Modern (Embedded)
Processor Systems

Prof. Dr. Akash Kumar

Chair for Processor Design

(Ack: my past and current students/PostDocs)
(Some slides adapted from Koren, Krishna, Anand)

WIGEBENSGCHAFTSRAT

TECHNISCHE DRESDEN /F)
cfaed.tu-dresden.de @UNWERS'“‘T concept _g oFG WR

DRESDEN

Qutline
o]

0 History of computer systems
01 Trends in modern computer systems
0 Design flow and considerations

1 Modern challenges and solutions(2¢)

© Akash Kumar

History of Hardware / VLSI
N

7 Vacuum tube

(Lee De Forest, 1906)

0 ENIAC
(1946, UPenn)

0 Transistor
(1947, Bardeen, Brattain,
Shockley)

0 Integrated circuit

(1958, Jack Kilby)

History of Hardware / VLSI

O

Intel 4004
(1971, 1400 transistors)

Intel Core i/ - Ivy Bridge i B I OECIN L CIOECN LU LD D) e ¢
o b 3 e e e .
(2012, >1.4 Billion e e e |
transistors) B Processor . TGN TN T Y
I S Graphics =

Very Large Scale Integration (VLSI) — orlglnqlly deflned for chlps
having transistors in the order of 100,000. Other terms such as
ULSI came along, but the usage VLS| remains dominant

© Akash Kumar

Moore’s Law
K=

In 1965, Intel’s Gordon Moore predicted that the number
of transistors that can be integrated on single chip would
double about every two years

10 (@ B AVD

° B Cypress
DEC
B Fujitsu
° B Hitachi
o W HP
B BM
B DT
: M Intel
o Il Motorola
° . $e B NEC
. [Samsung

Feature Size (um)

Tl

0.1 > B Toshiba

\ M unnamed
® B TsSMC

[]
1970 1980 1990 2000 2010

Year

http://cpudb.stanford.edu/ © Akash Kumar

40 Years of microprocessor trend data
BN

10’ ! ; ! l, Transi
5 5 5 Al ransistors
Y [O S . 424 * | (thousanas)
WO
105 b e T VYT] Single-Thread
ghaat ey, Performance
VS (N R RPT <Py Lt 3 s | (speciNT x 10°)
AT é
; Bl Syl & Bl % Frequency (MHz)
103 . T — “"‘*.‘e;g‘l. e B "
s et gl 3 P Typical Power
Tl . S A h i '-v,,;';v‘¥v, A A 4 (Watts)
A =z vy i :v e X
: m - vv v &5' L) b‘q'* Number of
101 e] T L S 25 A A— o Qg e - ,
LA = = v iV bid ‘t Logical Cores
A @ - v v v: vy cnaoe
100 _‘.’‘ ’ ‘.",.“mm”. :. —
| ! | |
1970 1980 1990 2000 2010 2020
Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2015 by K. Rupp
© Akash Kumar

Design Productivity Gap
I

0 Increasing number of transistors makes it harder to
design the system
O Late launch of products directly hurts profits

Benefit from Benefit from
longer sales life larger market share

I

[

:

[

[

[
el
£
-l
=]

-
i
—

1]

¥]

i

[

[

; 1
Early Late

Product Introduction
© Akash Kumar

System Design Considerations
a

1 System : sensor -> processor -> actuator

1 Considerations
O Technology
O Performance
O Power consumption
O Volume of production
O Upgradability / ease of maintenance
O Reliability
O Testability

O Availability of CAD and software tools, IP's, hardware and
software libraries

O Cost, chip area
O Legal and certification requirements, client specifications
a....

