
jointly with respect to the labels and to the transition boundaries. Providing that the global parametric
transition prior is convex the underlying energy is guaranteed to decrease monotonically.

5.1 Model

We consider the following model. A surface mesh X =(V ,E) consists of vertices V , edges E . A labeling
h :V→L of X assigns a discrete label hi∈L={0,1,2,3,4,5} to each vertex i∈V . The hearing aid design
process gives rise to |L|=6 anatomical parts as illustrated in Fig. 8.

The transition boundaries are induced by 5 cutting planes passing through the mesh. Let b =
(b1, ...,bB) denote a vector of transition boundaries between the adjacent segments with b`∈R4,1≤
`≤ B denoting a parametric representation of the `th boundary. Since the transition boundaries
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Abbildung 8: Part adjacency graph of the human outer ear (courtesy [Zea10]). Adjacent parts (black circles) in the graph are
linked (solid line). The colors indicate the anatomical interpretation (dashed line) of the parts. The ear canal is composed of 3
subparts. Numbers represent anatomical part labels in the label set L.

connecting red and green, and yellow and green are induced by the same cutting plane, we may think
of these two transitions as one. This is why we have B = 5. Moreover, let Wi(hi ,b,X )≥ 0 denote a
function that penalizes inconsistent locations of a label hi relative to all boundaries b`. We define
the behavior of Wi(hi ,b,X ) as follows. If a label hi resides on the correct side of all boundaries b` then
Wi(hi ,b,X )=0 and Wi(hi ,b,X )>0 otherwise. We define the following energy function:

U(h, b,X ,θ) = ∑
i∈V

Ui(hi ,X ,θ1)+ ∑
{i, j}∈E

Ui j(hi , h j,θ2)+ ∑
i∈V

Wi(hi , b,X ,θ3), (5.2)

where
Ui(hi ,X ,θ1) =−θ1 log(p(hi|X )), (5.3)

Ui j(hi , h j,θ2) =θ2δ(hi , h j), (5.4)

Wi(hi , b,X ,θ3) =θ3

B

∑
`=1

∑
i∈V

max{0; 1− y`(hi)<b`, zi>} . (5.5)

Note that the weighting parametersθ1,θ2,θ3≥0 regularize the influence of the individual terms. The
variable zi in Eqn. (5.5) denotes the homogeneous 3-D coordinates of a vertex i∈V and y`(hi)∈{−1,1}
indicates whether a label hi is expected to be located above b`, (y`(hi)=1) or below b`, (y`(hi)=−1).
The expression < ·,·> denotes the dot product between two vectors. Eqn. (5.5) resembles the well
known hinge loss which in our model gives rise to a convex global parametric transition prior. The
function δ(hi ,h j)∈N in Eqn. (5.4) returns the smallest number of links connecting two nodes in the
underlying part adjacency graph

GA = (L,{{0, 1},{1, 2},{2, 3},{3, 4},{4, 5},{3, 5}}) (5.6)

shown in Fig. 8, i.e., δ(hi ,h j)= |hi−h j| if both labels hi and h j are in the set {4,5} or if both labels are in
the set {0,1,2,3,4}, otherwise we have δ(hi ,h j)= |hi−h j|−1. While the classical Potts model enforces
smoothness it does not prevent incompatible labels from being adjacent. This is achieved by the layout
consistency function in Eqn. (5.4) which also forms a metric over L. Since the part adjacency graph
GA contains a loop the energy (5.2) is not submodular. For the unary terms in Eqn. (5.3) we use a
randomized decision forest and 3-D shape contexts as local descriptors of the vertices V . 3-D shape
contexts [KPNK03] are rich, highly discriminative local representations of global shape which we found
to work well for our data.

Optimization We use the energy minimization framework to jointly derive an estimate of the labe-
ling h and of the transition boundaries b. Minimizing Eqn. (5.2) with respect to h and b leads to an
optimization problem of the form

min
h,b

U(h, b,X ,θ). (5.7)

If we fix h, the problem (5.7) reduces to

min
b=(b1 ,...,bB)

B

∑
`=1

∑
i∈V

max{0; 1− y`(hi)<b`, zi>} , (5.8)

where we can drop the weighting parameterθ3 in Eqn. (5.2) since it does not depend on b. Note, that
we have 20 parameters, i.e., b∈R20. Since Eqn. (5.8) is convex and is subdifferentiable a subgradient
method is well suited to solve the task. Given an estimate of b optimizing the energy (5.2) with respect
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to h may be carried out using the expansion move algorithm [BVZ01] since the pairwise terms in
Eqn. (5.4) form a metric over the part label set L.

