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1 Introduction

Cloud computing lowered the barrier of entry to an infinite amount of computing re-
sources. Therefore, nowadays any person in the world can rent computing resources to
run an application. Usually the resources are delivered in the form of virtual machines
(VMs). In comparison to traditional provisioning techniques that require upfront servers
deployment, cloud users can acquire and release resources on-demand. For example, the
user can add a VM to the application cluster to cope with an increased workload or ter-
minate idle VM. However, it is not easy to answer the question about when to allocate
and how many resources to allocate.

To identify the right amount of resources to lease the user needs to consider a number
of factors: such as application elasticity, workload dynamics, user-defined performance
objectives and conversion of the performance objective to resource allocation. For a
non-expert cloud user that has limited knowledge about the application and its resource
demand pattern it is hard to make optimal scaling decision.

Cloud market offers a variety of resource allocation schemes. The user can choose a VM
from the set of predefined templates or specify a VM he needs. Later on, during runtime
it is possible to change the application resource capacity by modifying the number of
VMs dedicated to the application (horizontal scaling) or adapt individual VM resources
(vertical scaling). The number of possible resource allocation strategies becomes too
large to be managed by a human. Therefore, there is a need for automating the process
of resource allocation. Auto-scaling services offered by cloud providers simplify the
process of acquiring and releasing resources, but leave burden of scaling policy design to
the user.
The focus of this thesis is techniques and approaches for online scaling

policy discovery. There are two objectives that we target. First, the amount of
assigned resources should be enough to meet the application performance goal. Second,
the cost of running the application on the cloud should be minimal.

To address the challenges and meet the objectives we present four techniques for online
resource allocation. Below presented a short description of our contributions:
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1. We design a resource allocation controller that resolves resource conflicts between
interactive and batch applications collocated on a host. For cloud providers that
support vertical scaling there is a need to utilize residual resources. The presented
controller follows the resource demand of the interactive application and allows to
utilize residual resources.

2. We design the controller, called Vscaler that performs web application resource
provisioning. With the help of reinforcement learning the controller dynamically
learns the application performance model at runtime. It adapts the resource allo-
cation to meet the application performance goal and minimize the level of resource
over-provisioning.

3. We implemented VscalerLight that extends Vscaler for multi-tier web applications.
Applying reinforcement learning (RL) to multi-tier application increases the com-
plexity of the state-space model. To address the issue we analyze the impact of
individual VM resources on the application performance and propose to reduce the
complexity by creating two separate RL models for RAM and CPU.

4. In our last work we address horizontal scaling of batch applications running in an
Elastic MapReduce (EMR) cluster. Scaling the number of compute nodes of the
EMR cluster beyond a certain limit, risks ’prolonging’ the actual task completion
time, because the data nodes and/or the network cannot keep up with the increased
demand. ElasitcYARN detects the limit at jobs runtime and adapts the compute
part size to minimize the cost of MapReduce job execution.

In the short version of the dissertation we present each of the contributions. Following
sections provide a high level description of the applied techniques and present experi-
mental results that highlight the benefits of the presented technique. Finally, we give a
brief summary of the work and present possible directions for future research.

2 Vertical scaling for prioritized VMs provisioning

Resource demand of many applications is not static and varies over the time. To achieve
high performance of applications users are forced to acquire VMs based on the application
peak resource demand. However, peak load resource allocation leads to resource wastage.
As a result, users pay for resources that have not been utilized. For cloud users it would
be beneficial to have possibility to reconfigure VM at runtime. However, cloud providers
that support vertical elasticity face a challenge on how to utilize residual resources on
the host.

According to research analysis of datacenters workloads [5, 15, 13, 12] applications
running in the cloud can be classified into two groups: latency-sensitive interactive ap-
plications and batch applications. The first group consists of web applications such as
internet stores, bookkeeping sites and etc. Low latency is an essential requirement for
these applications. None of the application users would like to interact with a slowly
responding website. For e-commerce applications high latency means potential revenue
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loss, because users will eventually move to more responsive web sites. The second group
consists of applications running as back-end tasks such as MapReduce jobs. Batch appli-
cations do not require real-time responsiveness and can tolerate performance slowdown.

To provide low latency for the interactive application and improve utilization of the
host we propose to collocate two classes of applications. We design an online resource al-
location controller that performs vertical scaling of collocated VMs. The controller uses
VM CPU usage traces to predict future resource demand and triggers scaling actions. It
resolves resource conflicts between the applications as follows. If the interactive applica-
tion’s (high priority) resource demand exceeds capacity of the VM, then the controller
rents resources from the batch application (low priority) VM. As a result, the interac-
tive application response time does not increase significantly and the batch application
makes a progress even during resource contention. If the high priority VM has residual
resources, then Vscaler assigns them to the low priority VM.

