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1 Motivation
While there has been research ongoing for many years how power consumption of sin-
gle machines, clusters, and entire data centers can be reduced, idle power consumption
of servers still accounts for up to 60% of the maximum power consumption [5]. A
much-noticed article of 2007 showed that average CPU utilization for more than 5,000
servers over a period of six months was between 10% and 50% [2]. A large fraction of
the servers utilized CPU even below 10%. This situation of underutilization in data
centers has not changed much since then: In [12], Delimitrou & Kozyrakis state that
average CPU utilization at Twitter is below 20% - while up to 80% of CPU capacity
is reserved but usually idle. Reiss et al. find that CPU utilization at a Google cluster
is between 30% and 75%, while always more than 100% of the cluster’s CPU capacity
is allocated [23]. And according to H. Liu the CPU utilization at Amazon EC2 is
between 3% and 17% [18].

Obviously, it would be the best strategy to switch a computer on only for the
very moment it needs to perform as task – and ideally utilizes all its resources to full
capacity – and immediately switch it off afterwards.

Indeed, this is the idea behind server consolidation. Its goal is to merge appli-
cations (or services) of servers that are underutilized on the least amount of servers
such that every application still can perform its task, but the employed servers are
highly utilized and remaining servers are either switched off or put in a low-power
state. Consolidation, however, leads to another problem, called resource interference.
Since the amount of resources on a server (i.e. CPU, memory, storage and network
devices) are limited and access to these resources is shared among all applications
it is virtually inevitable that the applications cannot perform their respective tasks
with the same speed as if they had sole access to all resources. A large body of work
of partial solutions to the problem exist, e.g. pinning applications to particular CPU
cores to avoid interference at the cache level [11], systems for interference management
[22], or data centers schedulers that attempt to minimize possible interference in the
first place [12]. However, during a day the workload (i.e the frequency of requests and
the associated size of individual requests in terms of their difficulty) usually changes.
Typically, this carries forward to changes in the resource demands of an application
that process these requests. At the same time a different application can experience
changes in its resource utilization due to the changes of the first application. While
the change of the resource utilization of the first application is caused by a change
of its workload, the change for the second application is due to interference. In or-
der to distinguish the first cause from the other one may (a) periodically perform
reclassification of applications [12] with proactively inducing interference (and thus,
intentionally reduce an application’s performance). Or special algorithms are exe-
cuted if changes of resource utilization are detected in order to make an educated,
but not necessarily correct guess [24, 22]. In both cases, interference is only detected
and then mitigated, but not prevented. Until detection and mitigation the affected
applications suffer from performance degradation which directly translates to a re-
duced energy efficiency. It could be thus benefical to incorporate information that
relates the workload of an application to its resource demand.

We assume that having such knowledge at hand before actually consolidating
workloads can support consolidation decisions in a manner that those consolidation
is prevented which would lead to considerable resource interference. Since resource
utilization and thus, resource interference, depends on the workload of the application
it is therefore necessary to estimate the very relationship between workload of an
application and its resource utilization. To enable later statements regarding the
impact of the resource interference on energy efficiency it is additionally necessary to
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examine the relationship between resource utilization and power consumption.
To establish such models, regression techniques are very widely employed [21].

Models of these kinds necessitate that the number of data points in the measurement
data for both, the predictor parameter(s) and the predicted parameter are the same.
Or, in other words, that a bijective mapping between the samples of the exogeneous
and the endogeneous variables exists. For different reasons this is sometimes not the
case. If the samples are time series, resampling techniques are maybe applicable. But
if timeing information in the data is unreliable or not available resampling cannot
be applied. Quantile-quantile (QQ) curves offer a means to establish the bijective
mapping in these cases and this motivates the topic of this thesis.

2 Thesis Goals
In an early phase of the CRC 912 of the Deutsche Forschungsgemeinschaft – in which
this thesis is embedded – a part of the participating research groups agreed on using
a video server and a transcoder as central examples. Within our research group it
was decided to provide the applications with realistic workloads so that the results
of our experiments would have more than purely academic meaning. As it points
out, there is no workload generator for a video server freely available that produces
realistic workloads. Thus, the following question needs to be answered at first:

1 What are the statistical properties of video server traffic and how can we generate
traffic that resembles these properties.

