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The goal of this thesis is to improve the understanding of the achieved application
performance on existing hardware. It can be observed that the scaling of parallel
applications on multi-core processors differs significantly from the scaling on multiple
processors. Therefore, the properties of shared resources in contemporary multi-core
processors as well as remote accesses in multi-processor systems are investigated and
their respective impact on the application performance is analyzed. As a first step,
a comprehensive suite of highly optimized micro-benchmarks is developed. These
benchmarks are able to determine the performance of memory accesses depending
on the location and coherence state of the data. They are used to perform an in-depth
analysis of the characteristics of memory accesses in contemporary multi-processor
systems, which identifies potential bottlenecks. In order to localize performance
problems, it also has to be determined to which extend the application performance
is limited by certain resources. Therefore, a methodology to derive metrics for the
utilization of individual components in the memory hierarchy as well as waiting times
caused by memory accesses is developed in the second step. The approach is based
on hardware performance counters. The developed micro-benchmarks are used to
selectively stress individual components, which can be used to identify the events
that provide a reasonable assessment for the utilization of the respective component
and the amount of time that is spent waiting for memory accesses to complete.
Finally, the knowledge gained from this process is used to implement a visualization
of memory related performance issues in existing performance analysis tools.

1 Introduction

High performance computing (HPC) is an indispensable tool that is required to obtain new
insights in many scientific disciplines [Vet15, Chapter 1]. HPC systems are getting more and
more powerful from year to year as documented in the Top500 list of the fastest supercomput-
ers [Str+15, Figure 1]. However, scientific applications typically are not able to fully utilize
this potential [FCO7, Figure 1]. Even in case of the distinguished scientific applications that
have been awarded the ACM Gordon Bell Prize, the achieved performance is significantly lower
than the theoretical peak performance in most cases [Str+15, Table 1]. The effectiveness is
even worse in several other scientific applications. Utilization levels of 10% and lower are not
uncommon [Oli4-05, Table 4]. The percentage of the peak performance that is achieved by an
application can also vary on different systems [Oli4+-05, Table 2, 3, and 4].

The continuous performance improvement of HPC systems is enabled by two developments: in-
creasing the number of processors per system [Str+15, Figure 2] and increasing the performance



per processor [Str+15, Figure 3]. In recent years, the latter is to a large extent achieved by
increasing the number of cores per processor. This represents a major change in the system ar-
chitecture, which poses a challenge for performance analysis and optimization efforts. For many
parallel applications, it can be observed that the performance improvement that is achieved by
using multiple cores of a single processor significantly differs from the attainable speedup when
multiple processors are used. Figure 1 illustrates this phenomenon using the SPEComp2001
suite [Asl+01] as an example. SPEComp2001 consists of eleven individual benchmarks, which
have very small sequential portions. Thus—according to Amdahl’s Law [Amd67]—speedups
close to the ideal linear speedup can be expected for small numbers of threads [Asl+01, Table 2].
However, as illustrated in Figure la, the achieved speedup on a single multi-core processor is
far from optimal for some of the benchmarks. Furthermore, the scaling with the number of
used processors, which is depicted in Figure 1b, significantly differs from the multi-core scal-
ing. A Similar discrepancy between multi-core and multi-processor scaling can be observed for
SPEComp2012 [Miil4-12, Figure 3]. It must be assumed that these differences are caused by
characteristics of the hardware.

The complexity of today’s shared memory systems results in various potential bottlenecks that
may lead to suboptimal performance. Modern microprocessors feature multiple levels of cache—
small and fast buffers for frequently accessed data—in order to improve the performance of
memory accesses. Nevertheless, memory accesses can account for a significant portion of the
average cycles per instruction [BGB98] and thus constitute a significant portion of the process-
ing time. Furthermore, caches and the memory interface can be shared between multiple cores
of a processor. The contention of shared resources can limit the scalability of parallel applica-
tions [Mol+11]. In multi-processor systems the physical memory is typically distributed among
the processors, which leads to different performance depending on the distance to the accessed
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Figure 1: SPEC OMPM2001 scaling on a quad-socket Intel Xeon X7560 system [Mol+11]:
The performance increase due to using multiple cores (left) can differ significantly from the
speedup that is achieved using multiple processors (right), e.g., 812.swim scales poorly on the
selected multi-core processor, but benefits strongly from using multiple processors. 318.galgel
and 320.equake show underwhelming performance gains if multiple processors are used. The
super-linear speedup 316.applu is a known characteristic of this benchmark [FGDO7].



data. These non-uniform memory access (NUMA) characteristics influence the performance and
scalability of parallel applications [MG11]. Cache coherence protocols [HP06, Section 4.2 — 4.4]
also affect the performance of memory accesses [HLK97; Mol+09; MHS14; Mol+15].

