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1 INTRODUCTION AND MOTIVATION

The resource usage of the IT infrastructure fluctuates over the course of the day, month,
and year. Often, cloud service providers over-provision available hardware resources in
order to meet the resource demands during infrequent short workload peaks, whereas
most of the time the system is underutilised. Current research work [1], [2], [3] revealed
that servers in server clusters of Google, Twitter, or Amazon are running underutilised.
Reiss et al. [1] analysed the resource usage of Google cluster and showed that most of
the time the hourly average CPU utilisation is between 25% and 40%, whereas memory
utilisation is about 50%. Delimitrou and Kozyrakis [2] showed that in the production cluster
of Twitter the CPU utilisation is below 20% and the memory utilisation is between 40%
and 50%. Liu [3] analysed the CPU utilisation of servers of Amazon EC2 and revealed
the average values of CPU utilisation below 20%. Another research work has shown that
servers are consuming between 50% and 60% of their peak power consumption when
running idle or underutilised [4], [5]. Such inefficient usage of resources results in a high
energy cost with a negative environmental impact.

All the above mentioned statistics, however, show a huge potential for optimising the
way Internet servers are utilised. In periods of low workloads, the services could be con-
solidated from a bigger set of underutilised servers to a smaller set of optimally loaded
servers with the aim to power off idle servers, and thus, save energy [6]. Service con-
solidation can be realised in a way transparent to the end-user via live migration of virtual
machines (VMs). During live migration the VM, together with its encapsulated services,
is executed interruption free while being moved between the source and the destination
servers [7], [8], [9]. The merits of workload consolidation via live VM’s migration are mani-
fold:

1. Idle servers can be switched off, after migrating their virtual machines to other
servers, thereby saving energy [10], [11];

2. Resource consumption of overloaded servers can be reduced by moving some of
the VMs from it, thereby applying load-balancing to the system [12], [13];

3. Servers can be shut down for maintenance, after migrating their VMs, thereby ac-
commodating transparent IT maintenance.

However, beside the merits of migration, the process has also drawbacks which will
be referred to as migration costs. Migration costs can be defined as penalties associated
with the VM’s migration process. These penalties include: 1) Degradation of the quality of
services (QoS), executing inside the VMs, 2) increased power consumption of the servers
due to migration process, 3) the energy overhead of migration; and 4) migration time it-
self [10], [11]. The longer it takes to migrate the VM, the stronger is the negative impact
of migration on the applications’ performance. The quantitative knowledge of VM’s migra-
tion costs is vital in order to realise sophisticated system adaptation and reconfiguration
actions effectively.

2 RESEARCH GOAL AND QUESTIONS

Migration costs are influenced by many parameters. Some of them are application spe-
cific, for example, the type of workload executing within the VM, the degree to which
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this workload utilises the main memory, etc. Other parameters are VM specific, for in-
stance, the memory size of the VM and its CPU utilisation. Another type of parameters is
migration specific, for example, network bandwidth available for migration, etc.

The goal of this PhD thesis is to investigate and classify which parameters influence
the VM’s migration time and the energy consumption of the servers during migration
most intensively. This influence will be quantified. VM’s migration time and the energy
consumption of the servers during migration are the VM’s migration costs considered in
this thesis. Another goal is to develop mathematical models which best represent the
relationships between the selected parameters and the VM’s migration costs.

Thus, the research questions, addressed in this PhD thesis, are formulated as follows:

1. Which parameters influence the VM’s migration time and energy overhead of migra-
tion?

2. Which models best represent the relationships between the parameters mentioned
in the first research question, on the one hand, and the migration time and the energy
consumption of the servers during migration, on the other hand?

In order to answer the first research question we carried out an extensive set of practical
experiments and conducted the following detailed investigations:

1. Experimentally investigate the influence of the following parameters: VM’s memory
size, available network bandwidth, workload type on the total migration time of the
VMs and the energy overhead of migration.