During the review of related work to answer this question the particularly inter-
esting finding was encountered that the heavy-tailed distribution of request sizes of
the Internet traffic is mainly due to the heavy-tailed distribution of file sizes and that
the effect of file popularity seems only to have little effect [8]. It was concluded that a
server operator could be able to estimate the (unknown) distribution of request sizes
by merely considering the (readily available) distribution of file sizes. This would allow
her to estimate the workload to the system without the necessity to learn each file’s
popularity. But this necessitates a functional expression of the relationship between
the two distributions. Such an expression was not readily available and motivated the
second research question:

2 How can we apply (linear) regression to samples of different lengths where time
stamps are not meaningful, or unavailable, or unreliable?

The found answer promised to provide the means to answer the main research
question:

3 How can we stochastically describe the resource utilization of an application as a
function of its workload?

3 A Realistic Workload Generator for Video Servers
In [1] Barford & Crovella define seven statistical properties (features) of web server
traffic that form the basis our implementation. The relevant features for a video server
are (1) the distribution of interarrival times (2) the distribution of file sizes, (3) the
distribution of popularity of single files, (4) the distribution of request sizes, and (5)
the probability that a recently requested file is requested again soon (i.e. temporal
locality).
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Among the body of related work that examines these features for current video
platforms like Youtube, Dailmotion, or Metacafé no team of authors examined all of
these feaures. Also, for some features no recent work seems to exist. Thus, the find-
ings of several teams of authors are combined by (a) focusing on results for Youtube
since this platform is investigated by most authors, (b) employing the findings of the
majority of publication if relatively recent work exists, (c) anticipate the develop-
ment of properties where findings are obviously already outdated, and (d) defaulte to
properties of usual Internet traffic if no specific information is available at all.

In summary, the distribution of file sizes follows a lognormal distribution with
parameters lnN (2.1, 2.3) (applying methods (b) and (c)), and file popularity is mod-
eled by a lognormal distribution with parameters lnN (1.72, 229.51) [20]. Features (1)
and (4) are not explicitly modeled but are the result of how the popularity of a file
develops with time, how many additional views a video gains during the next week as
a result of this popularity dynamic, and how these additional views are distributed
across weekdays and daytimes. The amount of additional views, v, for the next week
for a video are calculated following the apporach in [7]: v = v0 · (1+µ)p

µp where v0
denotes the overall amount of views the video has gained until now, µ denotes the age
of the video in weeks, and p reflects the development of the file’s popularity which is
modelled by a Weibull distribution with parameters W(2, 0.9) [5].

To model the change of request rates during a day a sine-wave is employed that
peaks at 18:00 ’o clock. A sine wave is also used to model the change of request rates
with weekdays where the wave reaches its peak between Sunday and Monday. Both
are an approximation to Trace 5 in [25].

4 Regression between Samples of different Lengths
Typically, a regression problem requires pairs of dependent and independent variables,
(yi, xij), with i = {1, n}, j = {1, k}, where n denotes the number of observations,
and k the number of independent variables. To find pairs of variables in cases where
x ∈ X and y ∈ Y with |X| = m, |Y | = n and m 6= n it is exploited in this thesis that
the associated empirical distribution functions, Fm(x) and Gn(y) are non-decreasing
and that Fm(x) := 0 for x < inf(X) and Fm(x) := 1 for x > sup(X).

To find pairs of x and y, for some xi, a yj is determined, such that

yj = G−1
n (Fm(xi))

where G−1
n (p) denotes the quantile function. Thus, pairs of x and y are determined

by means of the QQ curve.
Quantile functions are only defined for continuous distributions. But measurement

data is always discrete. Hence, to be able to determine yj = G−1
n (p) for arbitrary

values of p, yj needs to be estimated. This is a problem that typically arises when QQ
curves need to be plotted. In [17], Hyndman and Fan summarize and examine dif-
ferent approaches to quantile estimation that are implemented in statistical libraries.
Commonly, the estimate of the quantile of order p is defined as

