

Logic Programming and Human Reasoning

Steffen Hölldobler International Center for Computational Logic Technische Universität Dresden Germany

Introduction

The Suppression Task

INTERNATIONAL CENTER

FOR COMPUTATIONAL LOGIC

Human Reasoning – Two Examples

- Instructions on boarding card distributed at Amsterdam Schiphol Airport
 - If it's thirty minutes before your flight departure, make your way to the gate As soon as the gate number is confirmed, make your way to the gate
- Notice in London Underground
 - If there is an emergency then you press the alarm signal bottom The driver will stop if any part of the train is in a station

Observations

- Intended meaning differs from literal meaning
- Rigid adherence to classical logic is no help in modeling the examples
- > There seems to be a reasoning process towards more plausible meanings

 The driver will stop the train in a station if the driver is alerted to an emergency and any part of the train is in the station Kowalski: Computational Logic and Human Life: How to be Artificially Intelligent. Cambridge University Press 2011

The Suppression Task

▶ Byrne: Suppressing Valid Inferences with Conditionals. Cognition 31, 61-83: 1989

- C_1 If she has an essay to write, then she will go to the library
- C₂ if she has a textbook to read, then she will go to the library
- C₃ If the library is open, then she will go to the library
- E She has an essay to write
- L She will go to the library

	E	¬ <i>E</i>	L	$\neg L$
<i>C</i> ₁	96%	46%	71%	92%
$C_1 \& C_2$	96%	4%	13%	96%
<i>C</i> ₁ & <i>C</i> ₃	38%	63%	54%	33%
	(<i>L</i>)	$(\neg L)$	(<i>E</i>)	(¬ <i>E</i>)

The Suppression Task – Modus Ponens

- Stenning, van Lambalgen: Human Reasoning and Cognitive Science MIT Press: 2008
- Programs

<i>e</i> ← ⊤	fact	definition of e
$\ell \leftarrow e \land \neg ab_1$	rule	definition of ℓ
$ab_1 \leftarrow \perp$	assumption	ab ₁ is assumed to be false

Weakly completed programs & least models

е	\leftrightarrow	Т	true	false	
l	\leftrightarrow	$e \wedge \neg ab_1$	е	ab ₁	Φ ↑ 1
ab ₁	\leftrightarrow	\perp	l		Φ ↑ 2

Computing logical consequences with respect to least models

$$\mathcal{M} = \langle \{ \boldsymbol{e}, \ell \}, \{ \boldsymbol{ab}_1 \} \rangle \models_{wcs} \ell$$

Łukasiewicz: O logice trójwartościowej. Ruch Filozoficzny 5, 169-171: 1920

 H., Kencana Ramli: Logic Programs under Three-Valued Łukasiewicz's Semantics LNCS 5649, 464-478: 2009

The Suppression Task – Alternative Argument

Programs		
$e \leftarrow \top$	fact	definition of <i>e</i>
$\ell \leftarrow e \land \neg ab_1$	rule	definition of ℓ
$ab_1 \leftarrow \perp$	assumption	ab ₁ is assumed to be false
$\ell \leftarrow t \land \neg ab_2$	rule	definition of ℓ
$ab_2 \leftarrow \bot$	assumption	ab ₂ is assumed to be false

Weakly completed programs & least models

е	\leftrightarrow	Т	true	false	
l	\leftrightarrow	$(e \land \neg ab_1) \lor (t \land \neg ab_2)$	е	ab ₁	
ab ₁	\leftrightarrow	<u>⊥</u>		ab ₂	Φ ↑ 1
ab ₂	\leftrightarrow	\bot	l		Φ ↑ 2

► Computing logical consequences with respect to least models

 $\mathcal{M} = \langle \{e, \ell\}, \{ab_1, ab_2\} \rangle \models_{wcs} \ell$

The Suppression Task – Additional Argument

Programs

е	\leftarrow	Т	fact	definition of e
l	\leftarrow	$e \wedge \neg ab_1$	rule	definition of ℓ
ab ₁	\leftarrow	\perp	assumption	ab1 is assumed to be false
l	\leftarrow	$o \wedge \neg ab_3$	rule	definition of ℓ
ab ₃	\leftarrow	\perp	assumption	ab ₃ is assumed to be false
ab ₁	\leftarrow	¬ <i>o</i>	rule	definition of ab ₁
ab ₃	\leftarrow	¬ <i>e</i>	rule	definition of ab ₃