In order to detect bottlenecks in the memory hierarchy, one needs to know the peak achievable
performance of the individual components. Therefore, this thesis introduces highly optimized
micro-benchmarks for 64 bit x86 processors (x86-64). These benchmarks measure the achievable
performance of data transfers in multi-core processors as well as multi-processor systems. This
includes latency and bandwidth measurements for data that is located in local and remote caches
as well as the system’s NUMA characteristics. Furthermore, the impact of the cache coherence
protocol is considered. Based on this, a methodology for the identification of meaningful hard-
ware performance counters—that can be used to measure the utilization of various resources and
determine the impact of the memory hierarchy on the performance of parallel applications—is
presented. The procedure comprises three steps:

1. a comprehensive analysis of the performance of cache and memory accesses in contempo-
rary multi-processor systems in order to identify potential bottlenecks

2. stressing individual components in the memory hierarchy in order to identify performance
counters that measure the utilization of these resources as well as the time spent waiting
for the memory hierarchy

3. a proof-of-concept visualization of the component utilization within the memory hierarchy
as well as memory related waiting times using existing performance analysis tools

Remote cache accesses as well as the impact of the coherence protocol are not sufficiently covered
by existing benchmarks. This necessitates the development of new benchmarks in order to con-
sider all potential bottlenecks in step 1. These highly optimized benchmarks can be configured
to use individual components to their full capacity. Furthermore, the amount of data that is
accessed by the benchmarks is known. This facilitates the identification of performance counters
that correlate with the number of memory accesses in step 2. Step 3 shows that the identified
counters can be used to analyze the influence of memory accesses on the achieved application
performance. The contribution of this thesis is twofold:

e The newly developed micro-benchmarks enable an in-depth analysis of the memory perfor-
mance of shared memory systems including the impact of cache coherence protocols. Their
sophisticated design significantly advances the state-of-the-art in that area. The informa-
tion that can be obtained using these benchmarks provides valuable input for the analytical
performance modeling of shared memory systems [RH13; LHS13; PGB14; RH16].

e The methodology for the identification of meaningful performance counters greatly im-
proves the ability of performance engineers to attribute performance problems to their
cause. Due to the careful construction of the micro-benchmarks it can be verified which
performance counters actually correlate with the utilization of the memory hierarchy, which
is an essential prerequisite for the performance counter based performance analysis.

This document is organized as follows: Section 2 discusses related work and provides the re-
quired background knowledge. Section 3 describes the design and implementation of the micro-
benchmarks. In Section 4, these benchmarks are used to analyze the characteristics of memory
accesses on a contemporary NUMA system. This includes the properties of shared resources
in multi-core processors and interconnects in multi-socket systems as well as the influence of
the cache coherence protocol. Section 5 presents the methodology to identify meaningful per-
formance counters as well as the visualization of memory related performance problems. The
verification of the number of reported events using the micro-benchmarks shows that making
assumptions based on the name of an event can easily result in wrong conclusions. Section 6
concludes the thesis with a summary.



2 Background and Related Work

Shared memory systems are commonly used in a wide range of electronic equipment from Smart-
phones to HPC systems. Processors are a basic component of all shared memory systems. Their
structure and principle of operation as well as the construction of multi-processor systems is
discussed in Section 2.1. Cache coherence protocols, which are required to maintain a consistent
view on the shared memory for all connected processors, are detailed in Section 2.2. Section 2.3
introduces established performance evaluation techniques and performance analysis tools.

2.1 Processor and System Architecture

The number of transistors in integrated circuits increases by a factor of two in approximately 24
month [Moo75]. The primary challenge of processor development is to turn the steadily increas-
ing number of transistors into more performance. The available instruction level parallelism is
limited and extracting it requires excessive control logic [HP06, Chapter 3]. Therefore, further
enhancements of the number of instructions per cycle are increasingly hard. Furthermore, the
huge clock rate improvements that have been common since the 1990s came to an end around
2002 [DAS12, Section 1.2, Figure 1.5]. Consequently, the focus of processor development shifted
towards increasing the number of processor cores in the early 2000s [HP06, Section 3.8]. The
basic structure of a multi-core processor is depicted in Figure 2.