Q̂(p) = (1− γ)X(j) + γX(j+1)

where X(j) denotes the j-th order statistic of X,

γ = pkn+ l − j

and pk can be expressed as
pk = M(F (X(k)))
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where n = |X|, j = bpkn + lc, bqc denotes the largest integer smaller than q, l =
α + p(1 − α − β), α, β are some constants – typically in the range [0, 1] – and M(·)
denotes the median. Since order statistics are known to be β-distributed, the crucial
part is the estimation of the median of the incomplete β function ratio. The estimate
by Hyndman & Fan in [17] seems not to be entirely correct since the definition the
authors give coincides with the estimate of E(X(k)) – the mean of the k-th order
statistic – reported by C. Cunnane in [9]. It would only be justified to employ this
approximation if the underlying distribution is normal since in this case mean and
median are the same. According to [9], a value of α = 0.31 was reported in [3]1 as
approximation to M(F (X(k))) and therefore these values are used in this thesis to
estimate quantiles.

It is clear that estimates of distribution functions obtained in this manner will
deviate from the actual distribution functions and a means to assess the goodness-of-fit
is needed. Conventional goodness-of-fit (GoF) tests (2-sample Kolmogorov–Smirnov,
k-sample Anderson–Darling, Carmér–von Mises) are, however, not appropriate since
these tests are targeted at a fundamentally different problem: They are designed to
test the hypotheses that two samples origin from the same distribution and provide
merely a qualitative answer. But a quantitative answer is necessary to decide how
good a particular model is. And most importantly, named GoF tests assess the
difference between distribution functions along the y-axis. However, since in cases of
less good fits there will be a deviation along the x-axis it is more meaningful to assess
this deviation.

It appears that only K. Doksum (albeit in collaboration with others) has investi-
gated this problem, yet with different intentions [15]. For two empirical distribution
functions, Fm(x) and Gn(y) he defines the empirical shift function ∆̂N (x) as

∆̂N (x) = Y(bmFn(x)c+1) − x

where Y(i) denotes the i-th order statistic of Y and bkc denotes the largest integer
smaller than k.

In lack of any other means this definition is employed to assess the deviation
between the actual empirical distribution function and its estimate.

Also, to be able to compare relative performance of a model a scale-free error
definition is needed where the classical mean absolute percentage error (MAPE) is
probably the most widely used. In terms of the empirical shift function it is defined
as

MAPE = 100
n

n∑
i=1

∣∣∣∣∣∆̂N (xi)
xi

∣∣∣∣∣ .
The MAPE, however, does not exist whenever xi = 0 for some i. The value of
the MAPE also inflates if small values are present in the sample of actual values.
Alternative definitions or extensions of MAPE in [19] or [6] introduce merely other
issues and do not present a reliable solution to the problem. Thus, a median version
of the MAPE is defined additionally:

mAPE = 100 ·M
(∣∣∣∣∣∆̂N (x)

xi

∣∣∣∣∣
)
.

The mAPE exists as long a less than 50% of the actual data is different from 0. If
this is not the case either, a percentage error cannot be determined.

1The original resource could not be obtained.
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5 Quantile Function-based Models
Modeling the resource utilization of applications is a recurring problem and a large
body of work exists in this field. Among the considered body of work the results
of Curino et al. [10] and of Desnoyers et al. [13] come close to what is needed for
this thesis. But mere statistics (i.e. mean and modes) in [10] may hide relevant
relationships between other parts of the distributions. And Desnoyers et al. admit a
proportional dependency between the prediction error and the coefficient of variation,
cv, of the service time. Since for cv = 2 the authors report a prediction error of 10%,
and since for the workloads produced by our generator cv > 7, we inferred that this
error would be even larger in our case.

Modeling the power consumption is as well an old but nonetheless very active re-
search field. If one abstracts from the target domain (e.g. single resources of a server,
the server as a whole, or entire data centers) three kinds of models can be distinguished
with respect to the parameter sources: (1) models that exclusively incorporate data
provided by the operating system, (2) models that exclusively incorporate data pro-
vided by the hardware resources, and (3) hybrid models. While models of the first
kind have the advantage to be easily portable to other systems (assuming that most
server systems run a Unix-like operating system), models of the second kind promise
to improve accuracy, yet at the cost of reduced portability. However, this promise
is not always kept since even very simple models of the first kind that incorporate
merely the CPU utilization [16] can outperform rich models of the second kind [14, 4].
This motivates to focus on models of the first kind.

