
Modern (Embedded)
Processor Systems

Prof. Dr. Akash Kumar
Chair for Processor Design

(Ack: my past and current students/PostDocs)
(Some slides adapted from Koren, Krishna, Anand)

© Akash Kumar

Outline

 History of computer systems
 Trends in modern computer systems
 Design flow and considerations
 Modern challenges and solutions(??)

9

© Akash Kumar

History of Hardware / VLSI

 Vacuum tube

(Lee De Forest, 1906)

 ENIAC

(1946, UPenn)

 Transistor

(1947, Bardeen, Brattain,

Shockley)

 Integrated circuit

(1958, Jack Kilby)

10

© Akash Kumar

History of Hardware / VLSI

 Intel 4004

(1971, 1400 transistors)

 Intel Core i7 - Ivy Bridge
(2012, >1.4 Billion
transistors)

 Very Large Scale Integration (VLSI) – originally defined for chips
having transistors in the order of 100,000. Other terms such as
ULSI came along, but the usage VLSI remains dominant

11

© Akash Kumarhttp://cpudb.stanford.edu/

Moore’s Law

 In 1965, Intel’s Gordon Moore predicted that the number
of transistors that can be integrated on single chip would
double about every two years

12

© Akash Kumar

40 Years of microprocessor trend data
13

© Akash Kumar

Design Productivity Gap

 Increasing number of transistors makes it harder to
design the system
 Late launch of products directly hurts profits

14

© Akash Kumar

System Design Considerations

 System : sensor -> processor -> actuator
 Considerations

 Technology
 Performance
 Power consumption
 Volume of production
 Upgradability / ease of maintenance
 Reliability
 Testability
 Availability of CAD and software tools, IP's, hardware and

software libraries
 Cost, chip area
 Legal and certification requirements, client specifications
 …..

15

© Akash Kumar

Digital Hardware Market Segments

 Processor, GPU

 DRAM, Flash memories

 (Co-)Processor alternatives
 ASIC (application specific integrated circuit)
 ASSP (application specific standard product)
 FPGA (field programmable gate array)

 Convergence as System on Chip (SoC), which
may also contain analog, mixed-signal, and
radio-frequency functions

16

© Akash Kumar

Embedded systems architecture

 Trend towards Multi-Processor Systems-on-chip
(MPSoC)

 Homogeneous vs heterogeneous systems
 Different memory models
 Different network architectures

 Network-on-chip
 Buses

17

© Akash Kumar

Processor 4 Processor 5

Interconnection network

Processor 1 Processor 2 Processor 3

Memory Memory Memory

Memory Memory

Homogeneous vs heterogeneous
18

© Akash Kumar

Homogeneous vs heterogeneous

 Heterogeneity is increasing
 Different levels of parallelism in application
 uProc – better for control-flow
 DSP – better for signal processing
 Dedicated hardware blocks needed for certain parts
 Improves efficiency and saves power

 Homogeneous systems
 Better for fault-tolerance
 Only one compiled version of any application needed
 Easier to design and replicate
 Easy to support task migration

19

© Akash Kumar

Memory usage
20

© Akash Kumar

Processor 4 Processor 5

Interconnection network

Processor 1 Processor 2 Processor 3

Memory Memory Memory

Memory Memory

Embedded systems – local memory
21

Local memory is better for more predictability
Network/ bus delay may be unpredictable

© Akash Kumar

Embedded systems – global memory

Processor 4 Processor 5 Memory

Interconnection network

Processor 1 Processor 2 Processor 3

Arbiter

22

Global memory may be better for shared data

© Akash Kumar

Processor 4 Processor 5

Interconnection network

Processor 1 Processor 2 Processor 3

Memory Memory Memory

Memory Memory

Embedded systems – combination

Memory

Arbiter

Can also
be off-chip!