The performance of processors improves faster than the memory technology, which leads to the
so-called processor-DRAM performance gap [HP06, Section 5.1]. Memory accesses can take
hundreds of clock cycles [MHS14; Mol+15]. Therefore, contemporary processors implement
multiple levels of cache that store frequently used data in order to bridge the processor-DRAM
performance gap. The memory hierarchy is often represented as a pyramid with the level one
cache being the highest and main memory being the lowest level of primary memory [DAS12,
Section 4.2]. The usually very small level one cache typically supports multiple requests each
cycle and delivers data within a few cycles. Each additional cache level features a higher capacity.
However, the bandwidth decreases and the latency increases with each level [Mol+09].

Many workstations and servers contain multiple processors, e.g., [Hew14; Fujl4]. Multi-processor
systems are also used as building blocks for larger systems, e.g., [Bull3]. Modern multi-processor
systems typically have integrated memory controllers [Int09, Figure 6]. Thus, the total memory
bandwidth scales with the number of processors. However, distributed memory controllers also
have a downside. The characteristics of memory accesses depend on the distance between the
requesting core and the memory controller that services the request. This non-uniform memory
access (NUMA) behavior [HP06, Section 4.1] needs to be taken into account in order to achieve
good performance.

Multi-core Processor Figure 2: Composition of multi-core processors, based
Core 0 ff Core 1 on [Con+10, Figure 1] (derived from [Mol+10, Fig-
ure 1]): Several processor cores are integrated on a
single die. Typically, the level one caches (L1) are
duplicated as well [DAS12, Section 8.4.1]. Separate
level two caches (L2) for each core also are a common
feature [Int14a, Section 2.1, 2.2, and 2.4]. However,
certain supporting components are usually shared by
all cores [DAS12, Section 8.4.1]. The last level cache
(LLC), the integrated memory controller (IMC), and
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2.2 Cache Coherence

Multiple copies of the same memory address can coexist in caches of different cores as well as in
different cache levels. Cache coherence ensures that modifications made by any core eventually
become visible for all cores. This is a prevalent feature in general purpose processors [BDMO09).
Coherence protocols require a mechanism to perceive accesses by other processors. This can
be implemented with snooping or using directories [HP06, Section 4.2 — 4.4]. Snooping-based
coherence protocols observe all memory accesses via a shared bus or a broadcast network. This
can generate a considerable amount of additional traffic, which can be reduced using snoop
filters [Con+10]. Directory-based coherence protocols eliminate broadcasts entirely.

Coherence protocols assign a state to each cache line that changes according to a state change
diagram if the memory location is accessed [DAS12, Section 7.3.2]. For instance, the MESI
protocol [PP84] uses four states: Modified (M), Exzclusive (E), Shared (S) and Invalid (I). The
states Erclusive and Modified guarantee that there are no further copies. Cache lines are in the
state Shared if multiple cores may contain a valid copy. Invalid cache lines do not contain useful
data. They can be used to accommodate new data without replacing existing cache lines. Con-
temporary multi-socket systems use more sophisticated coherence protocols like MESIF [Int09]
or MOESI [Amd15, Section 7.3]. Memory accesses can cause state transitions, which influences
the performance of memory accesses [HLK97; Mol4-09; MHS14].

2.3 Performance Evaluation

Performance evaluation includes measuring the performance of computer systems as well as
testing how well applications are performing. The former typically involves benchmarks. Some
commonly used benchmarks are discussed briefly in Section 2.3.1. The evaluation of applications
is typically done using performance analysis tolls, e.g., Vtune [Int13], Vampir [Kni+408] or
Scalasca [Gei+10]. This often involves hardware performance counters, which are described
in Section 2.3.2.

2.3.1 Benchmarking

STREAM [McC95] measures the cache and memory bandwidths. The NUMA characteristics
can be analyzed using additional tools (e.g., numactl). However, STREAM cannot be used
to measure the bandwidth of remote cache accesses. The cache and memory latency can be
measured with Imbench [MS96]. However, remote cache accesses as well as coherence protocol
transactions cannot be analyzed. These restrictions also apply to the latency measurements of
X-Ray [YPS05, Section 5]. BlackjackBench [Dan+13] determines cache and TLB parameters as
well as the page size and the number of TLB entires. It also measures the bandwidth of core-to-
core transfers. However, different coherence states and the latency of remote cache accesses are
not included. Likwid-bench [THW12] measures the throughput of loop-kernels, which includes
the bandwidth aggregated bandwidth of parallel memory accesses.

