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1 Motivation

Design centering is a long-standing and central problem in systems engineer-
ing and model inference. It is concerned with determining design parameters
of a system or model that guarantee operation within given specifications and
are robust against random variations. While design optimization aims to de-
termine the design that best fulfills (one aspect of) the specifications, design
centering wants to find the design that meets the specifications most robustly.
Traditionally, this problem has been considered in electronic circuit engineer-
ing [10], where a typical task is to determine the nominal values of electronic
components (e.g., resistances, capacitances, etc.) such that the circuit fulfills
some specifications and is robust against manufacturing tolerances in the compo-
nents. Examples of specifications in electronic circuits are frequency response,
harmonic distortion, energy consumption, and manufacturing cost. Recently,
related ideas have also entered the field of synthetic biology with the aim of
robustly designing novel synthetic biological circuits [3, 32]. Any criterion that
can be verified for a given design can be used as a specification.

In order to be robust against perturbations, the specifications cannot be
defined too narrowly. This implies that there are usually many designs that
fulfill the specifications. The size or volume of the set of all these feasible designs
is an intuitive measure for the robustness with which the specifications can be
fulfilled. Robustness is therefore related to the probability that the design still
fulfills the same specifications when the design parameters randomly vary, or
the specifications fluctuate. Quantifying this robustness requires estimating the
size or volume of the set of all feasible designs.

Volume estimation and design centering in the most general form only as-
sume that a given design can be evaluated through a procedure (referred to as
“oracle” [11]) that checks whether the design fulfills the specifications, or not. In
this general setting, design centering and volume estimation are hard problems.
Exhaustively determining the set of all feasible designs requires exponentially
many design trials in the number of design parameters. Since typical systems or
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circuits have tens to hundreds of design parameters, testing all possible combina-
tions is prohibitive. It is hence intuitive that exact solutions to design centering
are NP-hard [20], i.e., they cannot be efficiently determined on a deterministic
computer. Less intuitively, it is also NP-hard to determine the exact volume of
a high-dimensional set using a deterministic algorithm [2, 15], even if the set
is convex. Efficient approaches to design centering and volume estimation are
hence always approximate. However, even though volume estimation is closely
related to design centering, previous approximate approaches have considered
them separately.

2 Prior work

We therefore separately review previous approaches to design centering and
volume approximation.

2.1 Previous approaches to design centering

Previous approaches to design centering can be classified into geometrical and
statistical approaches [21]. Geometrical approaches use simple geometric bodies
to approximate the feasible region, which is usually assumed to be convex [22].
Examples of geometrical approaches include Simplical Approximation [7, 28],
which approximates the boundary of the feasible region by adaptation of a
convex polytope. Due to the curse of dimensionality, however, Simplical Ap-
proximation becomes unpractical in dimensions n > 8 [24, 14]. Suggested im-
provements to relax the convexity requirement instead assume differentiability
of the specifications [29], which cannot be guaranteed in black-box problems.
Another example of a geometrical approach is Ellipsoidal Approximation [1],
which finds the ellipsoid of largest volume that still completely fits into the fea-
sible region. All endpoints of the ellipsoidal axes and the center of the ellipsoid
need to be feasible. While Ellipsoidal Approximation does not strictly require
convexity of the feasible region, its approximation properties strongly depend
on it. A third example of a geometrical approach is the polytope method [21],
which also uses a convex polytope to approximate the feasible region, but then
finds the design center by either inscribing the largest Hessian ellipsoid or by
using a convex programming approach. The latter approach, however, requires
an explicit probabilistic model of the variations in the design parameters, which
is usually not available in practice.

Statistical approaches approximate the feasible region by Monte Carlo sam-
pling. Since exhaustive sampling is not feasible in high dimensions, the key
ingredient of statistical methods is to find a smart sampling proposal, and con-
centrate on informative regions. The methods then sample points from this
proposal and evaluate the specifications for these points to decide if they are
feasible. The ratio of feasible to infeasible points sampled then provides informa-
tion about the robustness of a design [12]. Constraint adaptation by Differential
Evolution (CADE) [25] is a classical statistical design centering method based
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on Differential Evolution [26]. It assumes the feasible region to be convex and
starts from a population of initial points. To find those points, the specifica-
tions (constraints) are first relaxed and then tightened successively back to the
original ones. After the original specifications are met, the mean of all points
(which have to be feasible) is used as an approximation of the design center.
Another representative statistical approach is the Advanced First-Order Second
Moment (AFOSM) method [23]. It samples candidate points from Lp-balls in
order to estimate the yield (i.e., the ratio of feasible to infeasible points) and
approximate the feasible region. Which Lp-norm to use is directly related to
the assumed statistical distribution of the random perturbations. The proposal
Lp-balls are adapted to maximize their volume while still being completely con-
tained within the feasible region. This therefore does not allow estimating the
total volume of the feasible region. A third example of a statistical method is
the Center of Gravity Method [24]. In each iteration, it computes the center of
gravity of the feasible samples and of the infeasible samples. The design center
is then moved toward the center of the feasible points and away from the center
of the infeasible ones. The Momentum-Based Center of Gravity Method [27]
extends this idea to include information from the past two iterations.