23

Communication pattern also determines which architecture is better
Message passing OR Shared memory

© Akash Kumar

Embedded systems – network

Processor 4 Input/ Output Memory

Interconnection network

Processor 1 Processor 2 Processor 3

Arbiter

24

© Akash Kumar

Interconnection network-on-chip

Processor 4 Input/ Output Memory

Processor 1 Processor 2 Processor 3

Arbiter

NININI

NI NI

NI

RouterRouter Router

25

© Akash Kumar

Interconnection network – bus

Processor 4 Input/ Output Memory

High speed bus

Processor 1 Processor 2 Processor 3

Arbiter

Arbiter

26

© Akash Kumar

Point-to-point networks

Processor 4 Input/ Output Memory

Processor 1 Processor 2 Processor 3

Arbiter

27

© Akash Kumar

System Design – Hw/Sw Codesign

 Take decisions on whether to
implement in hardware or software
 Consider the advantages vs costs

 If hardware, whether to use
commercial off the shelf (COTS)
components or custom components

System Level
Specification

Software
Model

Hardware/
Software

Partitioning

Hardware
Model

Co-
simulation

Compilation Synthesis

Integration
and Testing

Resources

Performance-1

Pareto Curve

28

A

B
C

D

© Akash Kumar

Modern Multimedia Embedded Systems

Large number
of use-cases

Guarantee
performance

Minimize power
consumption

Run-time
addition of appl

29

© Akash Kumar

Predictable
Design Flow

30

ccelerator

CGRA tile FPGA tile

SIMD
General
Purpose

Analysis
Design

Management

Real-Time Embedded Systems

© Akash Kumar

Restaurant

ANALYSIS: Time Spent in a Restaurant

32

Waiter
available

Waiter busy +
another client

Waiter
busy

Average waiting
time = 0 min

Average waiting
time = 1 min

Average waiting
time = 3 min

Average order
time = 2 min

Estimating the waiting time
with multiple clients

1
2 2

5

15
10

35 min
ANALYSIS

Accurate analysis for multiple applications
on an embedded system

Multiple food
items need to
be supported

Combinations
change over

time

BreakfastLunchDinnerDrinks

DESIGN
Automated design technique for

multiple combinations of applications

MANAGEMENT
Resource manager for heterogeneous
systems running multiple applications

© Akash Kumar

Design- and Run-time Flow

ManagementAnalysisDesign

Template??

39

© Akash Kumar

Design Template

Accel B

Accel B

FPGA

CGRA

FPGA

Accel A

40

© Akash Kumar

Design Template

CA: Communication Assist (DMA like)

41

© Akash Kumar

Design- and Run-time Flow

AnalysisDesign

Template??

Applications??

Design
Space

Exploration

Design
Space

Exploration

Reliability/Energy
Throughput

Applications
BA C

Analysis Results

42

Accel
B

Accel
B

FPGA

CGRA

FPGA

Accel
A

© Akash Kumar

Design- and Run-time Flow

 Applications are known?

 Can multiple applications run simultaneously?

 Application models are available?

 Application domain(s) is known?

 Use representative applications…

43

© Akash Kumar

Analysis – SDF Graph

 First proposed in 1987 by Edward Lee
 SDF Graphs used extensively

 SDFG: Synchronous Data Flow Graphs
 DSP applications
 Multimedia applications

 Similar to task graphs with dependencies

A2
B2

C2

D2

Actor

44

© Akash Kumar

Synchronous Dataflow Graphs

Actors
 Execution time per processor
 Memory requirement per processor
Channels
 Buffer constraints
 Token size
 Bandwidth requirements
Graph
 Throughput constraint

actor channelrate token

A B C
2 3 1 2α β

221

execution time

45

© Akash Kumar

Analysis – SDF Graph

 Analyze deadlocks
 Check for consistency
 Compute throughput
 Model mapping of tasks on processors
 Model scheduling – depends on the algorithm
 Model communication bandwidth
 Model buffers – local memory and network interface
 Evaluate throughput-buffer trade-offs

46

© Akash Kumar

Throughput-buffer trade-offs

5 6 7 8 9 10 11
0

0.05

0.1

0.15

0.2

0.25

Th
ro

ug
hp

ut

Memory Size

4,2 
6,2 

6,3 

7,3 

5,3 

A,1 B,2 C,2
2 3 1 2α β

47

© Akash Kumar

Use-case 2

Use-case 3

Use-case 1

Applications Specifications & Constraints

Predictable Design Flow

a0 a2

a1

a3
A

b1

b0 b2
B

c1

c0 c2
C

Architecture
Specifications &
Constraints

Architecture
Specifications &
Constraints

Mapping &
Performance
Analysis

Reliability/Energy
Throughput

Applications
BA C

Analysis Results

11 Mapping

System Design
and Synthesis

ArbiterRMArbiter b1a0

Arbiter Arbiter

RM

Arbiter Arbiter Arbiter

Arbiter

b2b0b1 a2a0

a1
a3

Hardware Specification

c2
c0

c1

22

Design Space
Exploration

Synchronous Data Flow (SDF) graphs
 DSP & Multimedia applications
 Allow performance analysis

static int local_variable_A;
void actor_A (TypeB *toB , TypeC *toC){
// calculate something
// and write the output tokens
toB[0] = calculate_valueB1() ;
toB[1] = calculate_valueB2() ;
*toC = calculate_valueC(local_variable_A);
}

static int local_variable_A;
void actor_A (TypeB *toB , TypeC *toC){
// calculate something
// and write the output tokens
toB[0] = calculate_valueB1() ;
toB[1] = calculate_valueB2() ;
*toC = calculate_valueC(local_variable_A);
}