2. Investigate in detail the influence of the VM’s size, available network bandwidth,
workload type on the power consumption of both source and destination servers.

3. Experimentally investigate the influence of such parameters as last level cache line
misses, total number of CPU instructions retired, “dirty” memory pages of the
source server, ratio of active memory to the network bandwidth available for mi-
gration, and CPU utilisation of the source server on the total migration time of the
VMs.

4. Learn the influence of co-located VMs on the total migration time and investigate
whether the order in which the multiple VMs are migrated matters or not.

In order to answer the second research question we conducted the following extensive
investigations and evaluations:

1. Develop models which estimate the migration time of the VMs and the energy con-
sumption of servers during migration based on the above mentioned parameters.

2. Evaluate developed models which can estimate the live VM’s migration time and the
energy consumption of the source server during migration.

Moreover, in this PhD thesis we will make an additional investigation on the performance
degradation of the applications caused by the VM’s migration process. We will show the
trade-off between the saved energy and the service degradation due to the workload
consolidation.
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3 CONTRIBUTIONS OF THE THESIS

The practical implications of the PhD thesis are as follows:
1. Parameters: The analysed and classified parameters can be considered by researchers

when developing further algorithms for predicting migration time and energy overhead of
migration prior to making migration decisions. The parameters which were classified by
us as the most significant ones can be used as input to new migration models and those
parameters which are insignificant can be directly eliminated, thus saving time and effort.

2. Models: The models developed in this PhD thesis which can estimate the VM’s mi-
gration time and the energy consumption of the servers during migration can be applied
in further sophisticated system optimisation decisions. The system can be optimised in
order to minimise its energy utilisation or the QoS degradation. The quantitative costs of
migration derived with the help of our models could constitute a subset of input parame-
ters for the future optimisation algorithms. The optimisation algorithms may address the
following questions: 1) When should the VM’s migration take place; 2) which VM has to be
migrated; 3) what is the destination server; 4) how frequent can the VM’s migration take
place [14]. Moreover, the migration costs can be considered by system administrators
when accounting for the risks (penalties) associated with the VM’s migration.

3. Techniques: We are the first who applied multiple linear regression (MLR) techniques
to build models for predicting the migration time of the VMs and the energy consumption
of the servers during migration. So far, only simple linear regression (SLR) techniques
were used to model migration time in related work. With our evaluation of results we
show that the models built using MLR techniques outperform those models built using
SLR techniques both in terms of prediction accuracy as well as expressive power. Thus,
MLR techniques can be used in the future research work in order to model the live VMs’
migration time.

4 RELATED WORK

Strunk [11] as well as Xu et al. [10] tried to systematise in their survey work VM’s migration
costs considered in the literature as well as the parameters that influence them. We
extend the taxonomy of Strunk by two additional types of the migration costs considered
in the related work: Power consumption and Network traffic [8], [15] which is created due
to the VM’s migration process.

Several approaches to modelling VM’s migration time were presented in related work.
Strunk [16] applied SLR to model migration time of the idle VMs and linear regression
with two parameters for modelling energy overhead of migration. The limitation of these
models is that they were built for a VM which was executing no workload and it was
running in isolation. The average errors of the models which predict the migration time
of the idle VM and energy overhead of migration were 3% and 10%, respectively. In this
PhD thesis we identify multiple parameters, that significantly influence the migration time
of active VMs and the energy consumption of the servers during migration. Based on
the selected parameters we build our models using MLR techniques. The VMs which are
migrated are continuously executing CPU and memory intensive applications.

Wu et al. [17] examine the relationship between the total migration time and the amount
of CPU resources available for migration. The limitation of the approach is that a separate
model for predicting migration time has to be built for each type of application and it
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requires several workload pre runs. We address this issue by building MLR models which
can predict migration time for combined (CPU and memory intensive) workloads.