© Akash Kumar

Digital Hardware Market Segments
I

Processor, GPU

DRAM, Flash memories

(Co-)Processor alternatives
ASIC (application specific integrated circuit)
ASSP (application specific standard product)

FPGA (field programmable gate array)

OL10S6EE BBSOTdY

Convergence as System on Chip (SoC), which
may also contain analog, mixed-signal, and

£1Z1L IHOFDEHD

€A6

K3PE7E700F - XGC2

radio-frequency functions

© Akash Kumar

Embedded systems architecture

0 Trend towards Multi-Processor Systems-on-chip

(MPSoC)
1 Homogeneous vs heterogeneous systems
0 Different memory models

1 Different network architectures
O Network-on-chip

O Buses

© Akash Kumar

Homogeneous vs heterogeneous
e

A A S [/
=

Interconnection network

s [/ A

© Akash Kumar

Homogeneous vs heterogeneous
s

1 Heterogeneity is increasing
O Different levels of parallelism in application
O uProc — better for control-flow
O DSP — better for signal processing
O Dedicated hardware blocks needed for certain parts
O Improves efficiency and saves power
0 Homogeneous systems
O Better for fault-tolerance
O Only one compiled version of any application needed
O Easier to design and replicate

O Easy to support task migration

© Akash Kumar

Memory usage

e
0
®
A
W
I
0
| .
a
W
o
Ll
©
-
)
3
=
0
o
M
o
O

qn :"...._wﬂ”u__ ...__

e s ey

(B Ly EY R T e

i _m_j |

Thana

E_w_mu_@ SRR

By

Embedded systems — local memory
N

A

Processor 3

Interconnection network

Memory

—

Processor 5

Local memory is better for more predictability
Network/ bus delay may be unpredictable © Akash Kumar

Embedded systems — global memory

q -

Interconnection network

Processor 5 I Memory

Global memory may be better for shared data

© Akash Kumar

Embedded systems — combination
=N

A

Processor 3

Interconnection network

Memory

—

Processor 5 Memory

Communication pattern also determines which architecture is better
Message passing OR Shared memory © Akash Kumar

Embedded systems — network

Processor 3 |

Interconnection network

-

Input/ Output

Memory

© Akash Kumar

Interconnection network-on-chip

Router I‘—’

Router I‘—»

g

Input/ Output

Processor 3
NI I

1

Router

Memory

© Akash Kumar

Interconnection network — bus

Processor 3 |

High speed bus

-
=

|

Input/ Output |

!
]

Memory

© Akash Kumar

Point-to-point networks

Input/ Output |

Processor 3 |

© Akash Kumar

System Design — Hw/Sw Codesign

System Level
Specification

Hardware/
Software

Partitioning

Software l Co- I Hardware

Model simulation Model

Compilation Synthesis

Integration

and Testing

0 Take decisions on whether to
implement in hardware or software

O Consider the advantages vs costs

0 If hardware, whether to use
commercial off the shelf (COTS)
components or custom components

Resources

A A

o
°N

D
)

d
Performance™’

Pareto Curve
© Akash Kumar

Modern Multimedia Embedded Systems

© Akash Kumar

Predictable
Design Flow

© Akash Kumar

Analysis
Design
Management

A . e——
5
1
= o
I '
Ve W

S,

! ’ '__‘.-- L -..
. iy _
| !
: s =s]
. - A=A
- " "
_- I
Y - 'I—TI
L} E —
1 -
) a4
- 1. Ill 1
o 2

ﬂpaw r. fﬂ) % .
CGRA tiless~ FPGA tile u_u. %
mum q ﬁ M_EEF l

. 3 .] - : 5 2
——C = C 2 .

«
fi
v a Wl

F R

Real-Time Embedded Systems

[ANALYSIS: Time Spent in a Restaurant]

Restaurant

.

© Akash Kumar

Estimating the waiting time
with multiple clients

Average order
time = 2 min

Average waiting
time = 3 min

Average waiting
time = 1 min

Average waiting
time = 0 min

p

ANALYSIS

urate analysis for multi atlons
(%) bedded S

= n
R

© O O
O.T..nl»
<9 5
0 Q9

o
g, 8
25 o
= £ 0

Combinations

=)

=

=]

=]

il il (]) i))

N,

BPOU

v

0 D))))

=)

]
()

®

|@| @I
@l

UP(F

BT

DPOOT

D

4 DESIGN)

Automated design technique for
. multiple combinations of applications

-

MANAGEMENT

Resource manager for heterogeneous
__Systems running multiple applications /

~

Design- and Run-time Flow
N

N N

Design Analysis Management

° V V
®

© Akash Kumar

Design Template

— e —— — —— —— — — —— —— — —— — — —— —— — — — — — —

© Akash Kumar

Design Template
Em

~ Tile 1 \ — Tile 2 N ~— Tile 3 N ~ Tile 4 N

Memory Memory Inst.