A B

C

2 2

1

3

2

21

1

3

Mapping applications to the architecture

 Model all aspects, leading to a
predictable system

 Verify if mapping is deadlock-free

 Calculate buffer-distributions

 Compute static order schedules for hard-
RT apps

 Integrated into SDF3 (Synchronous Data
Flow For Free) tool flow

48

© Akash Kumar

Use-case 2

Use-case 3

Use-case 1

Applications Specifications & Constraints

a0 a2

a1

a3
A

b1

b0 b2
B

c1

c0 c2
C

Architecture
Specifications &
Constraints

Architecture
Specifications &
Constraints

Mapping &
Performance
Analysis

Throughput

Applications
BA C

Analysis Results

11 Mapping

System Design
and Synthesis

ArbiterRMArbiter b1a0

Arbiter Arbiter

RM

Arbiter Arbiter Arbiter

Arbiter

b2b0b1 a2a0

a1
a3

Hardware Specification

c2
c0

c1

22

Multi-Application Multi-Processor
Synthesis

Hardware
 Instantiate processing components
 Instantiate interconnect components
 Route connections, generate VHDL code
Software
 Generate wrapper code for each actor
 Reserve memory for communication
 Program connections, if needed

Predictable Design Flow
49

© Akash Kumar

Use-case 2

Use-case 3

Use-case 1

Applications Specifications & Constraints

Predictable Design Flow

a0 a2

a1

a3
A

b1

b0 b2
B

c1

c0 c2
C

Architecture
Specifications &
Constraints

Architecture
Specifications &
Constraints

Mapping &
Performance
Analysis

Reliability/Energy
Throughput

Applications
BA C

Analysis Results

11 Mapping

System Design
and Synthesis

ArbiterRMArbiter b1a0

Arbiter Arbiter

RM

Arbiter Arbiter Arbiter

Arbiter

b2b0b1 a2a0

a1
a3

Hardware Specification

c2
c0

c1

22
Xilinx
Tool-chain
Xilinx
Tool-chain33

Design Space
Exploration

50

© Akash Kumar

Use-case 2

Use-case 3

Use-case 1

Applications Specifications & Constraints

a0 a2

a1

a3
A

b1

b0 b2
B

c1

c0 c2
C

Architecture
Specifications &
Constraints

Architecture
Specifications &
Constraints

Mapping &
Performance
Analysis

Throughput

Applications
BA C

Analysis Results

11 Mapping

System Design
and Synthesis

ArbiterRMArbiter b1a0

Arbiter Arbiter

RM

Arbiter Arbiter Arbiter

Arbiter

b2b0b1 a2a0

a1
a3

Hardware Specification

c2
c0

c1

22
Xilinx
Toolchain
Xilinx
Toolchain33

Design synthesized using TCL scripts
 Script ensures compatibility with different Xilinx

software versions

 Carry out design space exploration

Tool-flow (MAMPS) targeted towards Xilinx
FPGAs
 Virtex 6 – Xilinx ML605 board

 Supports run-time reconfiguration

Tool available online for use

Generated a design
with 100

Microblazes!!

Currently used by
20 research groups

worldwide

Predictable Design Flow
51

© Akash Kumar

Use-case 2

Use-case 3

Use-case 1

Applications Specifications & Constraints

Predictable Design Flow

a0 a2

a1

a3
A

b1

b0 b2
B

c1

c0 c2
C

Architecture
Specifications &
Constraints

Architecture
Specifications &
Constraints

Mapping &
Performance
Analysis

Reliability/Energy
Throughput

Applications
BA C

Analysis Results

11 Mapping

System Design
and Synthesis

ArbiterRMArbiter b1a0

Arbiter Arbiter

RM

Arbiter Arbiter Arbiter

Arbiter

b2b0b1 a2a0

a1
a3

Hardware Specification

c2
c0

c1

22
Xilinx
Tool-chain
Xilinx
Tool-chain33

Design Space
Exploration

52

© Akash Kumar

MJPEG Case Study

VLD IQZZ IDCT CC Raster
1

10 1 1 1 1

1vld2iqzz
iqzz2idct

10 1

idct2cc

1

cc2raster

1
subHeader11 1

subHeader2

1
vldState1

1
rasterState 1

 One iteration decodes a single MCU (minimal coded unit)

