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ABSTRACT

Present-day software systems have to fulfill an increasing number of requirements, which makes
them more and more complex. Many systems need to anticipate changing contexts or need
to adapt to changing business rules or requirements. The challenge of 21th-century software
development will be to cope with these aspects. We believe that the role concept offers a simple
way to adapt an object-oriented program to its changing context. In a role-based application, an
object plays multiple roles during its lifetime. If the contexts are represented as first-class entities,
they provide dynamic views to the object-oriented program, and if a context changes, the dynamic
views can be switched easily, and the software system adapts automatically. However, the concepts
of roles and dynamic contexts have been discussed for a long time in many areas of computer
science. So far, their employment in an existing object-oriented language requires a specific
runtime environment. Also, classical object-oriented languages and their runtime systems are
not able to cope with essential role-specific features, such as true delegation or dynamic binding
of roles. In addition to that, contexts and views seem to be important in software development.
The traditional code-oriented approach to software engineering becomes less and less satisfactory.
The support for multiple views of a software system scales much better to the needs of today’s
systems. However, it relies on programming languages to provide roles for the construction of
views. As a solution, this thesis presents an implementation pattern for role-playing objects that
does not require a specific runtime system, the SCala ROles Language (SCROLL). Via this library
approach, roles are embedded in a statically typed base language as dynamically evolving objects.
The approach is pure in the sense that there is no need for an additional compiler or tooling. The
implementation pattern is demonstrated on the basis of the Scala language. As technical support
from Scala, the pattern requires dynamic mixins, compiler-translated function calls, and implicit
conversions. The details how roles are implemented are hidden in a Scala library and therefore
transparent to SCROLL programmers. The SCROLL library supports roles embedded in structured
contexts. Additionally, a four-dimensional, context-aware dispatch at runtime is presented. It
overcomes the subtle ambiguities introduced with the rich semantics of role-playing objects.
SCROLL is written in Scala, which blends a modern object-oriented with a functional programming
language. The size of the library is below 1400 lines of code so that it can be considered to have
minimalistic design and to be easy to maintain. Our approach solves several practical problems
arising in the area of dynamical extensibility and adaptation.

1 THESIS TOPIC AND CONTRIBUTIONS

In the modern software world, software systems are required to adapt to a changing environment.
During the lifetime of a software system, new features are requested, existing requirements change,
as well as the underlying hardware and operating systems are regularly being renewed. Software
and software libraries once written for a specific purpose may become useful in situations, the
developer did not anticipate at the time of their creation. One programming paradigm, object-
oriented programming, is widely being used to build extensible and flexible software systems. It was
and still is successful, because it supports programming with data structures that closely resemble
the problem domain. However, future software systems require a higher level of dynamism, which
is not offered by classic object-oriented concepts. Dynamically typed, object-oriented scripting
languages, such as Ruby and Python, have gained popularity not only because of their ease of
use, and have created vibrant communities. They enable the extension of modules, classes, and
object through concepts such as duck-typing [43]. But programming in a dynamically typed
language comes at a cost: without static type information, it is not possible to analyze programs
statically and catch many classes of programming errors (e.g., type errors) early on. The burden
is solely left to the programmer. The influence of roles on language design is in the focus of this
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work, especially the accompanying problems and ambiguities when dealing with dynamically
evolving objects. Role-based programming has been proposed as an extension to object-oriented
programming, introducing extensionality in a controlled and well-defined manner. It has been
motivated by an easy-to-understand analogy. Also in the real world, objects play different roles in
different contexts. In essence, it enables objects to modify and extend their behaviors dynamically
at runtime, without the limits imposed by the class hierarchy. How to simply represent roles in
existing language runtime environments remains as an open question. Current implementations
rely on proxies, reflection, runtime weaving and runtime code generation to support mechanisms,
such as true delegation and dynamic role dispatch. This requires additional management code
and leads to more problems, such as incomprehensible error messages with polluted stack traces.
Furthermore, existing role-based programming languages only support a small subset of the
desired role features. Especially, they lack a well-defined concept for context- and role-aware
method dispatch to overcome ambiguities, which are introduced with roles. These points are the
major roadblock for the wider adoption of role-based programming. The goal of this thesis is to
research how roles can be represented at runtime and supported by a rich dispatching concept.
A prototypical implementation, called SCROLL1, was developed and is introduced by various
examples and an in-depth evaluation. This thesis provides the following main contributions:

SCROLL and the SCROLL MOP First, the embedded method-call interception Domain-
Specific Language (DSL) SCROLL and its underlying Metaobject-Protocol (MOP) [33, 36, 26]
are presented. They are implemented in a lightweight library that allows for pure embed-
ding [23] of roles in a modern, statically typed, object-oriented language (Scala). Only
features that are available through Scala’s standard compiler are utilized. SCROLL allows for
easy integration of legacy code and provides a high degree of separation of concerns.

A coupling of static and dynamic role typing With the specification of context-dependent
behavior and structure in separate role types, static type checking and program analysis is
limited. Coupled static and dynamic role typing supports the developer with the best of both
worlds. He benefits from the aforementioned advantages of a statically-typed host language,
while at the same time, he profits from the flexibility of dynamic objects.

A simple implementation pattern for roles in structured contexts The implementation
pattern behind SCROLL, to implement context-dependent objects with roles of them
specified in separate role types, is presented. This pattern requires only three fairly basic
components, namely, compiler rewrites, implicit conversions, and a definition table.

A role-based dispatch at runtime A declarative and parameterizable four-dimensional dis-
patch for roles in structured contexts is described. This approach relies on the representation
of dispatch rules as function objects [49].

Strong type-safety for role-based dispatch The role-based dispatch in SCROLL benefits from
being embedded in a statically-typed host language. Nevertheless, type checking suffers
from restricted type-safety when handling the dynamic parts of role-playing objects. As
a solution to this problem, the dynamic type checking during the role-based dispatch is
enriched by additional typing information constructed via introspection [5] while the static
type checking is improved by an optional compiler plugin using static program analysis.

The practical applicability Finally, we show the practical applicability of the proposed approach
for the pure embedding of roles by implementing a robotic co-working scenario. It explores
the role-based adaptation for the collaboration of humans and robots in a partially unknown
environment.

1https://github.com/max-leuthaeuser/SCROLL
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2.1 Foundations of Roles

2 BACKGROUND AND PROBLEM ANALYSIS

Dynamic and adaptive infrastructures are the cornerstone of today’s software development, e.g.,
in the Web 3.0 - the internet of things. In most classic class-based object-oriented systems, the
association between instances of a class and the class itself is permanent [16]. Such systems
hardly cope with new requirements during runtime. Class hierarchies need to be carefully planned
and laid-out for dynamic extensions. Indeed, they grow exponentially in case the objects they
describe are changing [13]. Two main principles of abstraction are known to structure object-
oriented programs: classification and generalization. The first describes the principle to group
objects to classes sharing behavior and attributes. The second principle means the organization
of those classes into class hierarchies with grouping the common behavior and attributes into a
new superclass, which is then shared among all subclasses. However, when describing real-world
objects embedded in a fast and frequently changing environment as well as their classification in a
class hierarchy, the permanent association between instances and their classes appears to be too
inflexible, because it cannot cope with the requirements of those fast growing or changing systems.
When extending an object, the object must be replaced. Then, the internal state of objects needs to
be copied, which renders their management cumbersome and error-prone. It becomes even more
difficult if there are several of those changes at the same time for the same object. Introducing
separate classes for each combination of new behavior for adaptation leads to fast growing class
hierarchies, which is undesired.

2.1 FOUNDATIONS OF ROLES

The concept of roles was introduced by [2] as an extension to the network data model. It enables
the addition and removal of behavior and attributes at runtime to objects providing a substantial
advantage over traditional programming languages, such as Java. Over the recent decades, a lot
of role-based approaches have been proposed in the literature, all providing a different notion of
roles. As a sophisticated role notion as base for this thesis, the Compartment Role Object Model
(CROM) [29] is discussed.