We get a very simple, iterative optimization schema. Given an estimate of h the problem (5.8) gives
rise to a global solution since the transition prior in Eqn. (5.5) is convex. In turn, given an estimate
of the transition boundaries b the expansion move algorithm is guaranteed to find a lower or equal
energy labeling h. From this it follows that the energy in Eqn. (5.2) decreases monotonically. Moreover,
the iterative optimization of Eqn. (5.7) converges more quickly if we initialize b with the least squares
estimate of the cutting planes using the initial estimate of h. About 10 iterations are sufficient on our
data which for a mesh with |V|≈20000 vertices takes about 12s on a standard PC.

Given a label estimate h the optimization problem (5.8) gives rise to a global solution since the
transition prior in Eqn. (5.5) is convex. In turn, given an estimate of b the expansion move algorithm is
guaranteed to find a lower or equal energy labeling h. From this it follows that the energy in Eqn. (5.2)
decreases monotonically. About 10 iterations are sufficient on our data.

Learning Given a labeled training set T ={(X ,h,b)} we use a supervised algorithm to learn the mo-
del parameters in Eqn. (5.2). The unary terms Ui(hi ,X ,θ1) include two types of parameters: (1) the
decision forest structure assuming that the forest consists of binary trees and (2) the importance weight
θ1. The parametersθ2,θ3 regularize the influence of the energy terms Ui j(hi ,h j,θ2) and Wi(hi ,b,X ,θ3),
respectively. Ideally, we would like to learn all model parameters jointly using a single objective func-
tion. However, whereas the weights θ1,θ2,θ3 are continuous variables, the random forest is a large
combinatorial set. We therefore adopt a simple two-step heuristic: (1) learning of the decision forest
using the labeled training data and the information gain splitting criterion and (2) estimation of the
weightsθ via cross-validation similar to [WS06]. To this end we allowθ to vary over a discrete possibly
very large set. In order to keep the training process as simple as possible we follow the suggestion in
[CS13] and proceed by growing full trees where each leaf contains only one training example.

5.2 Experiments

For a fair comparison of our method with prior work [BMF+10],[Zea10],[ZSF13] we derive labels from
the detected plane features in [BMF+10] as shown in the first row in Fig. 7 whereas for the methods in
[Zea10], [ZSF13] planes were fit to the inferred labels. We define a measure of label accuracy to compare
the inferred labels with the ground-truth. To get a measure of label accuracy per surface we compute
the Dice coefficient between the area of the estimated labels of the mth part (m∈L) Âm={i∈V|ĥi=m}
and the area of the ground-truth labelsAm={i∈V|hi=m}:

LA(X , m) =
2|Âm ∩Am|
|Âm ∪Am|

, (5.9)

where ĥi and hi denote the estimated label and the ground-truth label of the ith vertex ofX , respectively.
For a surface X the label accuracy LA(X ) amounts to

LA(X ) =
1
|V|

|L|−1

∑
m=0

LA(X , m). (5.10)

The value LA(X )∈ [0,6] ranges between 0 and 6, where 6 is best. Note that in contrast to the classical
Hamming loss the Dice coefficient avoids overemphasizing large area parts over small area parts. This
is important, since the human ear involves regions with both large and small area segments.

We have a novel data set of 427 human outer ear impressions at our disposal which in turn were
laser scanned to reconstruct 3-D triangular surface meshes. A typical 3-D mesh of the ear is composed
of roughly 20000 vertices with an average resolution of 0.22 mm. Topologically, a reconstructed outer
ear surface constitutes a compact, orientable 2-manifold with boundary. We would like to stress that
the manual placement of the cutting planes is very cumbersome and requires excellent understanding
of the ear anatomy and of the underlying design process. This is why it is extremely difficult to get a
data set of labeled meshes of the ear. Due to the practical significance of this topic we will make our
data set publicly available.