Verma et al. [18] suggested an application aware model for predicting the total VM’s
migration time. It computes the VM’s migration time by refining the calibrated migration
time, obtained for this VM during the calibration phase at a fixed active memory, by addi-
tional time needed to transfer the current active memory used by the VM. In presence of
heavy resource contention on the CPU resources the suggested migration model would
not be sufficient. Besides, the model requires a workload pre-run for each type of appli-
cation in the Cloud which does not scale well. The migration models we develop in this
thesis can be build for combined workloads.

The models of Liu et al. [8] and Akoush et al. [19] which can predict migration time of
VMs do not account for the CPU utilisation of the source server, though the migration
time as well as the power utilised by the source server depend on its CPU utilisation [17].
Besides, the VMs are always running in isolation on the source server.

Liu et al. [8] assume that the energy overhead of migration of the source and the des-
tination servers is the same, thus simplify their energy model accordingly. We made
investigations of the energy overhead of both the source and the destination servers and
found out that even though the servers are homogeneous, the overhead contributed to the
energy overhead of migration by each of the servers differs not negligibly. We are going
to address this issue in our research work and suggest to build MLR models which predict
the energy consumption of each physical machine during migration separately based on
its particular resource utilisation parameters.

In contrast to the related work, our models account for a broader spectrum of parame-
ters, namely CPU related parameters such as CPU utilisation, total number of instructions
retired, and last level cache line misses; application specific parameters, namely “dirty”
memory pages, and combined parameters such as ratio of active memory to the network
bandwidth (data transmission rate) available for migration. We show the impact of each
individual parameter on the prediction of the migration time, analyse the impact of these
parameters in combination and define a set of the most significant parameters. We explic-
itly point out the benefit of considering multiple parameters in combination.

5 RESULTS

The main contributions of the PhD thesis are as follows:
1. We extended a set of parameters that influence VM’s migration costs based on our

own investigations and practical experiments. In our work we considered twelve param-
eters (independent variables) that influence the VM’s migration time. These parameters
are listed in Table 1. We proved that migration time linearly depends on all of them by cal-
culating the correlation coefficients between the migration time and each of the selected
parameters. Moreover, we defined a set of the most significant parameters that influ-
ence the VM’s migration time. It was realised by determining the relative importance of
parameters based on the method of relative weights [20], [21] and based on the analysis
of the standardised regression coefficients of the independent variables [20]. The results
revealed that such parameters as total number of CPU instruction retired during migration
TotalINST _Server , last level cache line misses observed during migration L3miss, “dirty”
memory pages in the source server during migration DirtyPagesserver are the first, the
second, and the third important independent variables, respectively. These parameters
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were not considered in related work. That is why we extend the taxonomy of parameters
that influence the VM’s migration time by including these three parameters.

Table 1: Resource utilisation parameters (independent variables) used in our experiments
to determine total migration time tmig of VMs.
Name of variable Description
BW Network bandwidth available for migration in

MBps.
L3miss [22] Total number of L3 cache line misses during

VM’s migration in millions
INST [22] Total number of instructions retired during mi-

gration in thousands
MAR [23] Ratio of total number of L3 cache line misses to

the total number of instructions retired during
migration

CPUutil_server Mean total CPU utilisation of the source server
during the VM’s migration in percentage

CPUutil_vm Mean total CPU utilisation of the VM during the
migration process in percentage

MEMserver Mean active memory utilisation of the source
server during the VM’s migration in MB

MEMvm Mean active memory utilisation of the VM dur-
ing the migration process in MB

MEMtoBWserver Ratio of active memory utilised by the source
server to the network bandwidth available for
migration

MEMtoBWvm Ratio of active memory utilised by the VM to
the network bandwidth available for migration

DirtyPagesserver Number of “dirty” pages observed in the
source server during the migration process

DirtyPagesserver_per_sec Number of “dirty” pages observed in the
source server per second during the migration
process