2.3.2 Hardware Performance Monitoring

Many contemporary processors include performance monitoring units (PMUs), e.g., [Amd13,
Section 2.7]; [Int14b, Volume 3, Chapter 18]. The PMU typically contains multiple hardware
performance counters, which can be programmed to count certain events, e.g., cache misses
and snoop requests. Usually, each core has dedicated counters. Additional PMUs for the shared
resources are common as well [Amd13, Section 2.7.2]; [Int12]. A widely-used tool to access PMUs
of various processor architectures is the Performance API (PAPI) [Ter+09]. PAPI defines a
standard interface to access performance counters from within the application in order to record
performance data per thread.



3 Micro-benchmarks for Analyzing Memory Hierarchies

This section describes the design and implementation of the micro-benchmarks that are used to
analyze the memory subsystem of shared memory systems [Mol4-09; HMN09; Mol+10; MHS14;
Mol+15]. X86-membench supports latency and bandwidth measurements for local and remote
cache and memory accesses and complements them with a mechanism to control the coherence
state of the accessed data. The benchmarks are implemented as kernels for the BenchIT frame-
work [Juc+04]. BenchIT and z86-membench are available as open source!. The data placement
and coherence state control mechanisms, which are described in Section 3.1 and Section 3.2, load
data into certain cache levels and enforce a particular coherence state prior to the measurement.
The measurement routines are described in Section 3.3.

3.1 Data Placement

The data placement prior to the measurement is implemented by accessing the whole data set
multiple times in order to replace other data in the caches. After that the data resides in the
highest level of the memory hierarchy that is large enough to accommodate all data and partially
in higher levels unless all data fits into the L1 cache. Performing a latency measurement after
this form of placement shows a mixture of effects from different cache levels. An optional cache
flush routine can be used to place data only in a certain cache level or main memory. This
enables precise performance measurements for the individual levels in the memory hierarchy.
Data placement and measurement can be executed on different cores. This enables the analysis
of core-to-core transfers. The measurement of core-to-core transfers is implemented as follows:

for(i = 0; i < num_selected_cpus; i++){
thread on CPU[0O]: if (i != 0) signal thread on CPU[i] to access its data set
thread on CPU[i]: load data from CPU[i]’s buffer into local cache hierarchy
thread on CPU[O]: if (i != 0) wait until other thread finishes data placement
thread on CPU[0O]: perform measurement using the buffer assigned to CPU[i]

¥

The first iteration evaluates the local memory hierarchy. The remaining iterations determine
the performance of remote cache and memory accesses.

3.2 Coherence State Control

With the coherence state control mechanism [Mol4+09; HMNO09; MHS14] the impact of the
coherence protocol can be analyzed. This is an essential capability of z86-membench. The
example in Figure 3 shows how the coherence state influences the latency of cache accesses.
The coherence states Modified and Ezxclusive are generated as follows, where thread N is pinned
to core N and thread M is pinned to another core [MHS14, Section 3.3]:

e Modified state in caches of core N is generated by:
1) thread N: writing the data (invalidates all other copies of the cache line)
e Fxclusive state in caches of core N is generated by:

1) thread N: writing the data to invalidate copies in other caches,

2) thread N: invalidating its cache using the CLFLUSH instruction,

3) thread N: reading the data
The coherence state control mechanism supports all states of the MESI, MESIF, and MOESI
coherence protocols [MHS14].
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Figure 3: Data is cached with a certain coherence state, which determines the required coher-
ence state transitions as well as the source of the response (direct cache-to-cache forwarding
or via main memory). These figures are based on [Mol+09, Figure 2].

3.3 Measurement Routines

The measurement routines are implemented using inline assembler. The high-resolution time-
stamp counter (TSC) is used to measure durations. All measurement routines can also record
hardware performance counters (see Section 2.3.2) in addition to the performance metrics.

Latency Benchmark: The latency measurement uses pointer-chasing to determine the latency
of memory accesses, i.e., each load operation provides the address for the next access. At least
24 loads at randomly selected addresses are performed for each measurement. The number of
accesses is increased for larger data set sizes in order to reduce variation in the results. The
duration of the whole access sequence is divided by the number of accesses to determine the
average latency of a single access.