We randomly pick 90% of the surfaces for training while setting the other 10% aside for testing. For
model learning the training set was divided in two halves, and the weighting parametersθ1,θ2,θ3 were
optimized against one half via cross-validation. The randomized decision forrest was then retrained
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(a) LA(X ) : 4.68, (b) LA(X ) : 4.71, (c) LA(X ) : 4.96, (d) Ground truth

Abbildung 9: Label example using (5.2): (a) without regularization, i.e.,θ2 ,θ3=0, (b) without global parametric transition prior,
i.e.,θ3=0. Note, in (a–b) how the segment boundaries differ from the ground truth. In (c) we show the result after least squares
fitting of planes to the labels in (b) and reassigning of misclassified labels after which the label accuracy LA(X )∈ [0,6] slightly
increases (6 is best).

(a) LA(X ) : 4.91, (b) LA(X ) : 4.31, (c) LA(X ) : 4.32

(d) LA(X ) : 4.95, (e) LA(X ) : 4.45, (f ) LA(X ) : 4.28

(g) Ground truth, (h) Ground truth, (i) Ground truth

Abbildung 10: Most accurate label examples on our test data using (a): [BMF+10], (b): [Zea10], (c): [ZSF13]. The 2nd row depicts
the result using our model (5.2) with global parametric transition prior (d)-(f). In terms of label accuracy LA(X )∈ [0,6] (6 is best)
our model performs slightly better except for (f) when compared with (g)-(i).

using the entire training set. For the parameters we obtainθ1=1,θ2=10,θ3=20. Inference was carried
out using the algorithm described in paragraph 5.1.

Fig. 9(a) shows a test surface labeled by our model (5.2) without regularization (θ2,θ3 =0) and in
Fig. 9(b) without global parametric transition prior (θ2 =10,θ3 =0). A visual comparison of the two
results with the ground truth in Fig. 9(d) reveals several inaccuracies despite the overall consistent
layout. Note, how the transition boundaries deviate from the ground-truth in Fig. 9(d). The label
accuracy according to Eqn. (5.10) is depicted below the surfaces. In Fig. 9(c) we show the result after
estimating planes from the label output in Fig. 9(a) via least squares fitting which slightly improves the
label accuracy.

Next, in Fig. 10 (first row) we show the best test examples obtained by our competitors in [BMF+10],
[Zea10], [ZSF13] together with the result using our model (5.2) with global parametric transition prior,
i.e., θ3 > 0 (Fig. 10 (second row)). In terms of label accuracy LA(X ) our algorithm performs slightly
better when compared with the ground-truth in Fig. 10 (third row). For a quantitative comparison of
the methods several statistics were computed over the test data which we summarize in table 1. From
the table one can see that on average our model (5.2) with global parametric transition prior performs
best. While the methods [Zea10], [ZSF13] perform equally well they were outperformed by [BMF+10].
Also note, that our model (5.2) without global parametric transition prior (θ3 =0) achieves a higher
label accuracy than [BMF+10] after least squares fitting of the planes as illustrated in Fig. 9.

6 Joint shape classification and labeling of 3-D objects

Organic shapes such as teeth and the human outer ear are typical examples of object classes with a
large variability in shape. It is extremely challenging to automatically interpret (to label) the anatomy
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Tabelle 1: Various statistics computed over 43 test examples: LA(X ) (average label accuracy), L̃A(X ) (median label accuracy),
σLA(X ) (standard deviation of label accuracy). The methods used for comparison were: our model (5.2) w/o global parame-
tric transition prior (θ3=0), our model (5.2), the canonical ear signature (CES) [BMF+10], the layout CRF with spatial ordering
constraints in [Zea10], the joint shape classification and labeling (JSCL) model in [ZSF13].

Our (Eqn. 5.2,θ3=0) Our (Eqn. 5.2) CES [BMF+10] CRF [Zea10] JSCL [ZSF13]

LA(X ) 3.98 4.10 3.80 3.28 3.35

L̃A(X ) 4.00 4.10 3.79 3.27 3.31

σLA(X ) 0.47 0.48 0.49 0.60 0.60

of such objects consistently. Image analysis methods often combine category specific segmentation
models with shape prior models to cope with the visual variability and other non-ideal conditions.
These combined models tend to be complex resulting in high computational costs of learning and
recognition. Furthermore, the use of shape prior models is rather limited to object classes for which
the nature of the underlying shape variation is known and relatively simple to model. This, however, is
not the case for organic shapes in general and for the human outer ear in particular.