2.2 Previous approaches to volume estimation

Volume computation is an important problem in many areas, e.g. software
engineering, computer graphics, economics, and statistics [19]. Deterministic
methods for volume computation of convex polytopes use for example triangu-
lar methods or signed decomposition methods [5]. The former decompose the
polytope into simplices whose volumes are easily computed and summed [5].
The latter decompose the polytope into signed simplices such that the signed
sum of their volumes is the volume of the polytope [5]. However, it has been
shown that deterministically computing the volume is NP-hard [9, 16, 15], even
for convex bodies.

Using a randomized algorithm, the volume of a convex body can be ap-
proximated to arbitrary precision in polynomial time [8]. Over the years, Dyer,
Frieze, and Kannan’s breakthrough-algorithm (with a theoretical complexity of
O?(n23) oracle calls) has been improved in a sequence of papers until Lovasz
and Vempala’s O?(n4)-algorithm1.

3 Problem statement

We consider the design (or parameter) space to be Rn, i.e., the n-dimensional
vector space of real numbers. The region (subspace) of the parameter space
that contains all parameter vectors for which the system meets or exceeds the
specifications is called the feasible region A ⊂ Rn. We denote the total volume
of the feasible region by vol(A), defined as the integral of the uniform density

1the asterisk in the order notation indicates that logarithmic factors in n are omitted
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over A. This volume is a natural measure for the total amount of feasible de-
signs available and can be used to compare and choose between different designs
or competing models [13]. Moreover, the overall shape and orientation of the
feasible region contains information about correlations between design param-
eters, which can be exploited for model reduction and to guide experimental
verification of a design.

Depending on the available side-information about the design specifications,
different operational definitions of the design center m ∈ A exist, including
the nominal design center, the worst-case design center, and the process design
center [23]. For instance, in the example of manufacturing an electronic circuit
from components with known manufacturing tolerances, the design center max-
imizes the production yield. Here, we follow the general statistical definition
of the design center [18] and seek among all points (parameter vector) x ∈ A
the design center m ∈ A that represents the mean of a probability distribution
q(x) of maximal volume covering the feasible region A with a given target hit-
ting probability P . For convex feasible regions, using the uniform probability
distribution over A and P = 1, the design center coincides with the geometric
center of the feasible region, which historically inspired the terminology.

When encountering a new problem one usually has no knowledge of the shape
of its feasible region and wants to estimate different properties of it. If we know
that the region is convex, good methods for both design centering and volume
approximations are known. In real-world problems, however, we usually cannot
guarantee convexity of the feasible region, but still want to get approximations
for its design center or its volume. For this, a more general framework is needed
that does not make any assumptions about the feasible region and can ideally
be used for a broad range of applications.

4 Contribution

Here, we jointly consider the problems of design centering and volume estimation
in their most general form. We present an approximate statistical method that
unites the two problems under the same framework. We also present an efficient
computational algorithm, called Lp-Adaptation, for practical application of this
new framework. Our contribution is hence twofold: a conceptual framework
that unites design centering and robustness estimation, and a computationally
efficient randomized approximation algorithm for it.

The proposed conceptual framework exposes several links and trade-offs be-
tween design centering and volume estimation. It is inspired by the observation
that robust designs are a hallmark of biological systems, such as cell signaling
networks, blood vasculature networks, and food chains [17]. Biological systems
have to be robust against fluctuations, as otherwise they would likely not survive
in a changing environment. It has been observed that the robustness of biolog-
ical networks is related to the volume of the set of feasible parameters [6, 30].
This is the same definition of robustness we use for engineering systems. Na-
ture has hence found a way of approximating both design centering and volume
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estimation through self-organization and natural selection. This succession of
design alteration and design selection is akin to bio-inspired optimization al-
gorithms, such as evolution strategies [4] and genetic algorithms [31], with the
important difference that not optimization is the goal, but design centering and
volume estimation. In our framework, design selection is hence done by checking
whether the specifications are fulfilled. Feasible designs then undergo random
alterations with the specific aim of exploring the space of all feasible designs as
broadly and efficiently as possible.

Efficient and broad exploration of feasible designs is the core of the Lp-
Adaptation algorithm. Following the biological inspiration, the algorithm is
based on stochastic sampling of designs together with a consistent way of con-
verting the explored samples to an estimate of the robustness and the design
center. Lp-Adaptation is computationally efficient, reaching or outperforming
the previous state of the art, as we show in this thesis. Most importantly, how-
ever, Lp-Adaptation is based on the joint consideration of the two problems
and therefore relaxes the limiting assumptions previous approaches needed to
make about either the convexity or smoothness of the set of feasible designs,
or the correlations between parameters. Lp-Adaptation provides the first com-
putationally efficient and versatile method for approximately solving general,
oracle-based and non-convex design centering and volume estimation problems.
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