Each object-oriented software design has to solve the static and dynamic aspects of the following
problems [44]. The interactions of a class or its instances with the client are non-trivial (class
complexity /P.1/). Each of those clients handle the instances differently and with different use-
cases in mind. This interaction needs to be described and constrained from the viewpoint of all
relevant contexts. Furthermore, a sound understanding of object collaborations and relations at
runtime is crucial (/P.2/). Adaptive software systems need to be able to define and check those
collaborations. Once they are understood, it is important to group and separate them for the sake of
comprehensibility (separation of concerns /P.3/). Relations need to be assigned to relevant contexts.
Derived from the two aforementioned tasks, reuse is one of the most important attributes, on
which adaptivity of the resulting system benefits from (/P.4/). With the invariants and constraints,
behavior of collaborating objects can be constrained and checked during runtime (/P.5/). Finally,
in adaptive software systems, it is impossible to foresee each and every possible future use-case
and context. Hence, all problems, listed so far, define basic requirements that allow for adapting to
new and unforeseen contexts (/P.6/).

The following describes the motivation for roles in general and introduces their major ingredients
in more detail. Abstracting and simplifying the representation of the real-world for some given
use-case is, in general, called modeling. A model omits irrelevant parts of the captured world. An
object-oriented model abstracts objects to classes and types. Hence, the complex relationships of
real-world objects are simplified to the pertinent needs for the desired purpose. The result of the
modeling process is then used during the analysis or design phase in software development. Here,
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2 Background and Problem Analysis

two major goals can be targeted. First, capturing real situations of a domain for communication
during the analysis and, secondly, representing the design of the software system itself, describing
its elements and interactions [48]. Traditional modeling languages, such as the Unified Modeling
Language (UML) or Entity-Relationship Model (ER), only consider entities of fixed types (static
typing), pre-defined structure (attributes), and behavior (methods) without being able to change
them dynamically. Every aspect of an entity needs to be integrated at design time, even though
some attributes or functions are not needed in certain contexts. Often, the adaption is handled
by static inheritance. This is problematic since, e.g., subtyping leads to an enormous amount
of subtypes for each and every new context the entity is intended to interact in (combinatorial
explosion of subtypes). Extensibility becomes, consequently, impracticable. Finally, one might not
be able to decide whether a specialization or generalization is applicable. Using design patterns
can solve certain problems, but introduces additional overhead with regard to maintenance and
readability. This underlines the need for more flexibility and dynamics to improve modeling.

In classic programming languages, the situation is quite similar. During its lifetime, an object
might need to change its behavior and attributes for a certain period. In addition, entities of the
same type may have different attributes and behavior at the same time. Those aspects are usually
not directly supported within classical object-oriented programming languages with static typing.
An entity is part of a certain type throughout its lifetime. When recreating it with a different type at
runtime, it loses its identity, state needs to be copied, and clients have to handle the newly created
identity causing the need for additional management code. An additional problem occurs when
an object is conceptually separated into multiple individual sub-objects (split-object problem [8]).
This requires even more additional management code complicating code maintenance. The split-
object problem is very much similar to the issue of object schizophrenia: “Object schizophrenia
results when the state and/or behavior of what is intended to appear as a single object are actually
broken into several objects (each of which has its own object identity).” [18].

In the end, with modern software systems becoming more and more complex and having to
adapt to continuously changing environments, the resulting problems during design- and runtime
cannot be managed easily anymore. Approaches, such as dynamic aspect-orientation [41] and
context-oriented programming [22] have been introduced by researchers in the past to handle the
aforementioned problems of too static software systems. As an alternative, role-oriented program-
ming [47, 48, 7, 17, 16, 40] can be employed, which is in the focus of this thesis. With the idea of
separation of concerns in mind, dynamic and flexible parts of an object are modeled separately
from the entity’s core. Several parts of an entity have different lifetimes and may only exist during a
certain period of the entity’s lifetime. These entities are split into natural types (entity’s core type)
and role types. This enables context-dependent structural and behavioral adaptation. Thus, the
dynamic evolution of entities over time becomes an integral part of modeling and programming.
Those evolving objects are explicitly modeled and represented at runtime accordingly. The role
as a concept, modeling primitive, and first-class citizen in programming captures the context-
dependence and dynamic parts of objects with their specific behavior and structure in separate
types. Hence, role-based type systems explicitly model behavioral adaptation, in contrast to tradi-
tional static type-systems. Entities can evolve during runtime without changing their natural type
at all. Instead, they start and stop playing roles. This enables modeling and implementing complex,
context-dependent behavior of objects in frequently changing environments. In summary, the role
concept is essentially an extension to object orientation enabling objects to adapt their behaviors
dynamically. At runtime, roles are bound to objects which then become role-players. A role is
defined completely independent of its player and gets filled with life by the player adopting its
behavior and structure. We use roles to dynamically add and remove behavior and structure during
the runtime and lifetime of an object.

Each approach on role-oriented programming that appeared in the literature during the last
decades utilizes its own interpretation of roles leading to an inhomogeneous research landscape.
Hence, there is no common notion of what a role is. For instance, ER or UML only consider roles as

6



2.1 Foundations of Roles

Figure 2.1: Steimann’s classifying features (1-15) [48], additional ones (16-26) with regard to the
context-dependent nature of roles [29], and those role features solely focusing on
runtime aspects (27-54) [17].

1. Roles have properties and behaviors.
2. Roles depend on relationships.
3. Objects may play different roles simultaneously.
4. Objects may play the same role (type) several times.
5. Objects may acquire and abandon roles dynamically.
6. The sequence of role acquisition/removal may be restricted.
7. Unrelated objects can play the same role.
8. Roles can play roles.
9. Roles can be transferred between objects.

10. The state of an object can be role-specific.
11. Features of an object can be role-specific.
12. Roles restrict access.
13. Different roles may share structure and behavior.
14. An object and its roles share identity.
15. An object and its roles have different identities.

16. Relationships between roles can be constrained.
17. There may be constraints between relationships.
18. Roles can be grouped and constrained together.
19. Roles depend on compartments.
20. Compartments have properties and behaviors.
21. A role can be part of several compartments.
22. Compartments may play roles like objects.
23. Compartments may play roles which are part of themselves.
24. Compartments can contain other compartments.
25. Different compartments may share structure and behavior.
26. Compartments have their own identity.

27. The amount of roles an instance of a class and a role can play may be constrained.
28. Each role type played must be unique.
29. Possible supertypes for classes can be class types, role types, or compound object types.
30. The amount of simultaneously existing instances of a role type may be constrained.
31. The amount of players, a role is played by, may be constrained.
32. The visibility of roles during dispatching may be constrained.
33. Role types are supertypes, subtypes, or unrelated types of their player.
34. Role types may extend role types, class types, or compound objects.
35. The player type for a role type may be a role type, a class type, an interface type, a metaclass, a compound

object type, a property, or undefined.
36. Properties of roles can be fields, methods, class methods, and static methods.
37. Roles can have nested methods, roles and classes.
38. Role instances can be referenced directly, or indirectly.
39. A reference to a role always points to the compound object.
40. Method dispatch on roles happens on the sender or its player, the receiver or its player, the context, or the

compound object.
41. Self may refer to dual self, or non-virtual self.
42. Super refers both to the static inheritance chain, and to the attached roles.
43. The player may be referenced directly, or indirectly.
44. A role may be called from its player.
45. Roles may call among each other.
46. Roles may incorporate around-methods.
47. Role creation, attachment, and movement may be restricted.
48. Roles may be terminated explicitly, or implicitly.
49. Role methods may have various access modifiers.
50. Roles may provide meta-functionality.
51. Roles allow for typed references.
52. Roles may be used as filters.
53. Roles may be used for renaming.
54. Roles may be parameterized.
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2 Background and Problem Analysis

named places in associations without taking attributes or behavior into account. On the other hand,
programming languages such as ObjectTeams/Java (OT/J) [20] allow for dynamically adapting the
behavior of objects at runtime. To provide a universal formal role modeling language, Steimann
surveyed approaches until the year 2000 [47, 48]. Based on this, 15 different questions on the term
role were identified. Some questions are conflicting; it seems that no role-based programming
language will ever be able to realize all of those features. Another survey analyzed role-based
modeling and programming approaches between the years 2000 and 2014 [29]. An overview of
the identified questions of Steimann and Kühn et al. is given in Table 2.1. The authors in [29]
focus more on the three different aspects roles try to serve, namely their relational, contextual,
and behavioral nature. The relational aspect denotes that different entities interact with each
other, or are connected by using roles. With the contextual aspect, roles may be utilized to describe
context-dependent features of entities. Finally, roles address behavioral aspects of entities, which
refer to the dynamic set of attributes as well as to methods.

