
TRUSTED EXECUTION
Prof. Dr. Christof Fetzer

Systems Engineering Chair
TU Dresden

MOTIVATION
➤ We help stakeholders to protect

➤ data (e.g. training data), and/or

➤ code (e.g., Python code)

MOTIVATION
➤ We help stakeholders to protect

➤ data (e.g. training data), and/or

➤ code (e.g., Python code)  

➤ Systems engineering:

➤ we build stuff to see if that really works

➤ publish in top systems conferences (OSDI, EuroSys, …)

MOTIVATION
➤ We help stakeholders to protect

➤ data (e.g. training data), and/or

➤ code (e.g., Python code)  

➤ Systems engineering:

➤ we build stuff to see if that works in real life

➤ publish in top systems conferences (OSDI, EuroSys, …)  

➤ Try it out in practice:

➤ spin offs: Cloud&Heat, SIListra Systems, SCONTAIN

PROTECT GOALS
➤ Protecting

➤ Confidentiality - keeping data / code secret

➤ Integrity - prevent unauthorized data & code modifications

➤ Freshness - prevent rollback to old versions of data and
code

USE CASE: MODEL GENERATION

machine  
learning

training  
data model

python code

data provider
application  
provider

model  
owner/provider

CONTAINER-BASED APPS

Python Runtime  
Image

image provider
need to protect the integrity and freshness  
of the code (CIF) and C limits access  
to the code.

protection objectives

application
(image)

application  
developer

need to protect the confidentiality,  
integrity and freshness of application  
code (CIF)

docker build

application A
(container)client

training  
data

model

in
protect data (CIF), i.e., protect training data  
as well as generated model

docker run

Confidentiality  
Integrity  
Freshness

USE CASE: NEED TO SUPPORT MULTIPLE DEVELOPERS

developer 1

Python Runtime  
Image

image provider

application
(image)

developer3
docker build

stored in public repository

application
(image)

developer 2

application
(image)

USE CASE: NEED TO SUPPORT MULTIPLE INSTANCES

developer 1

Python Runtime  
Image

image provider

application A
(container)client1

training  
data

model

in

docker run

application
(image)

application
(image)

application
(image)

docker build

lives in public repository

application A
(instance) client N

docker run training  
data

model

developer 2

developer3

THREAT MODEL: BYZANNTINE STAKEHOLDERS
➤ We do not trust any individual, i.e., no trusted person

THREAT MODEL: BYZANNTINE STAKEHOLDERS
➤ We do not trust any individual, i.e., no trusted person

➤ We believe, however, one can define N and F (< N) and a
group of persons PB such that

➤ |PB| = N

➤ at least N-F in PB can be trusted.

We typically do not know who to trust!

THREAT MODEL

Application attacker

client

https://sconedocs.github.io

THREAT MODEL

Application attacker

system administrator

(root, hardware access)

service provider administrator

(root, application rights)

client

https://sconedocs.github.io

IMPLICATION: OS-BASED ACCESS CONTROL INSUFFICIENT

Application

service provider administrator

(root, application rights)

client secret

dump  
memory

attacker

system administrator

(root, hardware access)

https://sconedocs.github.io

WE NEED A CRYPTOGRAPHIC APPROACH!

Application

service provider administrator

(root, application rights)

client
crypto

TLS
attacker

system administrator

(root, hardware access)

https://sconedocs.github.io

HOW TO PROTECT THE KEYS?

Application

service provider administrator

(root, application rights)

client
crypto

TLS
attacker

system administrator

(root, hardware access)

https://sconedocs.github.io

key attacker

RESEARCH PROBLEMS ADDRESSED
➤ How can we provide applications with secrets running in an untrusted

environment?

➤ How can we delegate the management of these secrets to untrusted
entities?

➤ How to manage the secrets despite malicious stakeholders?

➤ How to support secure application updates?

➤ How can we ensure that no rollbacks happen?

➤ How to protect against malicious developers, cloud providers and
system admins?

➤ …

➤ How can we do all this without changing application source code?

MORE USE CASES
➤ Electronic Patient Records

➤ Decentralized Apps (DApps)

➤ Blockchain related use cases

➤ Secure Data-as-a-Service

➤ Health Domain / DNA

➤ …

➤ Approach:

➤ do not start from scratch for each application!

SCONE PLATFORM
sconedocs.github.io

SCONE PLATFORM (HTTPS://SCONEDOCS.GITHUB.IO)

encrypted processing
trusted client  

computer

always encrypted

remote untrusted  
computers

input data

encrypted data

output data
S

C

O

N

E

SCONE:
- supports always encrypted code and data

SCONE PLATFORM (HTTPS://SCONEDOCS.GITHUB.IO)
always encrypted

remote untrusted  
computers

encrypted processing
application  
(no source  
code changes)

SCONE:
- attests that the correct application is running!
- manages keys & secrets for applications
- de/encrypts data and files - transparent to application