Single-threaded Bandwidth Benchmarks: These benchmarks measure the bandwidths that
can be achieved by a single thread. They perform sequential accesses to the whole data set in
order to determine the bandwidth of reads, writes, or a mixture of both. Multiple widths of
load and store instructions are supported. It is important to note that one core cannot write
into another core’s cache. Writes to remotely cached data show a combination of two effects:
first, reading the data from its original location, and second, writing to the local cache hierarchy.
This has to be considered in the interpretation of the results.

Aggregated Bandwidth Benchmarks: The aggregated bandwidth benchmarks measure the
achievable bandwidth for a variable number of threads that perform concurrent memory accesses.
The memory access sequences performed by the threads are identical to the single-threaded
bandwidth benchmarks. The memory affinity can be specified independently from the CPU
binding. This can be used to measure the interconnect bandwidth by binding all threads to
CPUs in one NUMA node and allocating memory from another NUMA node.

Throughput of Arithmetic Instructions: This benchmark is an adopted versions of the multi-
threaded bandwidth benchmark. In its measurement routines, loads are replaced by arithmetic
instructions. The benchmark is also meant to investigate the power consumption [Mol+10].
In order to perform reliable power measurements the runtime has to be extended to multiple
minutes in order to reach a stable temperature. This is implemented by accessing the whole data
set multiple times. Therefore, the throughput benchmarks do not consider different coherence
states as the initial coherence state of the data cannot be preserved.



4 Performance Characterization of Memory Accesses

The benchmarks described in Section 3 enable an in-depth analysis of shared memory sys-
tems [Mol4-09; HMNO09; Mol+10; Mol+11; SHM12; MHS14; Mol+15]. This section shows this
using the example of a dual-socket system with Intel Xeon E5-2670 processors [MHS14]. Each
processor has eight cores, which share an inclusive 20 MiB L3 cache. The integrated memory
controllers have four DDR3 channels, which are populated with PC3-12800R memory modules.
This results in a theoretical peak bandwidth of 51.2 GB/s per socket. The two processors are
connected with two QPT links. Together they can transfer 32 GB/s in each direction.

4.1 Latency of Cache and Main Memory Accesses

Figure 4 depicts latency measurements for different coherence states. The local L1 and L2 cache
have a latency of 1.5 and 4.6 ns, respectively. L3 accesses cause an average delay of 15ns. The
additional latency for accesses to Ezclusive cache lines that have been used by another core is
caused by silent evictions, which do not clear the corresponding core valid bits [Mol+09]. The
Snooping of another core increases the latency to 33.5ns. Accesses to caches in the second
processor and main memory have a higher latency. The remote L3 sends data with a delay
of 84.6 ns if the cache lines are in state Fxclusive. Cache lines in state Modified have a higher
access latency of 127 — 141 ns as the data has to be written back to memory. The inclination
shown for remote L1 and L2 accesses is caused by the decreasing likelihood of accessing already
opened DRAM pages. The local main memory latency is measured with 81.5ns while remote
memory accesses take 134 ns.

4.2 Bandwidth of Local Cache Accesses and Core-to-core Transfers

Figure 5 depicts the read and write bandwidth for accesses to Modified cache lines. The measured
82.8 GB/s for reads from the local L1 cache are close to the theoretical peak performance for
two 128 Bit loads per cycle at 2.6 GHz. The L2 bandwidth reaches 35.2 GB/s. The inclusive L3
cache supports a read bandwidth of up to 25.1 GB/s. Data from other cores’ L1 and L2 caches
can be read with 8.2 and 12.0 GB/s, respectively. The write bandwidths are generally lower
than the corresponding read bandwidths. The L1 and L2 cache support writes with 41.0 and
24.5 GB/s, respectively. The L3 cache can be written with up to 17.9 GB/s.
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Figure 4: Xeon E5-2670—memory read latency: Thread on core( accessing its local cache
hierarchy (local) as well as cache lines of corel in the same processor (within NUMA node)
and core8 in the second processor (other NUMA node).
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Figure 5: Xeon E5-2670—single-threaded read and write bandwidths using 256 bit instructions
(vMovDQA): Thread on core 0 accesses data in its local memory hierarchy (local) as well as
data that is present in caches of another core on the same chip (within NUMA node) and in
the second processor (other NUMA node).