Results

We evaluate Vscaler against real-world workload traces. For the evaluation we use
Apache web server running an e-commerce application and a Hadoop framework that
executes MapReduce job. We compare our controller against popular Xen hypervisor
with build-in prioritization mechanisms. The Xen scheduler can run in two modes:
work-conserving (wc) and non-work-conserving (nwc). In wc-mode each VM is assigned
a weight. In this mode sharing (weight) is guaranteed. A host CPU is idle, only if there
is no active VM. Therefore, the batch application can get residual CPU cycles from the
interactive application. In nwc-mode shares are capped. It means that, in case of two
VMs with equal shares, each of the VMs gets 50% CPU, even if second half of CPU is
idle.

Figure 1 shows the web server 95% response time of all evaluated configurations. The
response time provided by our controller is the most closest to the single VM mode. The
response time achieved by the Xen credit scheduler in wc-mode is higher by almost 80
ms. In default mode (non-weighted) CPU-intensive batch application steals CPU cycles
from the interactive application and the response time becomes even higher.

In figure 2 we plot the execution time of MapReduce job. The CPU allocation scheme
implemented by the Xen credit scheduler in nwc and wc modes provides almost similar
execution time. If we apply our controller, then the job runs 2 times longer, than under
control of Xen. Vscaler serves the interactive application with high priority. We assume
that a user running the batch application acquires compute resources for a lower price
and aware of its possible performance slowdown.

By default, Xen credit scheduler uses 30 ms time slice for the CPU assignment. It
means that a VCPU of each VM gets 30 ms before being preempted. To provide higher
performance for the interactive application in wc-mode we would need to lower the length
of the credit scheduler’s time slice. It increases the overhead of context switching and
reduce effectiveness of a CPU cache [3].
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Figure 1: Web server response time
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Figure 2: Hadoop execution time

3 Autonomic Virtual Machine Scaling

Recent observations by Agmon Ben-Yehuda et al. [1] of IaaS trends state, that the model
of fixed bundles, so called ”instance types” will eventually change to flexible bundles.
The change is mostly economically driven. For example, the provider offers a VM with
6 CPUs, while the user needs a VM with 5 CPUs. The fixed bundles model does not
reflect users economical expectations of pay-as-you-go model. Authors conclude that
IaaS providers will eventually shrink billing periods and allow users to build a VM they
want to run. The presented trends already exist in the cloud market. Cloud providers,
such as CloudSigma, ProfitBricks and GridSpot, offer virtual resources in the form of
flexible bundles.

Many web applications have varying resource demand. The model of flexible bundles
facilitates more efficient resource provisioning for such applications. Users can dynam-
ically resize VMs based on current resource demand. However, to perform efficient
resource provisioning (reduce under-utilization and meet application performance goals)
one has to design scaling policy.

Most of public cloud providers offer auto-scaling services at the IaaS level. The services
exploit threshold-based scaling approach. The approach tends to focus on scaling at the
machine or VM level. But it does not facilitate the definition of higher business function,
such as user-specified quality of service (QoS). Using threshold-based scaling, it is hard
to convert a VM capacity to the application performance. Moreover, cloud providers
shift responsibility of determining a ’good’ scaling policy to the non-expert user. We
need an approach that allows to discover the scaling policy online.

Reinforcement learning (RL) [9] does not require a priory knowledge. It is able to
perform online policy learning and adapt to environmental changes. To learn an envi-
ronment the RL agent takes actions and observes new states. For every action it obtains
a reward. The time it takes to activate every action and visit all states of the environ-
ment depends on the size of state-action space. In resource allocation problem the state
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95% response time

determines the amount of resources assigned to a VM and the action defines the amount
of resources to acquire or release. It means that the agent has to visit a significant
fraction of the environment, before it can take optimal decisions.

Our solution is based on the idea that there is more to learn from a single transition.
Every time when action is taken, the agent observes amount of resources consumed
by the application and obtains a reward for the taken action. However, if there are
alternative states where VM capacity is higher than observed resource demand, then we
can update transitions that connect initial state with the alternative states.

Results

To show the learning speed-up provided by VScaler we evaluated two Q-learning algo-
rithms. The first algorithm uses our approach. The second one is a standard Q-learning
approach, where the agent after each observation updates only one state-action pair. In
both approaches the agent learns the environment using a standard policy. It means that
with a probability of ε = 0.05 the agent takes a random action. In the exploitation phase
the agent takes an action that gives the higher utility. For the evaluation we use the
RUBiS benchmark that simulates users behavior of online auction. In the experiment
we run the constant workload.