To overcome this difficulty the idea is to train an ensemble of CRFs in which a single CRF models
the label distribution of a distinct group of objects with a similar shape. The partitioning of a data
set into smaller subsets is performed prior to learning the CRFs, for example, via manual selection
by domain experts or via clustering (see section 4). Instead of averaging the label estimations of the
models an alternative form of model combination is to select one of the models to label a mesh.

The combination of shape specific labeling models has several advantages. Firstly, each model
may be kept simple. No additional shape prior is needed to ensure consistency of the labels across
all objects. Secondly, no model assumption about the nature of the shape variation is needed. The
shape information is captured in terms of shape classes for which the CRFs are learned. Thirdly, the
maximum a posteriori (MAP) energies of the inferred labels may be used for classification. This is a
key aspect of our work, since the energy value associated with the optimal labeling can normally not
be regarded as a readily useful quantity.

The shape specific labeling problem may also be formulated within the structured support vector
machine (SSVM) framework. However, from a practical point of view this may be inconvenient especi-
ally when larger data sets are involved. For example, relearning of a SSVM classifier involves all training
instances each time a novel observation is added to the training data. Our approach requires a single
shape specific labeling model to be relearned together with a few additional classifier parameters. This
only involves data members of the shape class to which a novel observation is assigned.

6.1 The model

We consider the following model. Let K denote the number of distinct groups of surfaces with a
similar shape and let us denote one such group as the shape class k∈{1,...,K}. As indicated above
the partitioning is done via manual selection or via unsupervised clustering of a representative set of
surfaces. The result is a labeled and classified training set of surfaces (see Fig. 6). To simplify the notion
we define y=(h,b) where h is the labeling of a surface X and b represents the transition boundaries
between the adjacent segments like in the previous chapter.

The joint probability distribution over elementary events (X ,y,k) may be written as

p(X , y, k)∝ p(k|X)p(y|X, k). (6.11)

The labeling model of the kth shape class gives rise to the conditional probability distribution

p(y|X , k) =
exp(−U(X , y, k))

Z(X , k)
, (6.12)

where U(X ,y,k) denotes the energy of y under the kth model and Z(X ,k) denotes the observation
specific partition function of the kth labeling model. The energy function U(X ,y,k) is defined by (5.2).
The distribution p(k|X ) on the right hand side of Eqn. (6.11) measures the confidence for a surface X
to be a member of class k based on its shape.

We define the joint classification and labeling problem as the task of maximizing Eqn. (6.11) with
respect to k and y, i.e.,

f (X ) = arg max
k

max
y

p(k|X )p(y|X , k), (6.13)
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or equivalently

f (X )=argmax
k

max
y

[log p(k|X )+ log p(y|X ,k)] (6.14)

=argmax
k

max
y

[β(X ,k)−U(X ,y,k)] , (6.15)

where
β(X , k) = log p(k|X )− log Z(X , k). (6.16)

Notice, that the two terms in Eqn. (6.16) have similar qualitative properties. When the K shape classes
form compact clusters the posterior probability p(k|X ) will be peaked, that is, if X belongs to class k
the first term in Eqn. (6.16) assumes a large value and a small value otherwise. Likewise, for a given X
the partition function Z(X ,k) assumes a large value if X belongs to class k and a small value otherwise
because, in the former case, there should exist labelings with both high and low energies. It is therefore
reasonable to assume that Eqn. (6.16) may be approximated by a sum of two univariate functions, say,

β(X , k)≈β(X )+εk, (6.17)

where β(X ) depends on X andεk depends on k. In general, this may not be true but the assumption
in Eqn. (6.17) is weaker than, e.g., to assume the decomposability of Z(X ,k). We provide empirical
evidence in section 6.3. Eqn. (6.15) then simplifies to

f (X ) = arg max
k

[
εk−min

y
U(X , y, k)

]
. (6.18)

To further simplify the notation we define

qk(X ) =−min
y

U(X , y, k), (6.19)

and obtain the expression
f (X ) = arg max

k
[qk(X )+εk] . (6.20)

The free parameters of the resulting classifier f (X ) comprise the parameters of the K energy functions
as in Eqn. (5.2) and the class specific constantsε=(ε1, ...,εK).