Palaemon

S

C

O

N

E

attests
SCONE secrets  

management service

END-TO-END ENCRYPTION

data

untrusted local computer

remote untrusted  
computers

encrypted

encrypted

always encrypted

Palaemon

encrypted processing

encrypted data

S

C

O

N

E

SCONE

SCONE:
- supports end-to-end encryption and

trusted, remote and local computation

ADVANTAGES OF USING SCONE
➤ Attests that the correct code is running

➤ Protects confidentiality, integrity and freshness of data and
code even against attackers with root priviledges

➤ Provides an integrated secret management

➤ Can be used for a more secure licensing management

➤ Even if attacker would have root access…

SCONE USE CASES
➤ Medical domain:

➤ electronic patient records

➤ AI / Machine Learning:

➤ supports TensorFlow

➤ Blockchain domain:

➤ decentralized applications

➤ Data-as-a-service

➤ Supports Parity Substrate inside of enclaves

➤ General:

➤ Vault, Barbican, PySpark, Blender, …

(EXTENED) THREAT MODEL
➤ Attacker has root access on all machines

➤ Attacker has hardware access on all machines

➤ Attacker controls (credentials of) some but not all
stakeholders

➤ Attacker knows sufficient vulnerabilities in software

➤ note: about one bug every 2000 lines of source code

➤ Supply chain attacks on some chips and motherboard

https://sconedocs.github.io

ALL SECRETS ARE PROTECTED BY POLICIES

data

remote untrusted  
computers

encrypted

encrypted

always encrypted

Palaemon

encrypted processing

encrypted data

S

C

O

N

E

SCONE

security
policy secrets  

management

https://sconedocs.github.io

NO TRUST IN ANY INDIVIDUAL OPERATORS / USERS / …

remote untrusted  
computers

Palaemon
SCONE

security
policy

SCONE:
- policies are protected by policy boards
- members can be humans and (attested) scripts
- changes requires approval from all/majority/.. members

policy board (per policy)

/approve

https://sconedocs.github.io

Application  
Provider

(provides container
images)

publishes

Data Owner
(wants to

monetize data)

Data scientist
(User)

uses

always encrypted
remote untrusted  

computers

encrypted processing application  
Palaemon

vol

operates cloud

uses

provides

Auditor
(checks source code)

provides

Service
Provider

(operates service)

checks

Infrastructure  
Provider
(operates

computers &
services)

SCONE has Multi-
Stakeholder support!S

C

O

N

E

SCONE

CURRENT IMPLEMENTATION
➤ Intel SGX protects

application’s

➤ confidentiality

➤ integrity

➤ by preventing accesses to

➤ application state in cache
and

➤ encrypting main memory

➤ SGX is a TEE (Trusted
Execution Environment)

Application

SCONE libraries

Application libraries

Intel SGX enclave

SGX (Software Guard eXtensions) protects  
application from accesses by other software

host

Operating system

Container Engine

Hypervisor

https://sconedocs.github.io

DEFENDER’S DILEMMA
➤ Attackers:

➤ success by exploiting a
single vulnerability

➤ Defender:

➤ must protect against every
vulnerability

➤ system software &
application

➤ millions of lines of source
code

Application

SCONE libraries

Application libraries

Intel SGX enclave

host

Operating system

Container Engine

Hypervisor

millions of

lines of codes

(hundreds  
of bugs)

200k lines

https://sconedocs.github.io

MARIADB PERFORMANCE

 0

 500

 1000

 1500

 2000

 2500

 3000

8 64 128 256 512

T
ra

n
sa

ct
io

n
s/

se
c

Buffer Pool Size (MB)

MariaDB

Native Palæmon HW Palæmon EMU

TPC-C: increasing buffer pool has little impact on performance

Palaemon = SCONE Secret Management Service

Overheads

�32

Lower	
the	better

	<	22	%		overhead	compared	to	native	execution

SCONE

PYTHON OVERHEADS

better

worse

➤ PyPy SCONE: just in time Python inside enclave

➤ Python Native: CPython in native mode

SCONE PLATFORM ADVANTAGES
➤ SCONE supports protection of multiple stakeholders.

➤ SCONE has an integrated secrets&configuration management

➤ SCONE scales better (high performance syscall interface)

➤ SCONE generates smaller executables.

➤ SCONE comes with a toolchain.

➤ SCONE protects the OS interface.

➤ SCONE ensures better Linux compatibility.

➤ SCONE transparently attests applications.

➤ SCONE’s design is hardware independent.

BA, MSC, DIPLOM THESIS
➤ Not much on website

➤ Customized to students

➤ talk to me to find an interesting top

BA, MSC, DIPLOM THESIS
➤ Not much on website

➤ Customized to students

➤ talk to me to find an interesting top

➤ Current topics:

➤ Function as a service in DB (with Oracle)

➤ Secure GraalVM (with Oracle)

➤ Blockchain topics (with vmware)

➤ Encrypted binary code

➤ …

JOBS

➤ Always looking for students

➤ SHK, WHK

➤ PhD students

➤ PostDocs

➤ Talk to me regarding external jobs

christof.fetzer@scontain.com
https://sconedocs.github.io/ http://scontain.com