In figure 3 we show the number of transitions learned. During the first 3 minutes
VScaler RL learns 300 transitions, while Standard RL learns significantly less transitions.
VScaler RL has a higher learning rate, but the most important part is the quality of
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Figure 5: VM costs: Standard RL vs VScaler RL

resource allocation policy obtained by the approaches. Figure 4 presents the response
time delivered by the web server under the control of the evaluated learning models. We
ran the experiment for 40 minutes. For the experiment we set desired response time to
be below 20 ms. Both learning approaches keep 95% of response time below 20 ms.

The standard RL model has only information about actually visited transitions, while
the VScaler RL in addition to visited transitions knows about the impact of alternative
transitions. The additional information allows the VScaler RL to quickly converge to
the state with the minimal amount of required resources. In figure 5 we present the cost
of resources in each state. We consider a flexible bundles resource model that allows to
dynamically modify individual resources assigned to a VM. For the experiment we took
prices from CloudSigma. The figure shows that the VScaler RL only needs 3 minutes to
find the optimal VM size.

The VScaler RL quickly adapts to the workload, while the Standard RL needs more
time to learn the environment. One has to notice that both approaches do not violate the
SLA, but the VScaler RL in comparison to the Standard RL achieves the performance
goal for the lower cost.

4 Autonomic Multi-tier application Scaling

The second well-known problem of the reinforcement learning approach is the curse of
dimensionality. The state-space dramatically grows with increased number of parameters
that describe the model of the application. To apply RL to multi-tier web application
provisioning we need to include each tier VM parameters into the model. It is common
to reduce the state-space and the actions-space to address the issue. However, it leads
to coarse-granular resource allocation.
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Figure 7: Each tier VM resource usage

We analyzed the impact of individual VM resources (CPU and RAM) on performance
of multi-tier web-application. CPU and RAM belong to different groups of resources.
CPU is a compressible resource (as well as network and disk I/O bandwidth) and memory
is non-compressible resource (as well as disk space). To smoothly regulate the response
time of the application we can throttle virtual CPU power assigned to a VM. In contrast,
memory cannot be used to control the response time. The response time sharply increases
if memory utilization reaches certain (about 90%) threshold. The reason is swapping
process that triggers when we reclaim memory utilized by the application.

To meet user-specified performance objective and control resource allocation we cre-
ated two separate models: CPU and RAM. CPU model regulates the application re-
sponse time and RAM model changes memory allocation to avoid swapping. Moreover,
we addressed cluster wide correlation effects that can cause shift of resource bottlenecks.
To orchestrate the resource allocation across the tiers we added workload description
parameter to each of the RL models.

Results

In our evaluation we compare VscalerLight against threshold-based scaling policies and
two static allocation schemes. Cloud user can use an auto-scaling service offered by
a provider to perform dynamic resource assignment. However, it is necessary to find
optimal threshold values for the application. We empirically define two policies. First
policy tries to minimize the level of over-provisioning. The second one aims to minimize
SLA violation events. For static allocation schemes we assume that the user knows
expected resource demand and assigns VM resources according to the peak demand.
For the first scheme the user takes fixed size VM that is equal to Amazon EC2 small
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instance [6]. For the second one the user specifies VM size. As multi-tier web application
we used RUBiS benchmark that consists of web and database servers. To emulate real
user behavior we took 6 hours long workload trace from World Cup 98.

Figures 6 and 7 show the performance and resource usage provided by the evaluated
schemes. The policy 2 violates SLA, while the rest schemes keep the application response
time below specified value (20 ms). The figure 7 presents the efficiency of each allocation
scheme. The higher the value, the better resource usage efficiency. Fixed size VM
allocation leads high resource wastage. Resource utilization of both VMs is below 26%.
It means that in the cloud market the user overpays for about 74% of allocated resources.
If user customizes VM capacity, then the utilization can be improved by factor of 2 in
comparison to fixed size VM. However, one needs to know workload upfront. Dynamic
resource scaling improves resource utilization even further. In all dynamic schemes the
utilization is above 59%. However, only two of them (VscalerLight and policy 1) meet
user-specified performance objective. But VscalerLight achieves 10% higher utilization
in comparison with threshold policy 1 and does not require tuning of the thresholds
upfront.

5 I/O aware elastic mapreduce cluster scaling

To allow users run data processing jobs, public cloud providers, such as Amazon, offer
Elastic MapReduce (EMR), a web service for MapReduce applications. In contrast to
traditional data-processing clusters, EMR has dedicated nodes for data and computation.
The key characteristic of EMR is elasticity. The compute nodes of EMR cluster can be
scaled out to speed up a job. Increasing the number of compute nodes increases the
network traffic as all compute nodes need to access to the whole data set during the
map and the reduce phases. Scaling the number of compute nodes beyond a certain
limit, risks ’prolonging’ the actual task completion time, because the data nodes and/or
the network cannot keep up with the increased demand. As a result, it increases the
resource usage time that reflects the total cost of running MapReduce job in the cloud.
To minimize the cost of the job execution in the cloud it is important to scale compute
nodes with respect to bandwidth delivered by the data nodes and the network.