The bandwidths are significantly lower, if the second processor is involved. The read bandwidth
from the remote L3 cache is limited to 8.7 GB/s. Modified data from L1 or L2 caches in the
other NUMA node can only be read with 7.0 and 8.5 GB/s respectively. The write bandwidths
are between 6.8 and 8.4 GB/s.

4.3 Bandwidth Scaling of Shared Resources

The aggregated bandwidth of one to eight concurrently reading and writing cores within one
processor is depicted in Figure 6. The L3 performance scales almost linear with the number of
cores. It reaches 199.6 GB/s. The memory bandwidth scales well up to four concurrently reading
cores, which reach 38.9 GB/s. Using more cores slightly increases the achieved bandwidth to
approximately 44 GB/s. The two QPI links have a combined bandwidth of 32 GB/s in each
direction. However, only 16.8 GB/s are reached in the default configuration.
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Figure 6: Xeon E5-2670—bandwidth using multiple cores (one thread per core): The L3
bandwidth scales almost linear with the number of cores. The memory bandwidth can be
fully utilized without using all cores. 256 bit loads and stores are used in these measurements.



5 Performance Impact of the Memory Hierarchy

The correlation of hardware performance counters with the utilization of the memory hierarchy
is evaluated using the load and store variants of z86-membench’s throughput kernel (see Sec-
tion 3.3). The perf::PERF_-COUNT_-HW_CACHE_L1D:READ and perf::PERF_COUNT_-HW
_CACHE_LID:WRITE events can be used to count the cache lines that are requested by
(:READ) or written back (:WRITE) from the L1 cache. The remaining challenge is to find
events that differentiate accesses to different levels in the memory hierarchy and distinguish
local from remote memory accesses. Figure 7 depicts performance counter readings that dissect
the data transferred to the L1 cache according to the data’s prior location. The L2_RQSTS and
OFFCORE_RESPONSE:LLC_MISS_LOCAL /:LLC_MISS_REMOTE events provide good esti-
mates for the amount of data delivered from the L2 cache and main memory, respectively. The
OFFCORE_RESPONSE:LLC_HITMESF event correctly represent the number of cache lines
read from the L3 cache if the data is actually located in the L3 cache. However, main memory
accesses (LLC misses) also cause a significant number of LLC hit events. Luckily, an estimate for
the total number of requested cache lines is also available in the form of the L2_TRANS events.
The difference between them and the number of cache lines delivered from main memory defines
an upper bound for the number of cache lines delivered by the L3 cache, which can be used to
compensate the overlap between the LLC hit and miss counters.

The measured peak bandwidths can be used to calculate the achievable number of transfers per
second for the various locations in the memory hierarchy. Together with the observed number
of events per memory access it is possible to derive the peak event ratios for the identified
hardware performance counters. Unfortunately, the number of transfers per second cannot be
used to derive the bandwidth utilization of the L1 cache. With 64 bit instructions it is possible
to reach the maximal event rates while using only 50% of the available bandwidth. This could
still be defined as 100% load as all L1 load or store ports are active each cycle. However, with
256 bit instructions it is also possible to fully utilize the available bandwidth while the event rates
are at 50% of their respective maximum. For L2 accesses and beyond, performance counters
provide good estimates for the used bandwidth independent of the width of the load and store
instructions since events are reported on a per cache line basis. This can be used to investigate
how applications utilize the memory hierarchy as depicted in Figure 8.
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Figure 7: Xeon E5-2670—counters that identify the source of the accessed data: The Utilization
of the L2 cache can be measured via the L2_TRANS and L2_RQSTS events. L3 cache and
main memory accesses can be recorded using the OFFCORE_RESPONSE counters. The
correlation is not perfect but good enough to gain insight.
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Figure 8: SPEComp2012, 351.bwaves—DRAM utilization in Vampir: Depicted are counter
timelines for the read, write, and combined bandwidth of one processor. The display at the
bottom shows the utilization of the memory controller using the performance radar [BW13].
In the red regions the bandwidth usage is close to the measured peak bandwidth.