▶ Weakly completed programs & least models

е	\leftrightarrow	Т	true	false	
l	\leftrightarrow	$(e \land \neg ab_1) \lor (o \land \neg ab_3)$	е		Φ ↑ 1
ab ₁	\leftrightarrow	$\perp \lor \neg o$		ab ₃	Φ ↑ 2
ab ₃	\leftrightarrow	$\perp \lor \neg e$			

Computing logical consequences with respect to least models

$$\mathcal{M} = \langle \{ e \}, \{ ab_3 \} \rangle \not\models_{wcs} \ell$$

The Suppression Task – Denial of the Antecedent

Programs

 $\begin{array}{rcl} e & \leftarrow & \bot \\ \ell & \leftarrow & e \wedge \neg ab_1 \\ ab_1 & \leftarrow & \bot \end{array}$

▶ Weakly completed programs & least models

е	\leftrightarrow	\perp	true	false
l	\leftrightarrow	<i>e</i> ∧ ¬ <i>ab</i> ₁		е
ab ₁	\leftrightarrow	<u>⊥</u>		ab ₁
				l

► Computing logical consequences with respect to least models

 $\mathcal{M} = \langle \emptyset, \{ e, ab_1, \ell \} \rangle \models_{\mathit{wcs}} \neg \ell$

The Suppression Task – Affirmation of the Consequent

Programs

- $\begin{array}{rcl} \ell & \leftarrow & \top \\ \ell & \leftarrow & e \wedge \neg ab_1 \\ ab_1 & \leftarrow & \bot \end{array}$
- Weakly completed programs & least models

l	\leftrightarrow	⊤ ∨ (<i>e</i> ∧ ¬ <i>ab</i> ₁)	true	false
ab ₁	\leftrightarrow	\perp	l	ab ₁

► Computing logical consequences with respect to least models

$$\mathcal{M} = \langle \{\ell\}, \{\textit{ab}_1\} \rangle \not\models_{\textit{wcs}} e$$

Byrne 1989 most humans conclude e!

Abduction

▶ Hartshorn et. al.: Collected Papers of C. Sanders Peirce. Harvard Univ. Press: 1931

l

Programs & observations

 $\begin{array}{rcl} \ell &\leftarrow & e \wedge \neg ab_1 \\ ab_1 &\leftarrow & \bot \end{array}$

Abducibles

 $e \leftarrow \top \qquad e \leftarrow \bot$

▶ Weakly completed programs plus explanations & least models

l	\leftrightarrow	<i>e</i> ∧ ¬ <i>ab</i> 1	true	false
ab ₁	\leftrightarrow	\perp	е	ab ₁
е	\leftrightarrow	Т	l	

Computing logical consequences with respect to least models

 $\boldsymbol{\mathcal{M}} = \langle \{\boldsymbol{e}, \boldsymbol{\ell}\}, \{\boldsymbol{ab}_1\} \rangle \models_{\textit{wcs}} \boldsymbol{e}$

► H., Philipp, Wernhard: An Abductive Model for Human Reasoning. In: Proc. Tenth Int. Symposium on Logical Formalizations of Commonsense Reasoning: 2011

Alternative Arguments and Affirmation of the Consequent

- Programs & observations
 - $\begin{array}{cccc} \ell \leftarrow e \wedge \neg ab_1 & \ell \\ ab_1 \leftarrow \bot & \\ \ell \leftarrow t \wedge \neg ab_2 \\ ab_2 \leftarrow \bot & \end{array}$
- Abducibles
 - $e \leftarrow \top$ $t \leftarrow \top$ $e \leftarrow \bot$ $t \leftarrow \bot$
- Weakly completed programs plus explanations & least models

l	\leftrightarrow	(<i>e</i> ∧ ¬ <i>ab</i> ₁)	$(t \land \neg ab_2)$	true	false	true	false
ab ₁	\leftrightarrow	\perp		е	ab ₁	t	ab ₁
ab ₂	\leftrightarrow	\perp			ab ₂		ab ₂
е	\leftrightarrow	\top or $t \leftrightarrow$	$\rightarrow \top$	l		l	

Computing skeptical consequences with respect to both models

e does not follow

 Dietz, H., Ragni: A Computational Logic Approach to the Suppression Task Proc. COGSCI, 1500-1505: 2012