We also observe a trend towards a cross-cloud data processing [4, 7, 8] and the use
of Micro-clouds [14, 11]. Running data processing in a cross-cloud fashion incurs WAN
data transfer. We have to make sure that jobs running in such environment do not suffer
due the network saturation.

The pay-as-you-go model and the elastic nature of the platform allow the user to
change the size of data processing cluster almost instantaneously. Agmon Ben-Yehuda
et al. [1] observe that IaaS providers shift from hour range to seconds range billing
cycles. The shorter billing cycles allow users to remove exceeding virtual resources at
any point of time, without waiting for the end of an hour billing cycle [10, 2]. However,
to achieve the cost efficiency the user has to scale the compute nodes with respect to the
data part capacity and the available network throughput. Average user does not have
upfront knowledge about performance delivered by these resources and MapReduce job’s
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Figure 8: Inter-cloud deployment
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Figure 9: Cross-cloud deployment

bandwidth requirements. Hence, there is a need for a system that can resize a compute
cluster of EMR to minimize the cost of job execution in the cloud.

We analyzed the model of MapReduce execution. The task of each phase (map or
reduce) performs two types of I/O. In map phase it reads the data over the network
and in the spill and the merge stages it writes data to the disk. In reduce phase the
task stores the data that was fetched during the shuffle stage on the disk and then
sends the output of a reduce function to the data nodes. If there are no bottlenecks
then CPU utilization is the same during network I/O operations and disk write activity.
To identify the presence of the bottlenecks and calculate the maximal number of the
compute nodes that can run without hitting the limit, we compare the CPU usage of
the two I/O operations.

Results

To demonstrate the effectiveness of the presented approach, we have developed a system
called ElasticYARN. ElasticYARN runs on top of YARN framework that executes tasks
of MapReduce job in containers. The size of the compute cluster depends on the number
of containers assigned to a job. The limit and the job bandwidth requirements are not
known upfront. Therefore, ElasticYARN gradually scales the number containers in the
wave (tasks running in parallel compose a wave). As soon as the limit has been detected,
the system assigns the optimal number of containers. We evaluate two configurations of
ElasticYARN that define how to increase the wave size if the limit has not been detected.
In the first configuration the system doubles the number of containers in the wave; in
the second configuration it increases the wave size by a fixed value (5% of phase size).
We ran four different jobs to evaluate the system: Sort, Wordcount, Hive join and Hive
aggregate.
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In the evaluation, we consider two scenarios: inter-cloud deployment and cross-cloud
deployment. In the inter-cloud deployment we vary the data storage capacity. The
network capacity is varied in the cross-cloud deployment. Figures 8 and 9 show the
total container time that was spent to complete the jobs. In both scenarios the total
container time consumed by ElasticYARN to complete the jobs is minimal comparing
to the default YARN. The slow search mode provides lower the total container time in
comparison to the fast search mode, because the number of tasks in the wave hitting
the limit is smaller. The total container time of the jobs managed by ElasticYARN does
not vary significantly across all configurations.

6 Conclusion

Economic interests of cloud users already resulted in changes on the cloud market. There
are public cloud providers that addressed the users expectations and shifted to a flexible
VM model. The users are free to specify a VM size they need and can change it during
runtime. Recently, the providers start to move from hour billing cycles to second billing
cycles. However, there is not much improvement regarding to auto-scaling services. The
focus of this thesis is to make one step forward to address the cloud market changes and
propose auto-scaling techniques. In this work we design controllers that automatically
perform scaling decisions to meet the application performance objectives and minimize
the virtual resources usage costs.

Our contributions are summarized as follows:

1. To enable vertical elasticity we propose a priority aware controller. In future we
would like to extend the controller to provide job completion time guarantees for
the low priority batch applications.

2. It is hard to meet the user-specified performance objective by provisioning the
application based on current resource demand. To enable QoS aware resource
provisioning, we designed online resource allocation controller for single VM web
applications. Vscaler is model-free controller that learns scaling policy in online
fashion.

3. Many web-applications consist of multiple tiers. To control resource allocation
across the tiers we implemented VscalerLight. The controller maximizes the re-
source utilization of the application tiers and meets the user-specified performance
objective. Vertical elasticity is naturally limited by capacity of the host. To deal
with larger workloads we have to exploit horizontal scaling. In the future, we want
to combine vertical and horizontal scaling to serve larger workloads.

4. In the last work, we address the resource allocation of the batch applications
running in EMR cluster. We implemented ElasticYARN, a system that detects
MapReduce job traffic demand and rescales EMR cluster to minimize the cost
of the job execution in cloud environment. Further, we want extend the YARN
scheduler to make it I/O aware.
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