It is necessary to further investigate the heavily overloaded term context. Context can be under-
stood as environmental information and as objectified collaboration containing other entities. A
context surrounds an entity and provides additional information. Information may be time, place,
temperature, or the state of the application running. Paradoxically, even the lack of information
about an entity can be regarded as an information. Furthermore, entities are always attached to a
specific context. For instance, sensor data (like GPS) is only valid for a certain device and its user.
For other users not currently present, this information may not be relevant. In sum, this general
context definition describes an entity’s environmental information that has no specific identity,
no intrinsic behavior and is omnipresent. In contrast, a compartment as introduced by [29] is
defined as: “[W]ithin modeling languages, context represents a collaboration or container of a fixed,
limited scope. To overcome this dichotomy, researchers avoided the term context by using other
terms, i.e., environments, institutions, teams, and ensembles. In turn, we use the term compartment
as a generalization of these terms to denote an objectified collaboration with a limited number
of participating roles and a fixed scope.” [29, p. 146]. While a context (e.g., a cold and rainy day
in London) is intentional (described by rules or attributes), without its own identity, intrinsic
behavior or existential parts and with an indefinite lifetime - a compartment (e.g., a first-class train
car) is extensional, i.e., is explicitly specified. Its instances carry identity, have behavior, state, a
defined lifetime and contain roles as its parts. Hence, a compartment can be seen as an objectified
collaboration for the contained roles. This thesis is based on this definition of compartments, as
introduced by CROM.

Contemporary literature has not been able to provide a unique definition of what a role is,
especially with regard to runtime. These aspects of the semantics of the role concept have been
described in a variability analysis [17]. This analysis relies on the encountered semantics of
roles which goes far beyond the analysis presented in [29], because many runtime features are
investigated. We derived a list of features for roles at runtime. This list (see Table 2.1) permits us to
reflect over the set of features SCROLL covers, which is also used during the evaluation.

2.2 FOUNDATIONS OF DISPATCH

Many developed programming languages offer support for advanced modularization mechanisms,
like in the context of this thesis with roles, but are implemented as transformations to the impera-
tive intermediate representation of an already established language. Their core constructs largely
overlap in semantics [28]. Hence, reusing the corresponding transformations requires reusing their
syntax as well, which is too limiting.

With SCROLL, we identified dispatching as fundamental to role-based programming and propose
a declarative and parameterizable approach for four-dimensional, context-aware dispatch at
runtime. To increase the modularity of programs, research has introduced different abstraction
mechanisms, where one concrete program module does not refer to another concrete module,
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2.2 Foundations of Dispatch
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Figure 2.2: The concept of four-dimensional dispatch (with methods mn , sender Sn , contexts Cn ,
and objects On with roles Rn) [22].

but only abstractly specifies the functionality or data to be used (polymorphism). With roles, this
principle is pushed even further. The mechanisms for polymorphism are manifold; they include
traditional receiver-type polymorphism and reach out to multiple and predicate dispatching [12],
pointcut-advice in aspect-oriented programming [34], or layered methods in context-oriented
programming [22]. Those languages typically overlap in their semantics but differ syntactically.
Compiler frameworks [9, 1] only support reusing the implementation of a language’s execution
semantics if that language is extended syntactically.

The process of dispatching resolves abstractions and binds concrete functionality to their us-
age [6]. This declarative mechanism determines the code to be executed upon a method invocation.
It takes place whenever a specific code location is referenced during the program execution. A
well-known example of dispatching is receiver-type polymorphism. Here, dispatch is choosing the
method implementation based on the dynamic type of the receiver object. Languages that go
beyond such classic receiver-type polymorphism are called advanced-dispatching languages, as
they compose functionality in different, more flexible ways and incorporate additional runtime
state. Hence, role-based dispatch can be seen as an advanced dispatch suitable to overcome the
subtle ambiguities introduced with the concept of role-playing objects. However, role dispatching
is a dynamic process. Thus, techniques solely extending the static program structure cannot
satisfactorily realize this dynamic process. Implementations of role-based languages often build
on the back-ends of an already established language, thereby reusing the implementation of the
constructs in its intermediate language. But not all constructs of role-based languages have a trivial
mapping to the established intermediate language (e.g., Java bytecode). The resulting semantic
gap between source and intermediate language, i.e., the inability of the intermediate language
to directly express the new language’s mechanisms, requires compiling the language’s high-level
concepts down to low-level imperative code. This was considered as inappropriate during the
development of SCROLL, since building and maintaining a whole new compiler tool chain is too
time-consuming and out of the scope of this thesis.

Advanced compiler frameworks could have been assisting in this task, and even enable to
reuse the non-trivial code generation for role-specific language constructs that have no direct
counterpart in the target intermediate language. But this reuse requires the new language to be
a syntactic extension of an existing one. While code transformations defined on the common
intermediate language are shared among all language extensions, they cannot exploit knowledge
about new source language constructs. This knowledge is lost during the transformation to the
intermediate language. With that, existing tools’ usefulness is greatly reduced. The developer has
to observe the program execution in terms of the generated, imperative code in the intermediate
language rather than in terms of the new language’s source-level abstractions. This is considered
as a major drawback for existing role-based programming languages. Experimenting with their
specific dispatch implementations (e.g., changing and adapting its semantics at runtime) is not
possible at all. Thus, we decided to use a library approach with SCROLL for role-based, dynamic
dispatch, making custom compiler and code generation unnecessary. In the following, the concept
of multi-dimensional message dispatch [22] in the context of role-playing objects is presented. It
is intended to help the reader to understand its basics for the remainder of this thesis. This can be
derived from:
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ObjectTeams/Java SCROLL

SA

SB

OA

OB

R1

R2

R3

TA

TB

m1

m1: * : * : *

m1: * : R2 : TB

m1: SB : R3 : TB

SA

SB

OA

OB

R1

R2

R3

CompA

CompB

m1

m1: * : * : *

m1: * : R2 : CompB

m1: SB : filter ( R* ) : CompBR4

Figure 2.3: Multi-dimensional Dispatch with OT/J and SCROLL in comparison (with methods mn ,
sender Sn , teams Tn , compartments Compn , and objects On with roles Rn).

One-dimensional dispatch Classical C-style procedural programming only offers the static bind-
ing of a function with a name. Calls are directly mapped to the corresponding implementa-
tions. Calling a method m leaves no choice but the invocation of its only implementation of
method m.

Two-dimensional dispatch With object-oriented programming, the second dimension was
added. In addition to resolving the method name, the receiver of the call is taken into
consideration when looking up that method.

Three-dimensional dispatch For instance, subjective programming [46] extends the object-
oriented method dispatch by yet another dimension. With that, the targeted method is
not only selected in dependence of its name and receiver, but also in dependence of the
sender.

Four-dimensional dispatch As part of this thesis, the fourth layer is put on top of the dispatching
concepts, inspired by subjective and context-oriented programming [22]. Now also the
context of the actual message send, hence the overall system’s context, is taken into account
(see Fig. 2.2). Based on that information, methods or their partial definitions are selected or
excluded from the message dispatch. This finally enables the context-dependent behavioral
adaptation and variation needed for role-based programming.