Data.

e mr e Emr mr wm mm mm m e e e e e e mr mr mm mw e e wm mm o wr wm e e e e mr mr mr m m e e mw mm wr e mr e o e e me ww mm wm wr wr e e me ww mw m wmm wm mm =

CA: Communication Assist (DMA like)

© Akash Kumar

Design- and Run-time Flow
=

Analysis Results

° ° 22 o |
Applicationse? 3
«Q
>
©
<
A B C
® Applications
[
Design Analysis
[
Design '
Py Space
Exploration
@

Template??

© Akash Kumar

Design- and Run-time Flow
=N

0 Applications are known?

0 Can multiple applications run simultaneously?
1 Application models are available?

0 Application domain(s) is known?

11 Use representative applications...

© Akash Kumar

Analysis — SDF Graph

| a4
01 First proposed in 1987 by Edward Lee

1 SDF Graphs used extensively
O SDFG: Synchronous Data Flow Graphs
O DSP applications

O Multimedia applications

0 Similar to task graphs with dependencies

Actor

© Akash Kumar

Synchronous Dataflow Graphs
K

actor rate token channel execution time

ST 2 ; 2+

= Execution time per processor
» Memory requirement per processor

Actors

Channels

= Buffer constraints

» Token size

» Bandwidth requirements
Graph

» Throughput constraint
© Akash Kumar

Analysis — SDF Graph

|46 |
1 Analyze deadlocks

1 Check for consistency

1 Compute throughput

1 Model mapping of tasks on processors

1 Model scheduling — depends on the algorithm

1 Model communication bandwidth

0 Model buffers — local memory and network interface

0 Evaluate throughput-buffer trade-offs

© Akash Kumar

Throughput-buffer trade-offs

o —0—©

Throughput

o o o
o © = O P
G = u b o’

o

(7.3)
(5.3 (6,3)
(6,2) 3
4.2) I_|
5 6 7 8 9 10 11

Memory Size

© Akash Kumar

Predictable Design Flow

Applications Specifications & Constraints

Mapping applications to the architecture

= Model all aspects, leading to a
predictable system

= Verify if mapping is deadlock-free

" Calculate buffer=distributions

= Compute statie erder schedules fo
RT apps

Use-case 3

Architecture™

Flow For Free) tool flow

6\

static int local variable A;
void actor_A (TypeB *toB , TypeC *toC){
// calculate something
// and write the output tokens
toB[0] = calculate_valueB1() ;
toB[1] = calculate_valueB2() ;

*toC = calculate_valueC(local_variable_A);

}

g oioraron < Nealisalans ; © Akash Kumar

Predictable Design Flow

Multi-Application Multi-Processor
Synthesi
Hardware

® |nstantiate processing components

® |nstantiate interconnect components

Arbiter Arbiter Arbiter

= Route connections; generate VHDL code
Software Arbiter Arbiter Arbiter
= Generate wrapper code for each actor
= Reserve memory for communication

® Program connections, if needed

~ Tile 1 N ~ Tile 2 N ~ Tile 3 N ~ dhiletd S

Memory Memory Inst.

Predictable Design Flow

Applications Specifications & Constraints

‘

Arbiter Arbiter Arbiter

Use-case 3

Architecture
Specifications &
Constraints

Analysis Results

Mapping & i

=5
Performance §
Analysis %—

Design Space
Exploration

>
o
o« A B C
< Applications

Predictable Design Flow

Design synthesized using TCL scripts

= Script ensures compatibility with different Xilinx
software versions

Generated a design
with 100
Microblazes!!