6.2 Learning and inference

The classifier in Eqn. (6.20) takes a linear form with K discriminant functions qk(X)+εk. We now
describe the associated learning and recognition tasks.

Learning Given a classified and labeled training set T we learn the unary and pairwise parameters
for each of the K labeling models in Eqn. (5.2) using a supervised algorithm, such as the one described
in section 5.1. Approximate MAP inference is then carried out using algorithm described in paragraph
5.1 after which the quantities qk(X) in Eqn. (6.20) are computed. We now describe the procedure for
learning the class specific constantsε=(ε1, ...,εK).

For a surface X ∈T with known class association k the classifier f (X ) correctly decides for k if

qk(X )+εk > qk′(X )+εk′ , ∀k′ 6= k. (6.21)

Thus, for each X ∈T there are K−1 constraints of the form (6.21) yielding a total of (K−1)|T | cons-
traints for the training set T . We follow the support vector machine (SVM) approach and minimize the
upper bound of the empirical risk with respect toε, i.e.,

L(ε) =∑
X

∑
k′ 6=k

max{0, 1− qk(X )−εk + qk′(X )+εk′} , (6.22)

where k≤K denotes the true class of a surface X . In the literature Eqn. (6.22) is referred to as the
hinge loss function. Since L(ε) is convex a minimizer ε∗ = argminεL(ε) can be obtained globally.
Furthermore, L(ε) is subdifferentiable and can be minimized iteratively using a subgradient method.
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A typical subgradient method iterates

ε(n+1) =ε(n)−ϑng(n) (6.23)

where g(n) denotes the subgradient of L(ε(n)) atε(n), ϑn denotes the step size and n≥0 is the iteration
index. The subdifferential of Eqn. (6.22) is given by

∂L(ε) =∑
i

∂Li(ε), (6.24)

where the sum is over all inequalities in Eqn. (6.21) and all X .

If for the current ε(n) and for the tth example X , (t≤|T |) we have qk(X )+ε
(n)
k −qk′(X )−ε(n)k′ ≤1

then g(n)k =−1 and g(n)k′ =1 with g(n)k and g(n)k′ denoting the kth and k′th component of the subgradient

of Li(ε
(n)). Otherwise the subgradient of Li(ε

(n)) is equal to zero.
The quantity ϑn is a function of the step size along the direction of the negative subgradient for

which many different types of rules exist, e.g.,

ϑn ≥ 0,
∞
∑

n=1
ϑ2

n <∞,
∞
∑

n=1
ϑn =∞. (6.25)

One typical example is ϑn=a/(c+n), where a≥0 and c>0. A common choice is a=c=1.

Inference Given a test surface X recognition is carried out by first running algorithm described in
paragraph 5.1 for each of the K labeling models. The energy values returned by the algorithm are then
used to compute the quantities qk(X ) after which Eqn. (6.20) is solved. In the next section we provide
experimental results on the ear data set.

6.3 Experiments

We have experimented with the joint classification and labeling model using the same data set as
in section 5.2. Our main objective here is to see how accurate the model is compared to the label
performance of a single model in Eqn. (5.2).

First, the entire data set was partitioned into K= 5 clusters where we make use of the result in
section 4. The resulting shape classes are depicted in Fig. 6. The next step is to learn the K labeling
models as described in section 6.2 using the cluster members except for the test data. Prior to learning
the class specific constants ε the quantities qk(X) are computed via Eqn. (6.19). The class specific
constants ε are then learned by solving ε∗= argminεL(ε) using a subgradient method. The latter
converges quickly after a few iterations.

For a test surface the solver returns the estimated class and the labels. Ifε is set to zero, i.e., whenεk
is removed from Eqn. (6.20) then about 71% of the training data and 32% of the test data were assigned
to the correct cluster, i.e., the learned shape class while at the same time the labeling model of this
class generated the best quality labeling. On the other hand, for the learned vectorε∗ 6=0 a correct class
assignment was achieved for 93% of the training data and for 81% of the test data while at the same
time the labeling model of the assigned classes performed best.

Fig. 11 illustrates the result of four test candidates. The first column shows the ground truth labels.
The second column depicts the label result when a single model defined by (5.2) is used. Note, how
the labels deviate from the ground truth. The third column shows the result obtained with the joint
classification and labeling model for which we observe a better agreement with the ground truth. The
label quality (5.10) is shown below the surfaces where a value of 6 is best.