2. We developed models which can predict the VM’s migration time and the energy con-
sumption of the servers during migration. These models were built using SLR and MLR
techniques. We showed that MLR models outperform SLR models both in terms of pre-
diction accuracy as well as expressive power. The summary of results of the best SLR and
MLR models which can predict: 1) Migration time of VMs running combined workloads;
2) migration time of VMs running CPU intensive workloads; and 3) energy consumption of
the source server during migration is given in Table 2, Table 3, and Table 4, respectively.
Benchmarks from SPEC CPU20061 benchmark suite were used as workload in these ex-
periments. The results pertaining to the selection of parameters that influence migration
time of VMs as well as modelling migration time based on these parameters were pub-
lished in the proceedings of the International Symposium on Secure Virtual Infrastructures

1https://www.spec.org/cpu2006/
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(Cloud and Trusted Computing 2015) [24].
We defined the best MLR model with respect to the adjusted R-square metric R2

Adj by
applying method of all subsets regression [20]. The closer R2

Adj is to 1 the better the model
fits the measured data. The best MLR model which can determine the live migration time
of the VMs running combined (CPU and memory intensive) workloads includes five param-
eters. These are: MEMtoBWserver , L3miss, INST , CPUutil_server , and DirtyPagesserver .
Its R2

adj equals to 0.946. The mean absolute percentage error of the model Percm is equal
to 10.14%. Its residual standard error on the 654 degrees of freedom Resst.err is 7.8 sec-
onds. Model’s standard error of estimate on the test data Predst.err is 5.4 seconds. The
acceptable error rates show that the best MLR model can be applied in order to estimate
the migration time of VMs which execute combined CPU and memory intensive workloads
(see Table 2).

Table 2: The best SLR and MLR models for predicting live migration time of VMs running
combined (CPU and memory intensive) workloads.

The best SLR and MLR models:
lm (tmig ∼ Predictors)

R2 R2
Adj Resst.err Predst.err Percm

INST 0.7405 0.7401 17.05 15.35 30.79
INST + L3miss 0.9251 0.9248 9.171 8.02 15.18
L3miss + INST + DirtyPagesserver 0.936 0.9356 8.487 7.028 13.39
L3miss + INST + CPUutil_server +
DirtyPagesserver

0.943 0.943 7.984 5.811 12.12

L3miss + INST + DirtyPagesserver +
CPUutil_server + MEMtoBWserver

0.946 0.9456 7.802 5.379 10.14

Table 3: The best SLR and MLR models with one, two, three, four, and five indepen-
dent variables for predicting live migration time of VMs running CPU intensive
workloads.

The best SLR and MLR models:
lm (

√
tmig ∼ Predictors)

R2 R2
Adj Resst.err Predst.err Percm

MEMtoBWserver 0.839 0.838 0.23 0.16 1.7
MEMtoBWserver + INST 0.857 0.856 0.21 0.18 2.22
MEMtoBWserver + L3miss + INST 0.929 0.928 0.15 0.197 1.87
MEMtoBWserver + L3miss + INST +
CPUutil_server

0.952 0.951 0.124 0.12 1.55

MEMtoBWserver + L3miss + INST +
CPUutil_server + DirtyPagesserver

0.952 0.950 0.124 0.121 1.56

Moreover, we defined which parameters out of the five used in the model are the most
important by calculating their relative weights [20], [21] in contributing to the model’s
R-square. INST , L3miss, and DirtyPagesserver are the most important parameters as they
contribute 37.8%, 31.4%, and 27.6% to the total model’s R-square of 0.946, respectively.

This model is generalisable. We tested it by carrying out the 10-fold cross-validation of
the R2 metric. The results are as follows: original R-square = 0.946, 10-fold cross-validated
R-square = 0.937. The difference is very small (0.009), and thus, the model is performing
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well on the test data. The model satisfies linearity, and normality assumptions. But due
to the high variances in migration time introduced mainly by mcf and astar memory inten-
sive benchmarks from SPEC CPU2006 benchmark suite the model faces the problem of
non-constant variance which is often the case in practice. Nevertheless, the non-constant
variance is not substantial in this case because the model’s prediction error is still accept-
able (Percm = 10.14%). In order to satisfy additionally constant variance assumption we
designed models specifically for CPU intensive workloads, as those do not reveal such
high variances in migration time.