= Carry out design space exploration

Tool-flow (MAMPS) targeted towards Xilinx
FPGAs

" Virtex 6 — Xilinx ML605 board

= Supports run-time reconfiguration

Tool available online for use

Currently used by
20 research groups
worldwide

Predictable Design Flow

Applications Specifications & Constraints

‘

Arbiter Arbiter Arbiter

Arbiter

Use-case 3

Architecture
Specifications &
Constraints

Analysis Results

Mapping & i

=5
Performance §
Analysis %—

Design Space
Exploration

>
o
o« A B C
< Applications

MIJPEG Case Study
=R

subHeader2

1//’subHeader\\‘ 1
{ vld2iqzz

VldStatfs iqzz2idct idet2ec ccoraster rasterState 1
vilD —— 1QZZ — IDCT —— ClC — Raster

10 1 1 1 1 10

1 One iteration decodes a single MCU (minimal coded unit)
0 Each MCU consists of up to 10 blocks of frequency values

0 WCET determined through measurement and scenario

detection techniques

© Akash Kumar

Designer Effort
I

Step Time spent

Parallelizing the MJPEG code < 3 days
Creating the SDF graph 5 minutes
Gathering required actor metrics 1 day
Creating application model 1 hour
Generating architecture model 1 second
Mapping the design (SDF3) 1 minute
Generating Xilinx project (MAMPS) 16 seconds
Synthesis of the system 17 minutes
Total time spent ~ 4 days

© Akash Kumar

Design- and Run-time Flow
N

N

Design Analysis Management

V V .
@
(Re-)Configuration2?

© Akash Kumar

(Re-)Configuration??

1 Determine which resource to use when

0 C
0 C
0 C
0 C
0 C

nange t
nange f
nange t

nange t

nange t

ne device types?
ne device functionality?
ne communication?

ne mapping

he schedule

© Akash Kumar

Reconfigurable Heterogeneous MPSoC

0 Customizable at run-time depending upon the

application requirements

The tasks taking a long time in software can be
accelerated by configuring the programmable tiles

appropriately “ W
'l) el e
l. 'l' - oy &
\'\‘_‘ ” & & L ~—

The reconfigurable tiles can be configured to achieve
fault-tolerance as well

Size and cost reduction by time-multiplexing the
reconfigurable hardware

© Akash Kumar

Partially Reconfigurable MPSoC

Clock/Reset Control

o

1/

i \
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
| 1
\]
\ /

© Akash Kumar

Loading Processor Executable Code at

Run-time
Ex

Q
Q
O
Y
Q
+—
=
o
—J |
o

Clk/Rst/Debug
NoC Interface

Tile
Memory BRAM

Input Ports ,
I PR Module

PR_WRAPPER

or
Hardware
Accelerator)

Master

|

l

|

|

I

l

(Processor |
|

|

l

l

Processor :

o ———— — — —— —

© Akash Kumar

Migrating Tasks
o

Tile Tile
Memory 1 BRAM Memory x BRAM
Input Ports Input Ports

v v

Sel Sel

BRAM |

Slave Slave
Controller Controller
Master ; A
Processor BRAM BRAM
t Output Ports Output Ports

PLB BUS

© Akash Kumar

Modern Challenges

© Akash Kumar

|Issues and Modern Trends

[

[

The communication bottleneck

O Optical interconnects

Leakage current limiting size reduction

uses 3D /tri-gate transistors)

O Channel strain engineering, silicon-on-insulq’ror-bdsed/ ‘
Aem A
technologies, and high-k/metal gate materials 5

One may not fit all

O Hardware /Software Co-design
O Fault-tolerant / reconfigurable computing
Power issues

O Multi-core and heterogeneous architectures

Technology Scaling

0 Dennard scaling principles [1]

Device Parameters Scaling Factor

Device dimension 1/k
Doping concentration 1/k
Voltage 1/k
Current 1/k
Capacitance 1/k
Delay time per circuit 1/k
Power dissipation 1/k?
Area 1/k?