 Each MCU consists of up to 10 blocks of frequency values

 WCET determined through measurement and scenario

detection techniques

53

© Akash Kumar

Designer Effort

Step Time spent

Parallelizing the MJPEG code < 3 days

Creating the SDF graph 5 minutes

Gathering required actor metrics 1 day

Creating application model 1 hour

Generating architecture model 1 second

Mapping the design (SDF3) 1 minute

Generating Xilinx project (MAMPS) 16 seconds

Synthesis of the system 17 minutes

Total time spent ~ 4 days

54

© Akash Kumar

Design- and Run-time Flow

ManagementAnalysisDesign

(Re-)Configuration??

55

© Akash Kumar

(Re-)Configuration??

 Determine which resource to use when

 Change the device types?
 Change the device functionality?
 Change the communication?
 Change the mapping
 Change the schedule

56

© Akash Kumar

Reconfigurable Heterogeneous MPSoC

 Customizable at run-time depending upon the
application requirements

 The tasks taking a long time in software can be
accelerated by configuring the programmable tiles
appropriately

 The reconfigurable tiles can be configured to achieve
fault-tolerance as well

 Size and cost reduction by time-multiplexing the
reconfigurable hardware

57

© Akash Kumar

Partially Reconfigurable MPSoC
58

© Akash Kumar

Loading Processor Executable Code at
Run-time

59

© Akash Kumar

Migrating Tasks
60

© Akash Kumar

Modern Challenges

61

© Akash Kumar

Issues and Modern Trends

 The communication bottleneck
 3D Chips
 Optical interconnects

 Leakage current limiting size reduction
 Multi-gate or gate-all-around transistors (Intel 22nm

uses 3D/tri-gate transistors)
 Channel strain engineering, silicon-on-insulator-based

technologies, and high-k/metal gate materials

 One may not fit all
 Hardware/Software Co-design
 Fault-tolerant / reconfigurable computing

 Power issues
 Multi-core and heterogeneous architectures

62

© Akash Kumar

 Dennard scaling principles [1]

Technology Scaling

[1] R. Dennard et al. “Design of Ion-Implanted MOSFET’s with Very Small Physical Dimensions,” IEEE Journal of Solid-State Circuits, 1974.

Device Parameters Scaling Factor

Device dimension 1/k

Doping concentration 1/k

Voltage 1/k

Current 1/k

Capacitance 1/k

Delay time per circuit 1/k

Power dissipation 1/k2

Area 1/k2

Power density 1

63

© Akash Kumar

 Digression from Dennard’s scaling beyond 65nm
 Non-ideal voltage scaling: limit on threshold voltage scaling

 Non-ideal gate oxide scaling

 Sub-threshold leakage power

 Power dissipation increases with technology scaling
 Heat localization (hot spots)

 Higher temperature => device wear-out

Technology Scaling
64

© Akash Kumar

Technology Scaling and Power Density
65

Hot Plate

Nuclear
Reactor

© Akash Kumar

Technology Scaling and Power Density

Manufacturing defects
(e.g. Imperfect Lithographic

patterning)

Transistor Scaling

Increased Variability
(e.g. Random Dopant

Fluctuation)

Increasing Power
Density

Increase T

66

© Akash Kumar

What cause Faults?
67

Manufacturing Defects
Aging

(a.k.a., Circuit Wearout)

© Akash Kumar

Internal Electronic Noise Electromagnetic Interference

What causes Faults?
68

© Akash Kumar

What cause Faults?
69

Bugs Malicious attack

1962: Mariner
1998: Mars climate orbiter

© Akash Kumar

Fault Classification

Permanent
Faults

• Manufacturing defects, wear-outs
• Non-recoverable
• Use of redundant hardware

Intermittent
Faults

• Wear-outs, PVT variations
• Few cycles to few seconds or more
• Suspending system operation

Transient
Faults

• Alpha and neutron particle strike
• Single event upsets
• Task re-execution and information redundancy

Fault Rate

70

© Akash Kumar

Failures during Lifetime

 Three phases of system lifetime
 Infant mortality (imperfect test, weak components)
 Normal lifetime (transient/intermittent faults)
 Wear-out period (circuit aging)

71

© Akash Kumar

The Impact of Technology Scaling

 More leakage
 More process variability
 Smaller critical charges

 Trends show soft-error rates incr. exp., 8% per tech generation

 Weaker transistors and wires

72

Burn-in test less
effective

Higher random
failure rate Faster

wear-out

© Akash Kumar

Effect on Embedded systems

 Decreased Lifetime:
Mission failures
 Reduced safety in critical systems

 Power plants, transportation, medical
etc.