To provide a more fine-grained dispatch, role-oriented programming languages, such as, OT/J,
encapsulate the fourth dimension within contexts implemented as first-class citizens (e.g., in
OT/J these contexts are called Teams). With that, the actual method dispatch is configurable at
compile-time for a predefined set of role types (see Fig. 2.3 left side). SCROLL builds conceptually
on-top of that. It allows for the dynamic attachment of arbitrary many roles at runtime, still
encapsulated in first-class contexts, called compartments, as already introduced (see Sect. 2.1).
Now, the method dispatch can be re-configured at runtime via filtering the set of all attached roles
steered by user-defined functions (see Fig. 2.2 right side).

In sum, the dispatch mechanism provided by SCROLL is declarative (and structurally attached
to context specifications incorporated as first-class citizens), and can be parameterized via user-
defined filter and sorting functions. This allows for four-dimensional dispatch within structured
contexts. Instead of only associating the behavior called with a name (first dimension), the receiver
context (second dimension), the sender context (third dimension), and the overall system context
(fourth dimension, but now structured) are taken into account, while being re-configurable at
runtime.

2.3 FOUNDATIONS OF GRAPHS AND GRAPH FILTERING

Graphs are one of the most important data structures in programming and computer science in
general. They appear in almost all applications. Structures linked with software models, pointers,
object nets, databases, and with various schemes, are in essence graphs. A labeled graph is a
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2.3 Foundations of Graphs and Graph Filtering

Table 2.1: Notation overview for graph traversals and filters.

Notation Meaning

Basics

f : D → R Function signature for function f with domain D and
range R

f (a1, a2, ...) Function application with arguments a1, a2 etc.
◦ Path composition
P (A) Power set of set A, set of all subsets of A (i.e., 2A)
P̂ (A) Power multiset of A, infinite set of all subsets of multisets

of A

Traversals

Eout : P̂ (V ) → P̂ (E) Yield all outgoing edges of a multiset of vertices
Ei n : P̂ (V ) → P̂ (E) Yield all incoming edges of a multiset of vertices
Vout : P̂ (E) → P̂ (V ) Traverse the outgoing (i.e., sink) vertices of the edges
Vi n : P̂ (E) → P̂ (V ) Traverse the incoming (i.e., source) vertices of the edges
ϵ : P̂ (V ∪E)×R → P̂ (S) Get the element property values for key r ∈ R

Filters

E σ
l ab± : P̂ (E)×Σ→ P̂ (E) Allow (+) or filter (-) all edges with the label σ ∈Σ
ϵp± : P̂ (V ∪E)×R ×S → P̂ (V ∪E) Allow (+) or filter (-) all elements with the property s ∈ S

for key r ∈ R
ϵϵ± : P̂ (V ∪E)× (V ×E) → P̂ (V ∪E) Allow (or filter) all elements that are provided elements

collection of objects (nodes or vertices) which are connected via linking objects (edges). Nodes and
edges may be associated with names, additionally (called labels). Graphs are applied as background
data structure in SCROLL. The real power of graphs makes itself apparent when traversing multiple
steps in order to unite disparate not directly connected vertices by a path. The type of path taken,
defines the higher order, inferred relationship that exists between two vertices. Paths form the
core of the presented graph traversals. A traversal refers to visiting elements (i.e., vertices and
edges) in a graph in some algorithmic fashion. Exactly those efficient graph operations yield an
unconventional problem-solving style. This style of interaction is dubbed the graph traversals in
the following and forms the primary point of discussion for this section.

The functional, flow-based approach to traversing graphs and different types of traversals over
different types of graph data sets, supports different types of problem solving processes [45].
The most primitive, read-based operation on a graph is a single step traversal from element i to
element j , where i , j ∈ (V ∪E). For example, a single step operation can answer questions such
as “which edges are outgoing from this vertex?” or “which vertex is at the source of this edge?”.
Single step operations expose explicit adjacencies in the graph. Various types of those single step
traversals can be found in Table 2.1. These operations are defined over power multiset domains
and ranges. This naturally allows for function composition. When edges are labeled and elements
have properties, it is desirable to constrain the traversal to edges of a particular label or elements
with particular properties. These operations are known as filters and are abstractly defined in
Table 2.1 as well. Through function composition of single step traversals, we can define graph
traversals parameterized by filter functions which is suitable to answer questions, such as, “which
roles is the current object playing?”.
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2 Background and Problem Analysis

2.4 PROBLEMS AND RESEARCH CHALLENGES

For the implementation of adaptive systems, the software design needs to contain definitions
and descriptions to handle the static and dynamic aspects of problems in its domain, namely, for
business logic as well as adaptation logic. The interactions of the participating objects with the
client are non-trivial. Each of those clients will handle the instances differently and with different
use-cases in mind, e.g., handling different kinds of robots and their individual work plans. This
interaction needs to be described and constrained from the viewpoint of all relevant contexts.
Furthermore, a sound understanding of object collaborations and relationships at runtime is
crucial. When developing an adaptive software system, the programmer must be able to define
those collaborations. Once they are understood, it is important to group and separate them for
the sake of comprehensibility and reuse. Relationships need to be assigned to relevant contexts.
Derived from the two aforementioned tasks, this reuse is one of the most important attributes
adaptivity on the resulting system benefits from. With invariants and constraints, the behavior
of the objects working together in that systems can be restricted and checked during runtime.
Finally, it is impossible to foresee each and every possible future use-case and context. Handling
the adaptation based on various events with regard to the current system context and state leads
to if-bloating with nesting and inter-tangling of business and adaptation logic. The problems
mentioned above manifest themselves as:

Increased class complexity (/P.1/) Using a class with inter-tangled implementations of busi-
ness and adaptation logic depending on various use cases and contexts will require a lot of
additional management code and the application of glue patterns. With that, maintainability,
extendability, and testability will suffer.

No first-class object collaborations (/P.2/), low separation of concerns (/P.3/) The col-
laborations between participating objects is not described as first-class citizens, but inter-
leaved and tangled across the resulting, overall implementation.

Lack of reuse (/P.4/) Thus, reuse, maintainability, and extendability is greatly reduced.

No explicit invariants and constraints (/P.5/) Additionally, context checks between differ-
ent parts of the adaptation logic cannot be specified explicitly but will be spread over the
implementation as hard-coded, additional and potentially deeply nested if-blocks.

Lack of adaptivity (/P.6/) In consequence, adaptivity of the resulting software system suf-
fers and is harder to maintain and extend for future unforeseen use-cases and application
contexts.

Applying the concept of roles now enables explicit separation of concerns of the relationships at
instance level. This cannot be achieved with normal class interfaces. A role type exactly specifies
how the instance of a class interacts in a certain context. The major part of the complexity of those
adaptive software infrastructures stems from complex object collaborations. These collaborations
become manageable with the break-down into individual, smaller role models. Each role model
describes an individual aspect of the object collaboration and adaptation. With the resulting clear
separation of object collaboration into smaller pieces with regard to the concerns of the problem
space and their composibility, a high amount of reuse is enabled. Furthermore, a role type is a
good target for invariants and constraints. And finally, adding role types dynamically allows for
the adaptation of unforeseen contexts. The expressiveness of the concept of roles require a whole
new level of dispatching semantics, i.e., a dispatch that needs to support context-awareness and
dynamically evolving objects on the instance level.

The following research challenges and requirements can be derived from the aforementioned
problems. We aim for a solution that requires no additional tooling (/F.1/). As almost all the con-
temporary approaches for role-based programming use custom compilers or code generators, they
break with existing tool-chains (e.g., debuggers) and cannot be used with ease in widely established
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Table 2.2: Functional and non-functional requirements for SCROLL.