Power density

1

© Akash Kumar

Technology Scaling
Lo

0 Digression from Dennard’s scaling beyond 65nm

O Non-ideal voltage scaling: limit on threshold voltage scaling
O Non-ideal gate oxide scaling

O Sub-threshold leakage power

01 Power dissipation increases with technology scaling

O Heat localization (hot spots)

O Higher temperature => device wear-out

© Akash Kumar

Technology Scaling and Power Density

CMOS Voltage Scaling Power Density vs. Gate Length
6 1E+03
Voo &
5 | o—e \ E 1E+02
o 4 E— 1E+01
E \ > 1E+00
0 3 ‘w 1E-01
> e
51 Gate Overdrive 1 8 1E-02
Voo— Vi l \\‘\‘-H_ & 1E-03
1 {F_’ﬂ—.——.——o_.._._._. E 1E-04
o +— 1E-05
14 1.0 8 6 .35 .25 .18 .13 .09 .065 0.01 0.1 1
Technology Generation Gate Length (um)
Source: P. Packan (Intel), Source: B. Meyerson (IBM)
2007 IEDM Short Course Semico Conf., January 2004

© Akash Kumar

Technology Scaling and Power Density
e

i

| @spa.du| I

Increased
Fault
Rate

© Akash Kumar

What cause Faults?

© Akash Kumar

What causes Faultse

© WEATHERPLX STOCK IMAGES

! Power Supply Noise AV=IR + L Al/ At

[Internal Electronic Noise } [Electromagnetic Interference }

© Akash Kumar

What cause Faults?
Cer

1962:
1998:

LOGIN

Email address:

T

Passwaord:
I:‘ Remember me

JOIN
ZDNET.CO.UK

Become part of the

ZDONet community.

2DNet UK

Hardware | Software |

Create parallel applications for the desktop
and compete in a multicore industry

Home " News Blogs Reviews Videos Jobs Resources Community

Communications | Internet | Security | IT Management | Emerging Tech | Leac

Intel® Parallel Studio

Click here to find out mo

fou are here: ZDNet.co.uk = News = Software

ENTERPRISE APPLICATIONS TOOLKIT
US software 'blew up Russian gas pipeline'

Matt Loney ZDNet.co.uk
Published: 01 Mar 2004 15:10 GMT

=] Email &S Trackback @y Clip Link = Frint L) Postacomiment
Faulty US software was to blame for one of the biggest non-
nuclear explosions the world has ever seen, which took place in a
Siberian natural gas pipeline, according to a new book published
on Monday.

Malicious attack

© Akash Kumar

Fault Classification
I

Fault Rate

Permanent
Faults

Intermittent

Faults

Transient
Faults

Manufacturing defects, wear-outs
Non-recoverable
Use of redundant hardware

Wear-outs, PVT variations
Few cycles to few seconds or more
Suspending system operation

Alpha and neutron particle strike
Single event upsets
Task re-execution and information redundancy

© Akash Kumar

Failures during Lifetime

Failure Rate

Decreasing Constant Increasing
i Failure Failure Failure
Rate Rate Rate

*, Mortality”
*. Failure
% Constant (Random)
Failures

I
I
I
I
I
I
I 4
- Early : Observed Failure o
“ “Infant Rate

—— e ——
e g -] — - - -

01 Three phases of system lifetime

O Infant mortality (imperfect test, weak components)
O Normal lifetime (transient /intermittent faults)

(circuit aging)

© Akash Kumar

The Impact of Technology Scaling

[

Burn-in test |
effective

eSS

Failure Rate

Decreasing
Failure
Rate

., Early
* “Infant

Constant
Failure
Rate

Higher random
failure rate

Observed Failure
Rate

Increasing
Failure
Rate

.
el o T

*, Mortality” i
*. Failure u
. Constant (Random)
Failures
T e B L LT P U
L 5
Time

Faster
wedar-out

More leakage

More process variability

Smaller critical charges

O Trends show soft-error rates incr. exp., 8% per tech generation

Weaker transistors and wires

© Akash Kumar

Effect on Embedded systems
S

1 Decreased Lifetime:
® Mission failures

® Reduced safety in critical systems

Power plants, transportation, medical
efc.