 Reduced product lifetime

73

© Akash Kumar

Effect on Embedded systems

 Soft errors:
 Direct effect on reliability

 Functional reliability
 Timing reliability

 Indirect effect
 Mitigation methods lead to faster aging

Fault Error Error Detection Recovery/
Failure

System reaction
to Failure

Fault Latency Error Latency Fault tolerance
mechanism latency System reaction

latency

Fault Tolerance Timing Overheads

Computation errors

Data Corruption

74

© Akash Kumar

Fault-Aware System Design

 Faults are inevitable…..learn to live with faults !!!
 How to address them??

 Fault prevention
 Fault tolerance
 Fault removal
 Fault forecasting

75

© Akash Kumar

Single-layer Fault tolerance

 The usual “phenomenon-based” approach
 Provide a “perfect” hardware to upper layers

Application

y
Operating

System

Architecture

Circuits

Devices
Reconfig

Diagnose

Detect

Fault Tolerance

76

© Akash Kumar

Hardware System

Processor(s)

ALU Register
File Cache

Hardware
Accelerator

Q

QSET

CLR

S

R

Memory
System

interconnnection network

(Host) Operating System

Virtual Machine Monitor
Drivers

Guest
OS

Guest
OS

Core-level redundancy
TMR/ DWC

Dynamic verification & correction
Block-level redundancy

ECC for memory
Circuit hardening

Virtualization
Task migration

Redundant multithreading
Fault-tolerant scheduling

Application Software Software redundancy

Levels of Fault Tolerance
77

© Akash Kumar

Application areas and requirements

 Variation

78

Application Area
Priority of reliability requirements

Other relevant
metrics

Functional
Reliability

Timing Reliability

Banking High Medium
Multimedia

Medium High
Throughput

Portable
multimedia

Throughput,
Energy

Health
monitoring

High Medium ~ High Energy, Lifetime

Satellites /
Space Missions

Medium Medium ~ High Lifetime

Not all applications
require the same level of

reliability

© Akash Kumar

Cross-layer Approach
79

Application Design

Compilation

System Software

Platform Design

Architecture Design

Synthesis

Place and Route

Device and Cell
Design

Performance metrics, Acceptable miss-
rate, Error Tolerance, Profiled data,

Acceptance test time …

Application Design

Masking factor, Execution overhead,
Error detection and/or correction

time, other overheads …

System Software Design

Masking factor, Power/Energy
overheads, Fault detection/correction

overhead…

Hardware

Resilience Mechanism

Need to do a cost-
benefit analysis!!

© Akash Kumar

Case-Study – Nanosatellites

 Light-weight: Wet mass of 1-10kg
 Small satellites: Notion of cube-sats, 1U=10x10x10
 Increasingly being used as they are cheaper to

design and launch
 2004-2013: 75 launches in total
 2014 Q1: 94 launces

 Typically low earth orbit
 Satellite swarms are also used

CubeSat – University of Liege

80

© Akash Kumar

Case-Study – Nanosatellites

 FPGA use increasing in nanosats – lower price,
faster development

 Nanosats affected by high energy particles in
space leading to glitches

 Most common error in FPGAs– Single Event Upset
(SEU) – a transient error that might flip
configuration bits

A B Y

0 0 0

0 1 0

1 0 0

1 1 1

1

AND XNOR
CubeSat – University of Liege

81

© Akash Kumar

82

CFAED Paths

© Akash Kumar

Path G: Resilience
83
• New technologies will have higher failure rates

Application
Code

Permanent errors

Transient errors
Skeletons

Materials-Inspired Paths (Paths A – E)