Problem Requirement Description

Functional

/P.4/ /F.1/ No additional tooling
/P.6/ /F.2/ Dispatch configurable at runtime
/P.2/, /P.3/, /P.5/, and /P.6/ /F.3/ Handle multi-dimensional dispatch

/F.3.1/ Associate the computational unit with a name
/F.3.2/ Take the receiver context into account
/F.3.3/ Take the sender context into account
/F.3.4/ Take the system context into account

/P.1/, /P.2/, and /P.3/ /F.4/ Increase modularity through role-based program-
ming

(Semi-) functional or non-functional

/P.2/, /P.3/, /P.4/ /S.1/ Declarative and parameterizable dispatch de-
scription

/P.4/ /S.2/ Easy to use programming model and API
/S.3/ Reasonable performance / scalability

/P.4/ /S.4/ Integration in existing tool-chains
/P.4/ /S.5/ Integration / compatibility with existing legacy

code
/S.6/ High maintainability
/S.7/ High extensibility

integrated development environments (e.g., Eclipse or IntelliJ). This hinders maintainability and
extendability and often results in abandoned projects. With the notion of roles, their expressiveness
and their subtle ambiguities, the resulting dispatch semantics needs to be handled explicitly and
at runtime (/F.2/). Hence, the solution developed during this thesis should support this new kind
of context-aware dispatch on the instance level for dynamically evolving role-playing objects. As
this context-aware dispatch introduces additional dimensions, those must be addressed as well
(/F.3/). Thus, on-top of associating the method with a name and tailoring the dispatch to the
receiver or sender context, the overall system context needs to be addressed additionally. And
finally as a fourth requirement, a maximum of the features of roles in role-based programming
has to be supported by the developed implementation to increase modularity (/F.4/). To make the
aforementioned dispatch implementation as usable and attractive to the developer it should be
declarative and parameterizable at runtime (/S.1/). This offers high flexibility for context-aware
adaptation and additional separation of concerns. To support the application programmer even
better, the programming model and API should be easy to use and readable even for inexperienced
developers (/S.2/). A reasonable performance and scalability of the implementation is important
as well for real-world scenarios and show its practical applicability (/S.3/). As a follow-up to /F.1/,
code should be easily manageable by existing tool-chains so that future role researchers, i.e., re-
searchers interested in role-based programming, and application developers can continue the
development and provide extensions and adaptation for future use-cases and scenarios (/S.4/). For
easier integration of existing software systems, we do not want to impose additional burden to the
developer writing adapters, proxies, or management code to integrate existing legacy code (/S.5/).
Finally, and as a result of /F.1/, /S.2/, /S.4/, and /S.5/, the reference implementation developed
during this thesis for role-based programming and dispatch should be highly maintainable and
extendable so that future researchers have an easy time providing modifications for new use-cases
and scenarios (/S.6/, and /S.7/). A summary can be found in Table 2.2.
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3 The Embedded DSL SCROLL

3 THE EMBEDDED DSL SCROLL

Scripting languages like Python, JavaScript, Ruby, Perl or Lua offer a flexible object semantic to
the developer. On the one hand, programmers can rely on classical object-oriented features, such
as inheritance, encapsulation and polymorphism, and on the other, they are able to add and
remove members from existing objects or merge them at any given point in their life-cycle [35]
which is usually not available in statically typed object-oriented languages. Unfortunately, using
inheritance, mixins and traits or adapting design-patterns has many disadvantages. The first three
techniques will result in a very static system design and exponentially many classes, while the use
of patterns often leads to split-objects and the need of additional management code. Adding and
removing members from existing objects at runtime are indeed very useful operations for modern
software-systems that have a very high demand for adaptivity and need to cope with complexity
and change [14]. Is bridging the gap between statically-typed, object-oriented languages and roles
as evolving objects at runtime possible without too much effort? The main contributions of this
work permit us to answer this questions positively:

SCROLL and the SCROLL MOP An overview on SCROLL, an embedded DSL and its underly-
ing MOP [26, 36] that allows for the pure embedding [23] of roles in the modern, statically
typed object-oriented language Scala. It solely utilizes features that are available through the
standard compiler. The library allows for easy integration of legacy code and a high separa-
tion of concerns. It is limited with regard to type-safety as one might expect. Nevertheless,
having a statically-typed host language for roles supports the developer with the best of both
worlds: static typing leads to an earlier detection of programming mistakes through static
code analysis, better documentation in form of type-signatures, compiler-optimization,
runtime-efficiency and an improved design-time development experience, while the latter
supports easy prototyping, change to unknown requirements or unpredictable data and
application integration. Essentially, two user groups for SCROLL can be identified: the
end-user (the programmer writing domain-specific, role-based applications), and the library
developer (adapting or transferring the SCROLL MOP and its semantics to his research area).

Simplicity Based on three concepts (compiler rewrites, implicit conversions, and a definition
table), an implementation pattern is presented.

Examples Finally, an example application shows how roles are realized with SCROLL.

Scala was chosen as host language for SCROLL, not only because of its combination of object-
oriented and functional programming features, but as well due to its scalability and interoperability
with the Java virtual machine providing easy integration of legacy code and availability of already
established tools. SCROLL, in particular, takes advantage of Scala’s features such as higher order-
functions, general operator notations, flexible syntax, implicits, compiler rewrites and implicit
definitions of parameters.

3.1 THE BASIC INGREDIENTS OF SCROLL

SCROLL is an embedded method-call interception DSL [33, 36] tailored to the features needed
to implement roles and resolve the ambiguities arising with regard to dynamic dispatch. The
library approach together with an implementation with Scala was chosen for mainly the following
reasons: it allows focusing on role semantics, supports a customizable, dynamic dispatch at
runtime, and allows for a terse, flexible representation. No additional tooling (like a custom lexer,
parser or compiler) is needed to execute the SCROLL MOP. It is purely embedded in the host
language, thus uses the standard Scala compiler to generate Java Virtual Machine (JVM) bytecode.
With that, the implementation is reasonable small (∼1400 lines of code) and maintainable. The
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3.1 The Basic Ingredients of SCROLL
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Figure 3.1: An overview of the SCROLL metamodel and MOP layers.

programming interface with Scala’s flexible syntax holds the property of being easily readable,
even to inexperienced users. We have taken a layered approach (see Fig. 3.1) for designing and
implementing SCROLL:

Usage Layer This is the end-user layer, tailored for the instantiation and use of objects with their
roles as dynamic extensions forming evolving objects. Role objects, as well as their enclosing
compartments, may be instantiated from standard Scala classes, case classes, or traits.

Configuration Layer All role-specific features are aggregated into the Compartment trait and its
utility traits (e.g., DispatchQuery, RoleConstraints, or RoleGroups). They implement the
full interface of SCROLL and are configurable at runtime through concrete instances. Altering
their default behavior is viable via subclassing. This layer is targeted to both end-users and
library developers.

MOP Layer This layer contains the implementation of the metaclasses Compartment and
its helper traits (i.e., the MOP). Especially the dynamic dispatch semantics within the
DispatchQuery trait are targeted to be investigated and adapted by library developers.

Specification Layer To handle the actual dispatching on the compound object, this layer con-
tains specifications for the dispatch (SCROLLDispatch, SCROLLDynamic). This unifies their
complex semantics into only two interfaces rather than scattering them across many inter-
faces. This layer should be changed if a library developer wants to change the semantics of
the dynamic dispatch within SCROLL.

To provide a DSL for the pure embedding of roles in structured contexts, SCROLL requires the
following basic implementation concepts from the host language (see Fig. 3.1):

Compiler rewrites A concept for compiler rewrites for method calls, functions calls, and attribute
access is required. It hands over calls to the library for finding behavior and structure that is
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Figure 3.2: Required basics for the implementation of a DSL for roles in structured contexts at
runtime.

foo.method("param") ⇝ foo.applyDynamic("method")("param")
foo.method(x = "param") ⇝ foo.applyDynamicNamed("method")(("x", "param"))
foo.method(x = 1, 2) ⇝ foo.applyDynamicNamed("method")(("x", 1), ("", 2))
foo.field ⇝ foo.selectDynamic("field")
foo.varia = 10 ⇝ foo.updateDynamic("varia")(10)
foo.arr(10) = 13 ⇝ foo.selectDynamic("arr").update(10, 13)
foo.arr(10) ⇝ foo.applyDynamic("arr")(10)

Listing 3.1: Compiler rewrite rules from the Dynamic trait [10].

not natively available at the core object. This can be seen as a compiler-supported variant of
method-call interception [33].