® Reduced product lifetime

© Akash Kumar

Effect on Embedded systems

1 Soft errors:

m Direct effect on reliability I P

Data Corruption

= Functional reliability

= Timing reliability &'F&:K

B Indirect effect

Computation errors

= Mitigation methods lead to faster aging

System reaction

Recovery/ to Failure

Error :
Fault Error Detection Failure

a

a
»
<

Error Latency " Fault tolerance

v

Fault Latency

a

System reaction
latency

mechanism latency

Fault Tolerance Timing Overheads
© Akash Kumar

Fault-Aware System Design

o Faults are inevitable.....learn to live with faults Il

1 How to address them?2?
O Fault prevention

O Fault tolerance

O Fault removal ECC REtry

Fault forecastin
e ereces TaskMapplng

N-VP =

Checkpointing ~ &

© Akash Kumar

Single-layer Fault tolerance
E

01 The usual “phenomenon-based” approach

0 Provide a “perfect” hardware to upper layers

y
g

o

© Akash Kumar

Levels of Fault Tolerance

[Application Software Software redundancy

Virtualization

Task migration
Redundant multithreading
Fault-tolerant scheduling

{ Virtual Machine Monitor
: Drivers |

Core-level redundancy
TMR/ DWC
Dynamic verification & correction
Block-level redundancy
ECC for memory
Circuit hardening

Hardware System

Processor(s)

Regster
File

interconnnection network

© Akash Kumar

Application areas and requirements
N

Not all applications

71 Variation require the same level of
reliability
Priority of reliability requirements
.. Other relevant
Application Area .
metrics
Functional
Timing Reliabilit
Reliability |/ ming Reliability
Banking High Medium
Multimedia Throughput
Portable Medium High Throughput,
multimedia Energy
Health
High ium ~ High | E Lifeti
moniforing ig Medium ig nergy, Lifetime
tellit
Seficlh ?S,/ Medium Medium ~ High Lifetime
Space Missions

© Akash Kumar

Cross-layer Approach

Need to do a cost-

benefit analysis!! o :
Application Design

Application Design

Performance metrics, Acceptable miss- — Compilqtion —
rate, Error Tolerance, Profiled data,
Acceptance test time ...
=l System Software —

Masking factor, Execution overhead,
Error detection and/or correction
time, other overheads ...

=l Platform Design

[

S

o ol

-
Design

Resilience Mechanism © Akash Kumar

Masking factor, Power/Energy

overheads, Fault detection/correction

overhead...

Case-Study — Nanosatellites

0 Light-weight: Wet mass of 1-10kg
0 Small satellites: Notion of cube-sats, 1TU=10x10x10

0 Increasingly being used as they are cheaper to
design and launch

O 2004-2013: 75 launches in total
02014 Q1: 94 launces

0 Typically low earth orbit

1 Satellite swarms are also used

CubeSat — University of Liege

© Akash Kumar

Case-Study — Nanosatellites

11 FPGA use increasing in nanosats — lower price,
faster development

0 Nanosats affected by high energy particles in
space leading to glitches

0 Most common error in FPGAs— Single Event Upse’r
(SEU) — a transient error that might flip

configuration bits ‘ %

CubeSat — University of Liege

© Akash Kumar

CFAED Paths

System Complexity

Information
Processing

Devices &
Circuits

Materials &
Functions

CMOS

(industry focus)

F Orchestration

(G Resilience

© Akash Kumar

Path G: Resilience

* New technologies will have higher failure rates

a D
Application
Code

0 \ Permanent errors

dynamic Transient errors

Skeletons

Devices &
Circuits

)

Materials & Materials-Inspired Paths (Paths A — E)

Functions /

CMOS

© Akash Kumar

Overview — Resilience at TU Dresden

Constraints: Error rates, energy, deadline

Obijectives: Performance requirements

Dependencies: Software requirements

[Application]

Distributed Middleware

Databases

| =i
Adaptive Configure _. Run-time Libraries
run-time
manager _. Compiler
A
_. Networking
—. Operating System
TR v e e e v v vy vy iy ywnnm
| Fault rate sensor I
Intel /Arm/AMD TomaHawk Fault-injection
Fault rate existing CPUs experimental CPU framework

‘ Architecture ‘

‘ Circuits ‘ Post-CMOS
\ CMOS devices | devices

Entire
Software
Stack

Hardware

© Akash Kumar

Approximate Computing

© Akash Kumar

The Computational Efficiency Gap
a

~200000 W

20W 20W

IBM Watson playing Jeopardy, 2011 © Akash Kumar

Humans Approximate

|

>21 -
~ | Petaflop/W
Application
|S% > 459 context
2 1 dictates
— required
21) 923 (43--- accuracy of
84) results
‘93, \ /
2 1 . .