5.1 Applicability of the Approach
The opportunity to obtain data points for regression problems (a) regardless of the size
of the individual samples and (b) without the necessity that time stamps are present
in the data seems very promising. The approach was first employed to evaluate the
finding by Crovella & Bestavros [8] that the effect of file popularity seems only to
have little effect on the request size distribution. Ten different workloads for the
video server were generated and the quantiles of the request size distribution were
estimated by the simple regression model

lg(Q̂S(q)) = βlg(QV (q)) + α

where lg denotes the decadic logarithm, Q̂S(q) the estimate of the request sizes quan-
tile function, and QV (q) the empirical quantile function of the video file sizes. With
respect to the MAPE the regression coefficients α = 0.471 and β = 0.985 minimized
the error across the different workloads. The average MAPE across the different
workloads is 1.583% which seems to support the finding. It was therefore concluded
that the approach is in principle applicable and target to express the relationship be-
tween workload and single resources of the video server. During this process, several
problems that gravely limit the general applicability of the approach are encountered.

5.2 Limitations of the Approach
The most severe problem is an apparent multicollinearity between the quantiles of
request sizes and interarrival times; a relationship that was not initially anticipated.
This restricts the approach to the estimation of resource utilization as function of
request sizes and renders the third goal of this thesis unachievable.

Linear relationships between variables could not be expected for any of the resource
utilization models and the power consumption models. This does not itself present
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a problem since to (re)establish a linear relationship, one typically transforms the
data appropriately, or describes the nonlinear behavior of the variables such that the
regression algorithm performs the transformation internally. However, the nonlinear
relationships in some of the QQ curves are very complex and cannot be described by
a single transformation. Figure 1 provides a typical example:

104 105 106 107 108 109 1010

File Size in B

0

1

2

3

4

5

6

7

8

9

da
ta

vo
lu

m
e

in
B

/s
(lo

g)

Figure 1: Example of a QQ curve of storage utilization vs. request sizes for the video
server.

It shows the quantiles of the logarithmically transformed storage utilization in
terms of written and read Bytes/s, versus the quantiles of the sizes of requested
files. The constant line at the bottom left represents the portion with respect to the
observation period that the storage utilization is zero. In the example this portion
is 0.41. The request sizes, however, are not sampled with respect to time, but only
if a request for a file reaches the server. Since the 0.41-quantile of the request sizes
is 3.672 · 106 Bytes in this example it would mean that for all request sizes less or
equal 3.672 MB the storage is not utilized. This distorts true relationships since every
file is read at least once the first time it is requested. Generally, the QQ curve does
not necessarily reflect the relationship between the true resource utilization and the
(multiple) requests of a file with a certain size. The paramount reason is the different
sampling domains for the request sizes (occurence) and the storage utilization (time).
Admittedly, the initial idea to not to rely on timing information of the data is the
very reason for the distortion. Additionally, the course of the QQ curve is less smooth
the less distinct data points the samples of either of the two variables comprise. In
these cases the QQ curve shows less, but larger steps, i.e. breakpoints, that cannot
be related to properties of the resource or the request size distribution because of the
distortion.

5.3 Models for Resource Utilization
In this situation a tanh function represents a compromise to approximately describe
the course of the QQ curves: It captures at the same time parts of the curve with
zero resource utilization, and parts where the resource appears saturated. How well
the tanh function encompasses the central part of the QQ curve again depends on
the smoothness of the curve (i.e. how many distinct data points the samples of both
parameters comprise) and which quantiles are mapped against each other – which is,
to repeat, subject to distortion.

E.g. in case of the video server the central part of the QQ curve for the network
utilization follows an approximately logarithmic course. This is due to an exponential
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course of the empirical distribution function (EDF) of the network utilization in the
upper quantiles and an approximately uniform (i.e. linear) course of the EDF of
logarithmically transformed request sizes in the quantiles of the same orders. For this
particular case the tanh function encompasses most of the points on the QQ curve.
For the storage utilization the tanh encompasses less points in cases with low request
rates. With increasing request rate more data needs to be fetched from the storage
and the EDF of the storage utilization shows a noticeably exponential course and
more points on the QQ curve are encompassed by the tanh function.