Implicit conversions For aggregating the compound object from the core and its roles, and for
exposing the SCROLL MOP API, implicit conversions are needed. An implicit conversion
from type S to type T is defined by an implicit value which has the function type S => T, or
by an implicit method convertible to a value of that type. Implicit conversions are applied in
two situations: i) If an expression e is of type S, and S does not conform to the expression’s
expected type T, and ii) in a selection e.m with e of type S, if the selector m does not denote
a member of S. In the first case, a conversion c is searched for which is applicable to e and
whose result type conforms to T. In the second case, a conversion c is searched for which is
applicable to e and whose result contains a member named m.

Definition table for the plays relationship The relationships between each individual core ob-
ject and its roles need to be stored. A definition table holds all kinds of program components,
whose attributes are created by declaration: types, variables, methods, functions, and pa-
rameters [51]. In SCROLL, a definition table for roles is implemented with a graph-based
data structure, but it may be implemented with tables, maps, or lists as well.

If one is able to find or emulate these three techniques in the desired host language, it is easy
to provide an alternative implementation of SCROLL. In the following, these basic concepts are
explained in more detail.

3.1.1 THE DYNAMIC TRAIT WITH COMPILER REWRITE RULES

Behavior and state of roles that is not natively available in the core object needs to be addressed
somehow. Scala’s Dynamic trait can be used to implement that behavior [11]. To get invoked, the
proper role has to be identified and selected. To do so, calls to role-specific functionality that would
normally fail during type checking phase, are rewritten by the compiler according to the rules
shown in Listing 3.1. This transformation is type-unsafe, because the actual set of roles as dynamic
extensions that are bound to the core object, is not statically known. Hence, static type-safety is
not available. SCROLL hooks into those rewritten calls and triggers the actual invocation of the
appropriate roles, as well as the error handling. It refrains from using runtime exceptions or similar
exception-based error handling in case of not being able to find the functionality the developer
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is querying for. Instead, Scala’s Either container type is applied. It has two sub-types, Left and
Right. If an Either[A,B] object contains an instance of A, then the Either is a Left. Otherwise,
it contains an instance of B and it is a Right. By convention, it is used to carry the error case as
Left (e.g., DynamicBehaviorNotFound), whereas the Right contains the success value (e.g., the
result of executing the dynamic behavior). Together with a sealed type hierarchy with data types
using case classes that represent errors, very readable messages compared to actual stack-traces
from standard Java exceptions are generated.

3.1.2 BOXING WITH IMPLICITS

We want to be able to add roles to any given object of any type in Scala. Implicit conversions [38]
provide a lightweight way to expose SCROLL ’s API for adding, removing and transferring behavior
or state to any object and is implemented via the class Player from the SCROLL MOP layer. Scala’s
implicit conversion is used to wrap the core object into an equivalent compound object exposing
the required API in a type-safe manner. Furthermore, the issue of object schizophrenia needs to
be addressed with a clear notion of object identity. The identity of an object should be the same
independent of which role is attached. In summary, four kinds of equality tests between pairs of
objects (i.e., the core object C and its role instances Rn) are possible:

1. C +R1 ==C

2. C +R1 ==C +R1

3. C +R1 ==C +R2

4. C ==C +R1

To overcome object schizophrenia for equality tests in SCROLL, the library modifies the identity-
related method of the compound object represented by Player. In fact, == and the equals-method
are equivalent in Scala that is, the expressions x == y and x.equals(y) give the same result. We
define the equals-method in the following ways:

1. C+R1 ==C : When the equality for a core object playing a role compared to itself is requested,
then the compound object (a Player instance) maps equals to the implementation of the
core object.

2. C +R1 ==C +R1: Same as case one, but the right-hand operator of == is a role. Here, the
comparison will be done with this role’s core object.

3. C +R1 ==C +R2: Same as case three.

4. C == C +R1: We cannot modify the equals-method of arbitrary objects using a library
approach. If the comparison of a plain core object is required, the +-Operator needs to be
applied. This will trigger the dynamic conversion using the implicit class Player and applies
the desired comparison, as in cases one to three.

3.1.3 THE DEFINITION TABLE FOR THE PLAYS RELATIONSHIP

In SCROLL, a graph-based data structure is used for implementing the definition table storing
the relationships between core objects and its role instances. The role-play graph allows for easy
querying of role-specific behavior that was attached to the core object at some point in time.
As an implementation, any appropriate graph library can be used. For SCROLL, Guava’s graph
data structure [15] was chosen as underlying graph library already providing the necessary graph-
theoretic objects like edge- and node-types as well as simple algorithms for traversing the graph.
SCROLL makes it easy to plug-in any other convenient library, e.g., for easy scaling or distribution.
Additionally, access to roles is cached speeding up the querying for the appropriate structure
and behavior hidden in a role. Graph traversals are used and mapped directly to Scala functions.
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Figure 3.3: Example of a simple role-play graph.
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Figure 3.4: Class Robot is constructed (dotted arrows) from different roles and acquires the con-
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Consider the example provided in Fig. 3.3. A player type is instantiated (o) and plays the role
type instances with the property name roleA, roleB (as deep role), and roleC. If i is the vertex
representing the object and

f : P̂ (V ) → P̂ (S),

where
f (i , name) = ϵ(Vi n(El ab+(Eout (i ), plays)), name),or more clearly as

f (i , name) = (ϵname ◦Vi n ◦E
plays

l ab+ ◦Eout )(i , name),

then f (i , name) will return the property name of the roles that the object is playing. This function
f traverses to the outgoing edges of vertex i representing the role-playing object, then filters
those edges with the label plays, then traverses to the incoming (i.e., source) vertices on those
plays-labeled edges. Finally, of those vertices, it returns their name property. Applying f with the
player o and name now delivers f (o, name) = {roleA, roleB, roleC} for the example role-play graph,
as expected.

3.2 SCROLL BY EXAMPLE

This subsection explains the basic usage of SCROLL for the pure embedding of roles. We start
with a brief introduction how one can use roles by example (see Fig. 3.4). A standard Scala case
class (Robot) should be augmented with new behavior encapsulated in three different classes as
extensions (ExtensionA, ExtensionB and ExtensionC). Each of them provides a new aspect of
the robot via functions, such as, finding a target to move to, or observing sensor values, attached to
case classes. This allows for a high degree of separation of concerns with multiple hierarchically
structured compartments. The core behavior (with case class Service) aggregates all the provided
functionality without having to worry about which role delivers which service.
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3.3 Technical Limitations

1 case class Robot(name: String )
2 case class Service() {
3 def move() {
4 val name: String = this name()
5 info("My name is: " + name)
6 }
7 }

Listing 3.2: A naive solution for the robot example. It fails during compilation because name()
(Line 4) is not available at instances of Service.

1 case class Robot(name: String )
2 object CoreBehavior extends Compartment {
3 case class Service() {
4 def move() {
5 val name: String = +this name()
6 info("My name is: " + name)
7 }
8 }
9 Robot("Pete") play Service()

10 }

Listing 3.3: A new solution for the robot example using the basic SCROLL API.

We now step-wise construct the example. First, only the name attribute of the robot should be
printed. This naive solution, non-surprisingly, fails during compilation because name() (Line 4
in Listing 3.2) is not available at instances of Service. To solve this problem of adding behavior
dynamically, we now apply the most basic concepts of the SCROLL DSL, namely a Compartment
(Line 2 in Listing 3.3), the +-operator (Line 5 in Listing 3.3), and the play API call (Line 9 in
Listing 3.3). The Compartment trait exposes SCROLL ’s basic API to the current class, allowing the
programmer to use the +-operator, and the play method. Because any given object should be
allowed to play roles, we cannot assume that this object actually provides the +-operator. Thus,
Scala’s implicit conversion [38] is used to wrap the core object into an equivalent compound object
exposing the required API as mentioned above. By calling the +-operator, applying implicit lifting,
the user is able to forward arbitrary calls to some roles he assumes should be available on the core
object without worrying about their actual location. Calling play adds a play relationship between
a player (instances of Robot) and a role instance (instances of Service), finally enabling the call to
name() (Line 5 in Listing 3.3).