CMOS

ApplicationApplication

MiddlewareMiddleware

RuntimeRuntime

Operating SystemOperating System

Processor/ MemoryProcessor/ Memory

Materials &
Functions

Devices &
Circuits

dynamic

© Akash Kumar

Distributed Middleware

Databases

Run-time Libraries

Compiler

Networking

Operating System

Application

Adaptive
run-time
manager

Fault rate sensor

Fault-injection
framework

Post-CMOS
devices

TomaHawk
experimental CPU

Intel/Arm/AMD
existing CPUs

Architecture

Circuits

CMOS devices

Configure

Fault rate

Constraints: Error rates, energy, deadline
Objectives: Performance requirements
Dependencies: Software requirements

Hardware

Entire
Software
Stack

84

Overview – Resilience at TU Dresden

© Akash Kumar

Approximate Computing

85

© Akash Kumar

20 W20 W

~200000 W

The Computational Efficiency Gap

IBM Watson playing Jeopardy, 2011

86

© Akash Kumar

Humans Approximate

923 = − − .− −?21

is 923 >1.75?21

is 923 > 45?21

Task:
Division

Application
context
dictates
required
accuracy of
results

Accuracy

21) 923 (43
84
83
63

Effort expended increases with required accuracy

~1Petaflop/W

87

© Akash Kumar

But Computers DO NOT

float x = 923;
float y = 21;
cout << (x/y > 45.0) ?
“YES”:”NO”;

NO92321
923 21 float x = 923;

float y = 21;
cout << (x/y > 1.75) ?
“YES”:”NO”;

YES

But, I worked
harder than
needed

 Overkill (for many applications)

 Leads to inefficiency
 Can computers be more efficient by producing “just good enough” results?

88

© Akash Kumar

Its an Approximate World … At the Top

 No golden answer (multiple answers
are equally acceptable)
 Web search, recommendation systems

 Even the best algorithm cannot
produce correct results all the time
 Most recognition / machine learning

problems

 Too expensive to produce fully
correct or optimal results
 Heuristic and probabilistic algorithms,

relaxed consistency models, …
Miller-Rabin
primality test

Eventual
consistency

89

© Akash Kumar

Its an Approximate World … At the Top

No golden answer Perfect/correct answers
not always possible

Too expensive to produce
perfect/correct answers

Miller-Rabin
primality test

Eventual
consistency

90

© Akash Kumar

Approximate Computing Throughout the Stack

No golden answer Perfect/correct answers
not always possible

Too expensive to produce
perfect/correct answers

Programming Languages, Compilers,
Runtimes

Architecture

Logic

Circuits St
ric

t N
um

er
ic

al
 o

r
Bo

ol
ea

n
Eq

ui
va

le
nc

e

91

© Akash Kumar

Approximation in System Design

 Arising from the application level
 Inherent lack of notion or ability for a single ‘correct’

answer
 ‘Noisy’ or redundant real-world data
 Perceptual limitations

 Arising from the transistor level
 Increasing fault-rates
 Increased effort/resource to achieve fault-tolerance

92

© Akash Kumar

Hardware System

Processor(s)

ALU Register
File Cache

Hardware
Accelerator

Q

QSET

CLR

S

R

Memory
System

interconnnection network

(Host) Operating System

Virtual Machine Monitor
Drivers

Guest
OS

Guest
OS

Approximate computing
systems/architectures

Approximate computing
processors

Reconfigurable approximate
modules

Approximate circuit design

Application Software Application Approximation

Program Analysis for variable
approximation

Approximation in System Design
93

© Akash Kumar

Conclusions

 Transistor scaling leading to increased faults
 Designing systems to tolerate faults inevitable
 Need to handle faults at all levels of critical systems

 Applications often lack notion of
a ‘correct’ result

 Immense need/potential to trade-off
performance and energy consumed

MAXMIN

EFFORT

94

© Akash Kumar

Ongoing Research Activities

Reliability/Energy Optimization
• Reconfigurable approximate computing at run-time
• Optimize energy and reliability
• Minimize thermal cycling and peak temperature
• Task remapping and scheduling for dealing with faults

Processing Architecture Design
• Determine and design appropriate system architecture
• Design predictable components – network and communication assist
• Partially reconfigurable tile-based heterogeneous multiprocessor systems
• Task-migration module in hardware for predictable delay

Low-Power and Fault-Tolerant FPGA Designs
• Improving fault-tolerance of FPGA through LUT content manipulation
• Novel error-correction mechanisms for FPGAs
• Leakage-aware resource management techniques
• Electronic Design Automation – Place and Route for FPGAs

95

© Akash Kumar

Chair for Processor Design
96

© Akash Kumar

Questions and Answers

Email: akash.kumar@tu-dresden.de

97