The best MLR model which can predict the VM’s migration time (for VMs running CPU
benchmarks) includes four independent variables (see Table 3). These are: MEMtoBWserver ,
L3miss, INST , CPUutil_server . Its R2

adj is equal to 0.951 and it has the highest prediction ac-
curacy. The mean absolute percentage error of the model is 1.55% only and its residual
and prediction errors are low (0.124 seconds and 0.12 seconds, respectively). Moreover,
we calculated the relative importance of the parameters in contributing to the model’s
R2. MEMtoBWserver , INST , and L3miss are the first, the second, and the third important
variables as they contribute 48%, 34.9%, and 15.7% to the model’s R-square of 0.952,
respectively. The independent variables applied in all models are significant with p-value
lower than the smallest significance level 0.001. This model is generalisable and it sat-
isfies all main assumptions of the regression analysis, namely: linearity, normality, and
constant-variance.

Last but not least, we trained and tested MLR models which can estimate the energy
consumption of the source server during the VM migration process. The best MLR model
is built upon four parameters: MEMtoBWserver , L3miss, INST , and CPUutil_server . Its R2

adj
equals 0.94 and its mean absolute percentage error is equal to 4.6% (see Table 4). The
four independent variables applied in this model are significant with p-value lower than
the smallest significance level 0.001. This model is generalisable and satisfies normality,
linearity, and constant-variance assumptions. The multicollinearity among the independent
variables is not present in all models.

Table 4: The best SLR and MLR models for predicting energy consumption of the source
server during migration of VMs running CPU workloads.

The best SLR and MLR models:
lm (Es−during ∼ Predictors)

R2 R2
Adj Resst.err Predst.err Percm

MEMtoBWserver 0.766 0.765 0.059 0.039 5.44
L3miss + INST 0.891 0.89 0.04 0.052 6.76
MEMtoBWserver + L3miss + INST 0.927 0.9268 0.032 0.038 5.42
MEMtoBWserver + L3miss + INST +
CPUutil_server

0.936 0.9353 0.031 0.03 4.6

MEMtoBWserver + L3miss + INST +
CPUutil_server + DirtyPagesserver

0.936 0.9352 0.031 0.03 4.7

One of the limitations of the developed models is that the models’ parameters (coef-
ficients) have to be retrained for each hardware platform. Another limitation is that the
models do not account for the co-located VMs. In our experiments the VM was migrated
in isolation. This allowed us to control the server-level as well as the VM-level parameters.
The derived MLR models can be applied for different data transmission rates, though,
due to constraints of our physical infrastructure, we realised the VM’s migrations at max-
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imum data transmission rate of 1 Gbps. Thus, conducting further migration experiments
at higher data transmission rates would be also of high practical interest.

3. We investigated the energy overhead of the VM’s migration process and parameters
that influence it. The VM’s migration process creates a not negligible energy overhead
which exists regardless of the type of workload the VM was hosting. The energy over-
head of migration increases with an increment in the RAM utilised by the VMs. The
variation in network bandwidth does not make a considerable impact on the energy over-
head. The overhead contributed to the energy overhead by the destination server was
higher than the overhead contributed by the source server. Moreover, we found out that
migration time and the energy overhead of migration were significantly high when the
source server was overloaded. The results pertaining to these investigations were pub-
lished in the following conferences: 1) The third IFIP Conference on Sustainable Internet
and ICT for Sustainability [25], 2) the 23rd Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing [26].