But the estimation errors for all resource utilization models for the video server
and the transcoder depend not only on how well the tanh transform describes the
course of the QQ curves. Due to the sensitivity of theMAPE and themAPE to small
values in the measurement data comparatively large errors can be obtained despite
the course of the QQ curve is well described by the tanh function. E.g. for the video
server the average mAPE for the network utilization model is 4.593% across test
cases. This is due to the tanh function describes most of the QQ curve well and the
actual data contains only values greater than 10. Contrary, for the CPU utilization
model of the video server the actual data contains nearly only values less than 1 and
the average mAPE across the test cases is 37.977%. Table 1 summarizes the obtained
percentage errors for the video server and the transcoder.

mAPE

Network 4.593
Storage 23.245
CPU 37.977

(a) Video Server

Target Container FLV MKV
mAPE mAPE

Network 100.881 100.072
Storage n.e. n.e.
CPU 49.667 56.729

(b) Transcoder

Table 1: Percentage errors for the resource utilization models

5.4 Models for Power Consumption
For the power consumption models both variables of the QQ curves, resource utiliza-
tion and power consumption, are sampled over time, but with different frequencies:
While the resource utilization, i.e. CPU utilization, is sampled with 1 Hz, the power
consumption is samled with a frequency between 7 and 10 Hz. Therefore, the rela-
tionships in these QQ curves are also distorted. Hence, while a logarithmic transform
seems appropriate to describe the course of the QQ curve this does not allow any
statements about the true relationship between the resouce utilization and the power
consumption. For the video server the average MAPE for the power consumption
models across test cases is 3.141% and for the transcoder it is 2.656% in case of the
FLV target container and 3.361 in case that the target container is MKV.

Additionally to the video server and the transcoder six benchmarks from the
SPEC CPU 2006 suite are considered. In comparison to the video server and the
transcoder, the QQ curves for the power consumption versus CPU utilization exhibit
more emphazised steps in case of the benchmarks. This is due to the on-off usage
pattern of the benchmarks that approximately either utilize a CPU core to its full
extent or not at all. Nevertheless, the logarithm generally describes the overall course
of the QQ curves and the percentage errors of the models for all benchmarks are
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comparable to those of the models for the video server and the transcoder. The
respective percentage errors are summarized in Table 2 below:

mAPE

cactusADM 7.316
milc 2.091
povray 2.738

(a) Floating point benchmarks

mAPE

gcc 4.209
libquantum 5.951
xalancbmk 1.813

(b) Integer benchmarks

Table 2: Percentage errors for the power consumption models for selected benchmarks.

6 Summary
To recapitulate, this thesis comprises two parts. In the first part, a workload generator
was developed that provides a video server with requests that shall replicate statistical
properties of actual traffic to current video platforms. It must be noted (a) that no
literature is available that covers all relevant properties for one single video platform
and (b) that some of the relevant literature is already outdated. Therefore, the
generator combines properties that are the result of the investigation of multiple
authors if recent literature is available. Where that is not the case, an educated
guess concerning the reasonable development of properties is made. In the last resort
properties of common internet traffic are employed.
In the second part, models for the resource utilization as function of the workload of
a video server and of a transcoder application shall be developed. To generate the
workload, the generator from the first part is employed.

To tackle the problem that measurement data is taken from different sources – all
with dissimilar sampling frequencies – an approach based on quantile-quantile (QQ)
curves is proposed that enables regression between samples of different lengths us-
ing the relationship between quantiles. While the approach, in some cases, allows to
express functional relationships between variables where otherwise no explicit rela-
tionship could be formulated, it is in general not an appropriate means to establish
models for the resource utilization as function of the workload. Two principal reasons
can be identified. The first is an apparent, unexpected linear dependency between the
quantiles of the request size and the request rate (i.e. interarrival time) components
of the workload. Therefore, the models only respect the request size component and
time-related dynamics of the request size and its effect on resource utilization are not
incorporated. The second reason is that a p-quantile of the request size does not nec-
essarily coincide with the quantile of the same order of the utilization of a particular
resource: While values of the request size are reported only if requests arrive the sys-
tem, the latter are sampled continuously and thus, also if no requests are processed.
This distorts the true relationship between request sizes and resource utilization, com-
plicates the formulation of general models, and makes human intervention inevitable.
The different sampling frequencies for resource utilization and power consumption
cause also distortion in the QQ curve between these two variables. Therefore, the
approach is also not suitable to derive models for the power consumption as function
of resource utilization.
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