As a final step, for better separation of concerns, new functionality from roles is now grouped
into extensions represented by individual compartments, e.g., with the compartment ExtensionA
(Line 11 in Listing 3.4). The role-playing graph, holding the relationships between role-playing
objects (e.g., instances of Robot) and their roles (e.g., instances of Service, and Navigation), is
defined compartment-wise. Hence, in the anonymously instantiated compartment at Line 16
in Listing 3.4, making the robot actually move, those individual role-playing graphs are merged
into a new one, spanning now multiple compartment instances. With that, the role-playing
relationships defined in the anonymously instantiated compartment are now a part of those within
CoreBehavior, and ExtensionA, respectively. Hence, all the requested behavior (i.e., name(),
getTarget(), and move()) is available. The full example can be found in Listing 3.5.

3.3 TECHNICAL LIMITATIONS

SCROLL allows for role-based programming with the concept of dynamically evolving objects
and purely embeds roles in a statically typed, object-oriented host language. This supports the
developer with the best of both worlds: static typing leads to an earlier detection of programming
mistakes through static code analysis, better documentation in form of type-signatures, compiler-
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1 case class Robot(name: String )
2 object CoreBehavior extends Compartment {
3 case class Service() {
4 def move() {
5 val name: String = +this name()
6 val target: String = +this getTarget()
7 info(s"$name moves to $target.")
8 }
9 }

10 }
11 object ExtensionA extends Compartment {
12 case class Navigation() {
13 def getTarget = "kitchen"
14 }
15 }
16 new Compartment {
17 val robot = Robot("Pete") play Service() play Navigation()
18 ExtensionA partOf CoreBehavior partOf this
19 robot move()
20 }

Listing 3.4: The third solution for the robot example using the more advanced SCROLL API.

1 case class Robot(name: String )
2 object CoreBehavior extends Compartment {
3 case class Service() {
4 def move() {
5 val name: String = +this name()
6 val target: String = +this getTarget()
7 val sensorValue: Int = +this readSensor()
8 val actor: String = +this getActor()
9 info(s"$name moves to $target with $actor and sensor value of $sensorValue.")

10 }
11 }
12 }
13 object ExtensionA extends Compartment {
14 case class Navigation() {
15 def getTarget = "kitchen"
16 }
17 }
18 object ExtensionB extends Compartment {
19 case class Observer() {
20 def readSensor = 100
21 }
22 }
23 object ExtensionC extends Compartment {
24 case class Vehicle() {
25 def getActor = "wheels"
26 }
27 }
28 new Compartment {
29 val myRobot = Robot("Pete") play Service() play Navigation() play Observer() play

Vehicle()
C

C

30 ExtensionC partOf ExtensionB partOf ExtensionA partOf CoreBehavior partOf this
31 myRobot move()
32 }

Listing 3.5: The full RobotExample source code.

1 Pete moves to kitchen with wheels and sensor value of 100.

Listing 3.6: The RobotExample console output.
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optimization, runtime-efficiency and an improved design-time development experience, while
dynamic objects support easy prototyping, change to unknown requirements or unpredictable
data and application integration. Nevertheless, implemented as a library approach on-top of the
Scala programming language, there exists no built-in abstraction of those dynamically evolving
objects on type level yet. Hence, the following limitations apply.

SCROLL uses Scala’s Dynamic trait [11] to address all dynamic behavior from roles that is not
available at the core object. This is comparable to the usual implementations of dispatch tables
(e.g., with C++ vtable, or Java call-sites). Calls to role-specific functionality that would normally fail
during type checking phase of Scala are rewritten after the typing phase of the Scala compiler. At
this point, type-safety is lost. The actual set of roles as dynamic extensions that are bound to the
core object is not statically known, hence static type-safety is not available. At runtime, compound
objects representing role-playing, dynamic objects are always represented as Player[T], where T
refers to the type of the core object. No special typing construct is available to mirror role-playing
objects in first place, hence calls via the Dynamic trait cannot be statically typed. To remedy
this shortcoming, and to help the developer, providing additional warnings and error messages
whenever the requested dynamic behavior is unlikely to exist at all, the SCROLLCompilerPlugin
was developed (see Sect. 3.4).

Furthermore, as the quantitative evaluation shows, SCROLL performs quite slowly due to the
heavy use of the Java Reflection API. In the scope of this theses that is not to be considered
critical, as it serves as a testbed for dynamic dispatch. Implementing suitable, role-aware types
(invokedynamic on the JVM), use Scala macros, or implement a Scala compiler plugin would
improve the overall performance. This is considered to be out of the scope for this thesis, but
targeted as future work.

3.4 THE SCROLL COMPILER PLUGIN

As soon as the compiler triggers its rewrite rules (Scala’s Dynamic as explained in Sect. 3.1.1) certain
type-safety is lost because it cannot be statically determined if a role is actually bound during
runtime. FRaMED [27] is able to export instances of CROM [29] as Ecore files serialized as XMI.
With the help of such an optionally imported file the SCROLLCompilerPlugin [30] will check all the
statements invoking role calls against the available player and role classes from the model instance
and the class definitions in the current scope. The SCROLLCompilerPlugin generates meaningful
messages and reports them as warnings or compile time errors (which is configurable) to the
developer. To gather the behavior offered in all possibly attached roles as dynamic extensions, all
relevant binding- and unbinding statements, player classes and their behavior, and all calls to the
Dynamic trait, the Scala Abstract Syntax Tree (AST) is traversed at compile-time right after the typer
phase of the standard Scala compiler [32]. The algorithm used is a program analysis which runs on
the AST until all AST subtrees are covered. After running this program analysis at compile-time,
the sets of statements and collected behavior are compared against each other and warnings or
errors will be reported to the user. An overview of the resulting tool chain is visualized in Fig. 3.5.
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4 EVALUATION

The evaluation for SCROLL is split into four parts. Firstly, we analyzed the fulfillment of the re-
quirements stated in Sect. 2.4. Secondly, SCROLL was analyzed based on a previously defined
classification scheme [29]. Then, the variability analysis from [17] was applied. Finally, we bench-
marked various implementations for roles at runtime and identified performance bottlenecks of
SCROLL. In sum, these are the results:

SCROLL is a very general approach The evaluation with regard to the derived requirements
clearly shows the various advantages of SCROLL, as it is able to implement all of them, only
failing at one (the required performance).

Feature-based analysis of SCROLL To investigate how well the implementation with SCROLL
blends into contemporary approaches, the previously defined scheme from [29] with 26
classifying features of roles was applied. SCROLL fully implements 22 of them (see Table 4.1).

Summary for runtime feature analysis This investigates the role semantics by a feature analy-
sis loosely based on [17]. Instances of classes as the fundamental basis of roles in SCROLL
with their corresponding role-playing constraints and supertype restrictions are fully incor-
porated. Furthermore, many constraints with regard to the cardinalities imposed on the
player as well as the role side are supported. Relationships, e.g., with the concept of inher-
itance, can be handled and most of the well-known properties (e.g., static methods, class
methods and fields) are available within SCROLL. In addition, the analysis for role-specific
behavior reveals SCROLL ’s ability to dispatch calls on various entities (e.g., roles and its
players, the notion of self, and super). The notion of identity is discussed with the question
in mind if roles have an unique identity or it is rather shared between a role and its player.
When it comes to handling the life cycle of roles, SCROLL offers support for a fairly simple
implementation of role creation, attachment, movement and removal. Finally, type related
issues are discussed. As a result, it was shown that SCROLL realizes a good balance for the
role and compartment concepts with regard to statically and dynamically languages.