4. The summed migration time of multiple VMs is proportional to the summed amount
of memory utilised by these VMs. The order of sequential migration of the VMs does not
impact the summed migration time as long as the VMs do not compete for common re-
sources (CPU caches, memory bus, and network bandwidth) and there exist enough free
CPU resources to accommodate migration. When multiple VMs with resource intensive
benchmarks are executed on the source server, interference effects occur, which signif-
icantly influence the migration time of these VMs. The results of these investigations
were published in the 4th International Conference on Cloud Computing and Services Sci-
ence [27].

5. We investigated the influence of the VM’s migration on the transcoding time of three
of the shelf transcoders: FFMPEG, MENCODER, and HANDBRAKE. The transcoding time
of these transcoding applications increased during migration in both considered scenar-
ios, namely when both servers were underutilised and when the source server was over-
loaded. But this increment should be understood in context. If the VM is migrated from
the overloaded server to the server that has plenty of available resources (e.g. in order to
realise load-balancing) the additional time added due to migration will be compensated by
sufficient resources on the new server. Thus, this shows a trade-off between the energy
consumption and the quality of services (in this example a transcoding time). Namely, to
decrease the transcoding time we needed to turn on a new server and migrate the VM
which run a transcoding application to it [26].

Moreover, we analysed the impact of frequent migrations of VMs on the quality of ser-
vices running within the VMs. We first ran the benchmarks from SPEC CPU2006 bench-
mark suite until their completion within the VM without migration and measured their
execution times. Then, we repeated the same experiment but during the benchmarks’
normal execution the VM was 20 times migrated between two servers. The execution
time of all benchmarks significantly increased due to frequent VM’s migrations, whereas
the execution time of memory-intensive benchmark astar even doubled.

6 SUMMARY AND OUTLOOK

We carried out extensive investigations, practical experiments, and detailed evaluations in
order to answer the research questions defined in this PhD thesis. We analysed param-
eters that influence the total migration time of the VMs as well as energy overhead of
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migration. Moreover, we identified the most significant parameters based on which we
built models which can predict VM’s migration time and the energy consumption of the
servers during migration.

The main contributions of the thesis are as follows: Firstly, based on our experimental
results and evaluations we extended a set of parameters which can be used to model
VM’s migration time. We added the following parameters which were not considered in
related work: TotalINST _Server , L3miss, and DirtyPagesserver . Secondly, we identified
the most significant parameters which can be used to model the migration time. These
are: TotalINST_Server , L3miss, MEMtoBWserver , and DirtyPagesserver . Thirdly, we are
the first who applied MLR techniques in order to build models which can determine the
live migration time of active VMs and the energy consumption of the servers during migra-
tion. The evaluations of the models showed that they are generalisable and can accurately
estimate the VM’s migration time and the energy consumption of the servers during mi-
gration. The mean absolute percentage errors on test data Percm of the models which can
predict VM’s migration time are 10.14% and 1.55% for VMs running combined workloads
(memory and CPU intensive) and CPU intensive workloads, respectively. Percm of the
best MLR model which can predict the energy consumption of the source server during
migration is 4.6%.

These models can be used by other researches in order to realise system optimisation
in effective way. Different optimisation criteria may be considered. For example, the sys-
tem may be optimised to operate with minimal energy cost. Or it can be optimised for
maximising the level of quality of provided services. The benefit of the models is that
they can provide a quantitative energy cost of migration as well as define the time it takes
to migrate a VM. These costs can be used as the input parameters of the sophisticated
server consolidation algorithms. During migration the quality of provided services might
be degraded, thus the VM migration candidate should be a VM which is migrated faster.
Likewise, if the system is optimised for energy, the VM migration candidate should be the
VM, which will create the lowest energy overhead. Upon reaching one of the critical condi-
tions (system overload or underutilisation) such sophisticated algorithms may address the
following aspects [14]:

1. Select the source servers;

2. Select the candidate VMs that have to be migrated;

3. Determine the destination servers.

Thus, the energy consumption of the servers during migration derived and quantified with
our models may guide the choice of selection of the source servers and the destination
servers. The models that predict the migration time of the VMs can directly influence the
choice of the migration candidates.
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