63

[Effort expended increases with required accuracy }

& ARKUIIT NUITIJ1

But Computers DO NOT

(@ D
float x = 923;

923 float y = 21;
PYID 45 ﬁ> cout << (xly > 45.0) ?
“YES”:”NO”;

(@ D) 7
923 float x = 923; '
> 175 l::> floaty = 21; o\
cout << (x/y > |.75)?
(‘YES”:”NO”;

21

But, | worked
harder than
needed

» Overkill (for many applications)

» Leads to inefficiency

» Can computers be more efficient by producing “just good enough” results!?
© Akash Kumar

Its an Approximate World ... At the Top

|89
0 No golden answer (multiple answers GOL)gle

are equally acceptable)

O Web search, recommendation systems b" |g

11 Even the best algorithm cannot
produce correct results all the time

O Most recognition / machine learning

problems
Redis iH9: <&
0 Too expensive to produce fully OmongoDB — wriak
correct or optimal results] Al M
O Heuristic and probabilistic algorithms, \ e?”w «
relaxed consistency models, ... g (G BTN {membos
Miller-Rabin Eventual
primality test consistency

© Akash Kumar

lts an Approximate World ... At the Top

No golden answer Perfec'r/correc'r answers Yo expensw 1'0 produce
not always possible e

Google
bING m

Miller-Rabin Eventual

primality test consistency
© Akash Kumar

Approximate Computing Throughout the Stack
|91 |

No golden answer Perfect/correct answers Too expensive to produce

GOO le" not always possible perfect/correct answers
blngg | m N \f\ Allce pegs o o

1] HmABE Cassandra
‘ mongoDB i
.-
Ci
Progran
T *® Neogj v
° il

Programming Languages, Compilers,
Runtimes

Architecture

Logic

Circuits

© Akash Kumar

Approximation in System Design
a

0 Arising from the application level

O Inherent lack of notion or ability for a single ‘correct’
answer

O ‘Noisy’ or redundant real-world data

O Perceptual limitations

0 Arising from the transistor level
O Increasing fault-rates

O Increased effort /resource to achieve fault-tolerance

© Akash Kumar

Approximation in System Design

[Application Software Application Approximation

Program Analysis for variable
approximation

{ Virtual Machine Monitor
: Drivers |

Approximate computing
Hardware System .
systems/architectures

FrezEeEE(E) Approximate computing
e processors
Reconfigurable approximate
interconnnection network
- modules

Approximate circuit design

© Akash Kumar

Conclusions
=

0 Transistor scaling leading to increased faults
1 Designing systems to tolerate faults inevitable

1 Need to handle faults at all levels of critical systems

0 Applications often lack notion of

a ‘correct’ result

0 Immense need /potential to trade-off
performance and energy consumed

© Akash Kumar

Ongoing Research Activities
R

Reliability /Energy Optimization

* Reconfigurable approximate computing at run-time

* Optimize energy and reliability

* Minimize thermal cycling and peak temperature

* Task remapping and scheduling for dealing with faults

Processing Architecture Design

* Determine and design appropriate system architecture

* Design predictable components — network and communication assist

* Partially reconfigurable tile-based heterogeneous multiprocessor systems
* Task-migration module in hardware for predictable delay

Low-Power and Fault-Tolerant FPGA Designs

* Improving fault-tolerance of FPGA through LUT content manipulation
* Novel error-correction mechanisms for FPGAs

* Leakage-aware resource management techniques

* Electronic Design Automation — Place and Route for FPGAs

© Akash Kumar

ign

Chair for Processor Des

© Akash Kumar

Questions and Answers

Email: akash.kumar@#tu-dresden.de

© Akash Kumar