Summary for quantitative evaluation For our benchmark suite, SCROLL performs roughly five
times slower than OT/J and ScalaRoles. Manually managed implementations with patterns
are way faster. This slowdown stems from the heavy use of the Java Reflection API to gather
and manipulate the behavior and structure at runtime. Via reflection, performing such
tasks is expensive. Consequently, with reflective operations being much slower than their
non-reflective counterparts, they should be avoided in sections of code which are called
frequently in performance-sensitive applications. In the scope of this thesis that is not to be
considered critical, as it focuses more on the conceptual features of dynamic dispatch.

5 CONCLUSION AND FUTURE WORK

In the modern world, software systems are expected to adapt to a changing environment as they
become more and more ubiquitous. During their lifetime, new features are requested, existing
requirements change, and the hardware and operating systems are regularly being renewed. Soft-
ware written for a specific purpose may become useful in situations and environments, which the
developer did not dare to anticipate. Those situations are ubiquitous in the physical world (e.g., on
wearables and smartphones) and ubiquitous in the software world of Internet-based applications.
Object-oriented programming, as being widely used to build extensible and flexible software sys-
tems, is successful, because it supports programming with data structures that closely resemble the
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Table 4.1: Comparison of coeval approaches for etablishing roles at runtime based on 26 classifying
features extracted from [29] presented in Table 2.1. It differentiates between fully (■),
partly (⊞), and unsupported (□) features.
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5. ■ ■ ■ ⊞ ■ ■ ■ ■ ■
6. □ ■ □ ■ ■ □ □ ■ ■
7. ■ □ ■ ■ ⊞ ■ ■ ■ ■
8. □ ■ □ ■ □ ■ ■ ■ ■
9. ■ □ □ ■ □ ■ ■ □ ■
10. ■ ■ ■ ■ ■ ■ ■ ■ ■
11. ■ ■ ■ ■ ■ ■ ■ ■ ■
12. ■ ■ ■ ■ ■ ■ ■ ■ ■
13. □ ■ ■ ■ □ ■ □ ■ ■
14. ⊞ ⊞ □ □ ■ ■ ⊞ □ ■
15. ■ ■ ■ ■ □ ■ ■ ■ ■
16. □ □ □ □ ■ □ □ □ □
17. □ □ □ □ □ □ □ □ □
18. □ ■ □ □ ⊞ ⊞ ⊞ □ ■
19. □ ■ □ ⊞ ⊞ □ ■ □ □
20. □ ■ □ ■ ■ ■ ■ □ ■
21. □ □ □ ■ □ ⊞ ■ □ ■
22. □ ■ □ □ ■ □ □ □ ■
23. □ ■ □ □ □ □ □ □ ■
24. □ ■ □ ⊞ ■ ■ ■ □ ■
25. □ ■ □ □ □ ■ □ □ ■
26. □ ■ □ ⊞ ■ ■ ■ □ ■

problem domain. However, future software systems expect a higher level of dynamism, not offered
by pure object-oriented concepts. With dynamically typed, object-oriented scripting languages,
a very flexible programming style is available. Modules, classes and objects can be extended
arbitrarily at runtime. But programming in a dynamically typed language comes at a cost. Without
static type information, it is impossible to analyze programs statically and catch whole classes
of programming errors before actually running the program. The burden is solely carried by the
programmer. To cope with challenges imposed by ubiquitous, highly adaptive software systems,
researchers proposed several approaches, including the language concept of roles. This concept
allows for extracting the context-dependent behavior from the classes and model it in separate
role types. Together with role-based, dynamic dispatch, a new level of separation of concerns
is revealed. The core behavior and structure is defined in the object’s type. Context-dependent
and evolving parts are then specified in role types. Role-playing objects are able to start and stop
playing roles to adapt their behavior and structure dynamically during runtime, without the need
for reinstantiation. However, role-playing objects need specific forms of multi-dispatch.

Therefore, the SCROLL approach for the pure embedding of roles in a method-call interception
DSL, and its dynamic, role-based dispatch is presented in this thesis and consists of the following
key contributions:
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5 Conclusion and Future Work

SCROLL and the SCROLL MOP This thesis presents SCROLL, an embedded method-call
interception DSL as library with its underlying MOP [33, 36, 26] that allows for pure em-
bedding [23] of roles in a modern, statically typed object-oriented language (Scala) without
changing its syntax. It solely utilizes features that are available through the standard compiler.
This library allows for easy integration of legacy code and a high separation of concerns. It
has a minimalistic design and stays below 1400 lines of code.

A coupling of static and dynamic role typing By relying on a statically-typed host language
for roles, SCROLL supports the developer with the advantages of static typing and dynamic
objects with roles, simultaneously.

A simple implementation pattern for roles in structured contexts The implementation
pattern behind SCROLL requires three basic components, namely, compiler rewrites, i.e.,
a compiler-supported variant of method-call interception [33], implicit conversions for
assembling a compound object from the core plus all of its roles, and a definition table of the
relationships between each core object and its roles, the role-play graph.

A role-based dispatch configurable at runtime A declarative and parameterizable approach
for four-dimensional, role-based dispatch at runtime is presented. This enables the devel-
oper to overcome the subtle ambiguities with roles in structured contexts by utilizing an
explicit representation of dispatch rules as function objects [49]. The dispatch is based on
four dimensions: the name of the computational unit, the context of the receiver, the context
of the sender, and, for the first time, on structured contexts. The dispatch can be configured
dynamically by node filter functions.

Strong type-safety for role-based dispatch The type checking during role-based dispatch is
supported by additional typing information constructed via introspection [5] and an optional
compiler plugin using static program analysis.

The practical applicability Finally, with the application of role-based adaptation for robotic
co-working, it is shown how roles as dynamically evolving objects can help to implement
highly adaptive systems. With a hybrid automaton, specifying the contexts of the robot,
and the four-dimensional dispatch on these contexts, the robot is able to react to unex-
pected, asynchronous events. The implementation presented with SCROLL is simple and
demonstrates its basic features and usage.

In conclusion, we have shown how arbitrary objects can be augmented dynamically with new func-
tionality and state grouped together in roles. Moreover, obstacles arising from object schizophrenia
can be solved with the concept of a compound object (enabled by dynamic conversions) and an
adapted notion of object identity, such that the identity of an object is the same independently
of which role is attached. Using Scala’s Dynamic trait together with a role-play graph allows for
easy querying for behavior that is not natively available to the core object. If one is able to find or
emulate these three techniques (compiler rewrites, implicit conversions, and a role-play graph) in
the desired host language, it is possible to provide an alternative implementation of SCROLL in
another host language.

As every novel approach in the field of programming language design and implementation,
SCROLL opens a wide space for future work. Several developments are currently work in progress
or targeted for investigation in the near future. In interdisciplinary collaborations, we aim for
other use-cases for the concept of dynamically evolving objects. They should help the domain
expert to cope with domain-specific implementation concerns. Specifically in systems biology
and, more generally, in scientific computing (e.g., with a Next-Generation Parallel Particle-Mesh
Language [25]), using SCROLL looks promising. With respect to the required performance, opti-
mizations for translating the specific binding and behavior-lookup for dynamic objects need to be
developed. A promising direction is the investigation of the invokedynamic bytecode keyword
introduced with Java 7 to provide an alternative implementation of SCROLL. Furthermore, other
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dynamic objects, like facets, parts, phases, and aspects could be investigated whether they can
be integrated into SCROLL. With more case studies, it needs to be investigated if the proposed
dynamic, role-based dispatch is expressive enough to cope with the requirements of context adap-
tation. Is a mapping to, e.g., predicate dispatch feasible? What are the benefits, when translating
this dispatch semantics into a new role- and context-aware type system? Are existing type systems
(e.g., dependent type systems) sufficient? Finally, in [37], the authors provide metrics for dispatch
(e.g., dispatch ratio, choice ratio, or degree of dispatch). These metrics focus on method definitions
and can be measured statically. Tailored to the notion of roles, one could investigate the degree of
adaptability provided by the SCROLL dispatch concept in comparison to existing approaches.
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