6 Summary

This thesis introduces z86-membench—an open source micro-benchmarking suite that facili-
tates the performance analysis of memory accesses in cache coherent distributed shared memory
systems. These benchmarks are used to perform an in-depth analysis of contemporary multi-
processor systems that identifies potential bottlenecks in the memory hierarchy. Furthermore,
a methodology for the identification of meaningful hardware performance counters is presented
that uses the micro-benchmarks to derive metrics for the utilization of individual components
in the memory hierarchy and memory related waiting times from performance counter readings.
These metrics can then be used to visualize memory related performance problems.
X86-membench is a versatile benchmark suite for the analysis of the memory hierarchy of com-
plex shared memory systems. It extends the state-of-the-art in in various directions as shown
in Table 1. While the local memory hierarchy and the impact of remote memory accesses in
NUMA systems are sufficiently covered by existing benchmarks, the performance of remote cache
accesses is not. The data placement mechanism described in Section 3.1 closes this gap. Further-
more, the coherence state control mechanism described in Section 3.2 can be used to measure
the costs of coherence protocol transactions. The assembler implementation of the measurement
routines leads to very accurate results. Moreover, the performance impact of SIMD instructions
can be measured without having to rely on the compiler to properly vectorize the code.

The benchmarks expose potential bottlenecks in the memory hierarchy and the interconnection
network between the processors [Mol+09; HMNO09; Tholl; Mol+11; MHS14; Mol+15]. The
obtained results regarding the impact of the coherence states on the characteristics of memory
accesses facilitate the analytical performance modeling of cache coherent shared memory sys-
tems [RH13; LHS13; PGB14; RH16]. The benchmarks can also be used to analyze the energy
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Table 1: X86-membench provides a wider functional range for analyzing the memory hierarchy
than other established benchmarks, especially regarding the impact of the coherence protocol.

benchmark latency / bandwidth explicit | instr. throughput | coherence

suite local cache remote SIMD | with operands in | protocol

& memory | memory ‘ cache |support | register/memory | influence
x86-membench I/ x4 IV v a4 v/
BlackjackBench /v s X/ X /X X
likwid-bench X/ X/ X/ X v x4 X
X-Ray, P-Ray s I/ X/ X X /X X
Imbench, STREAM x4 I/ X/ X X X/x X

consumption of data transfers and arithmetic operations [Mol+10] as well as to evaluate the
potential for energy efficiency optimizations [SHM12]. Furthermore, the understanding of the
throughput and power characteristics of data transfers and arithmetic operations has been taken
into account during the development of the processor stress test FIRESTARTER [Hac+13]. Due
to the extensive use of inline assembly, the implementation is tailored to the x86 architecture.
However, the functional principle can be ported to other architectures [Old13].

The analysis of contemporary shared memory systems—which are the building blocks of many
HPC systems—reveals several potential bottlenecks in the memory hierarchy. It is shown that
the memory accesses latency can exceed the size of the out-of-order window, which stalls the
execution. Furthermore, the bandwidths that are supported by the lower levels in the memory
hierarchy are typically not sufficient to fully utilize the available computational performance.
The bandwidth of shared caches and main memory does not necessarily scale linearly with the
number of concurrently operating cores. Remote accesses are additionally limited by the point-
to-point interconnections between the processors. The cache coherence protocols also have a
strong influence on the characteristics of memory accesses.

Knowing the peak performance of the individual components is an essential prerequisite for the
detection of memory related performance losses. However, in order to determine the impact of
the memory hierarchy on the achieved application performance, the utilization of the various
components while the program is running as well as the waiting times that are caused by memory
accesses also have to be measured. Therefore, the presented methodology that derives meaningful
metrics for the resource utilization and memory related stall cycles from hardware performance
counters is another major contribution of this thesis. It is shown that resource limitations are
reflected by certain hardware events in many cases. Unfortunately, the results obtained on one
architecture cannot easily be transferred to other architectures as the set of available events as
well as their definition and functionality can be different. Therefore, it cannot be recommended
to rely on performance counter readings without validating that they are actually working as
expected. X86-membench is ideally suited to perform such validations, which is an important
improvement of the state-of-the-art in performance counter based performance analysis.

The novel approach for the selection of suitable counters and the determination of their re-
spective possible range of values facilitates the detection of memory related performance issues.
However, recording all metrics requires many runs since only a limited number of events can be
counted concurrently. Nevertheless, many performance problems can be found using the pre-
sented visualization of the performance counter data. When revisiting the initially mentioned
challenge of understanding the causes of limited application scaling within a node, this thesis
provides both—the tools for establishing the technically possible upper limits for the perfor-
mance of various components in the memory hierarchy as well as the means for measuring their
impact on the achieved application performance.
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