Fig. 12 depicts the label result of four test examples when the estimated shape classes differ from
the learned classes (middle) and when the surfaces are assigned to the learned classes (right). The
result shows that the labeling model of the learned class achieves the best agreement with the ground
truth. The outcome of the experiment provides empirical evidence for the assumption in Eqn. (6.17).

In table 2 we show the label accuracy of the combined model described in this section together
with the label accuracy of the combined model in [ZSF13] where a Potts prior was used for the pairwise
terms in Eqn. (5.2) and θ3 was set to zero. To ensure a fair comparison planes were fit to the labels
via least squares estimation prior to computing the accuracy over the test data. Moreover, we add the
label accuracy of a single model defined by (5.2) to the table as a reference. From the test statistics one
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Ground truth Single model,LA(X ) : 3.89 Proposed method,LA(X ) : 5.01

Ground truth Single model,LA(X ) : 4.62 Proposed method,LA(X ) : 5.15

Ground truth Single model,LA(X ) : 3.99 Proposed method,LA(X ) : 5.21

Ground truth Single model,LA(X ) : 3.15 Proposed method,LA(X ) : 5.36

Abbildung 11: Example segmentations using a single labeling model (middle) and the joint shape classification and labeling
model (right). The boundary estimation between adjacent segments fails (4th row, middle) when at least one part is missing due
to over- and under-segmentation. The label accuracy LA(X )∈ [0,6] is indicated below the surfaces where a value of 6 is best.

can see that the combined model developed in this work performs better than the combined model in
[ZSF13]. Also note, that the model defined by (5.2) outperforms the combined model in [ZSF13]. By
comparison, on the original data set, little gain in performance is achieved by the combined model in
contrast to using a single model in isolation.

7 Summary and contribution

In this work we give at least five contributions:

• (1) Feature-based surface registration algorithm with application to binaural processing in HA
manufacturing [ZUF+06]. (2) Global surface registration algorithm with application to automa-
tic processing of HA remakes [ZUSF06]. Both techniques were successfully integrated into an
existing HA manufacturing software system.

• The above registration methods assume that the 3-D models were acquired from a single indivi-
dual. The methods, however, do not generalize well when the registration is carried out across
individuals. This issue inspired the development of an inter-patient registration algorithm that
works well when the surfaces originate from different patients. The method adapts and combines
existing shape matching approaches.

• Non-parametric clustering scheme with application to outer ear surfaces. A notion of (dis)similarity
was derived from the intra-patient registration algorithm and was combined with an existing
non-parametric clustering schema. The original idea of the approach was published in [ZBA+09].
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Ground truth ε=0,LA(X ) : 3.56 ε∗,LA(X ) : 4.63

Ground truth ε=0,LA(X ) : 3.60 ε∗,LA(X ) : 4.41

Ground truth ε=0,LA(X ) : 4.13 ε∗,LA(X ) : 4.44

Ground truth ε=0,LA(X ) : 3.03 ε∗,LA(X ) : 5.25

Abbildung 12: Part-labeling using the joint shape classification and labeling model withε=0 (middle) and with the learnedε∗ 6=
0 (right). The model associated with the learned shape class of a test candidate performs best (right). The boundary estimation
between adjacent segments fails when at least one part is missing due to over- and under-segmentation (4th row, middle). The
label accuracy LA(X )∈ [0,6] is indicated below the surfaces where a value of 6 is best.

• Semantic part-labeling model for ear implants using a CRF [Zea10]. We have explored several
prior terms to accommodate high level constraints on the part layout imposed by the hearing aid
design process. We introduced the concept of a global parametric transition prior which resulted
in a boost in performance of the labeling model. To the best of our knowledge, this is the first
time that such a generic prior is used for 3-D mesh processing, and it may be found useful for a
large class of 3-D meshes (to appear at MICCAI 2015). We collected a large data set of 3-D meshes,
with associated ground truth labels, which we will make publicly available.

• Joint shape classification and labeling model [ZSF13]. To better cope with the variability of the ear
the method combines multiple CRFs each of which captures the label distribution of a collection
of surfaces with a similar shape. For a surface the classifier returns the best model as function of
label accuracy.
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