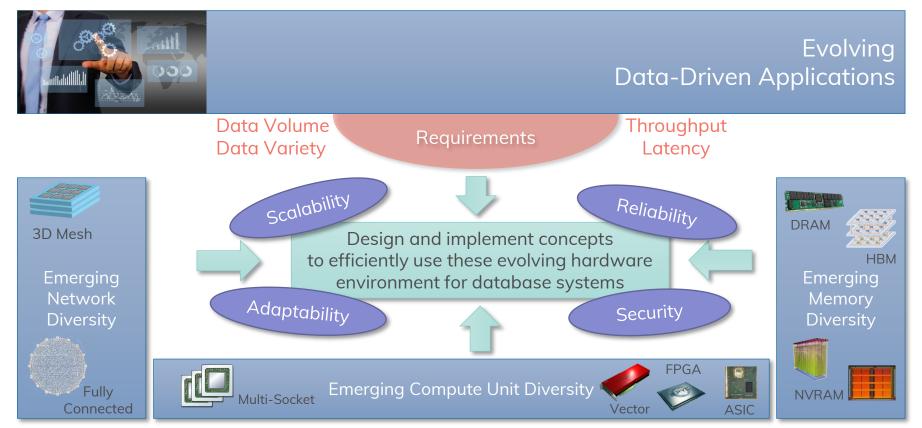
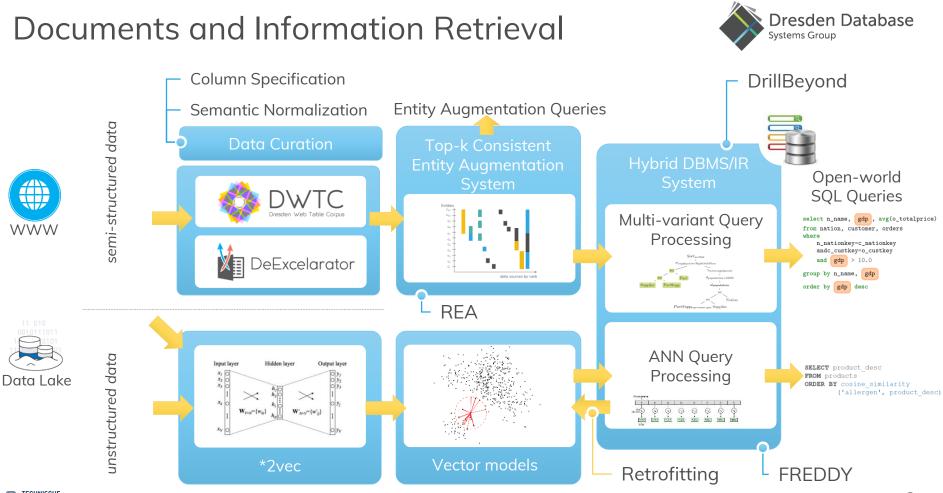


Beyond the Crystal Ball – Time Series Analysis and Forecasting

Claudio Hartmann – Lehrstuhl Datenbanken

System Architecture





Data Analytics

Support/Extend Database Technology

- Sampling Techniques
- Integration of Machine Learning into RDBMS
- Cardinality estimation using Artificial Neural Networks
- Monitoring database health status

Working with Data

- Time series Forecasting
- Time series properties and generation
- Clustering with human feedback

Flash Forward Query

Agenda

What is a time series?

Health of a Database System

- Monitoring and Target
- Techniques

Feature-based Time Series Engineering

- Time Series Features
- What-if analysis

Forecasting Large-scale Time Series Data

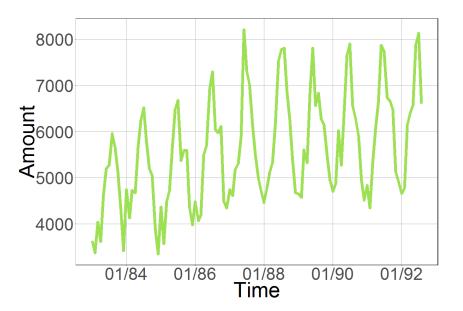
- Forecasting Process
- Big Data Implications
- CSAR

6

Terminology

Time Series

- Sequence of measure values
- Ordered by time
- Equidistant
 - Constant time distance between measure values
- Complete
 - No missing values



Monitoring

 Several measurements that serve as indicator for the health status of the database

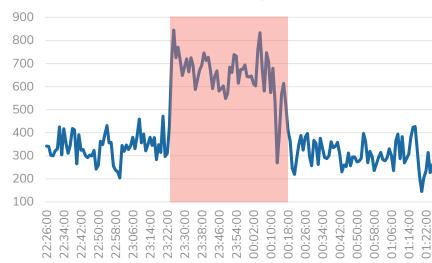
Target

INIVERSITÄ

 Issue automatic warning for situations that would lead to customer complaints

Possible Health indicators

- CPU (user_busy, io_busy, system_busy, idle)
- user connections
- physical reads/writes, ...



user_busy

Threshold/Limits

- Define upper threshold
- Issue warning when threshold is exceeded

Problem

- Manual work
- Proper definition of threshold
 - Too high ightarrow Warning too late
 - Too low ightarrow Waring when there is no issue

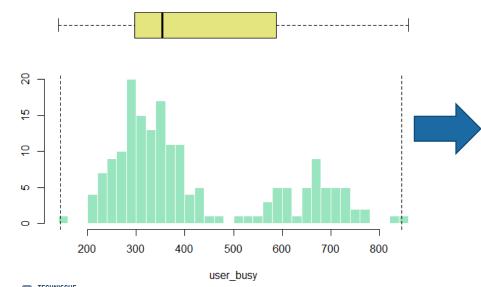


Automatic threshold using IQR

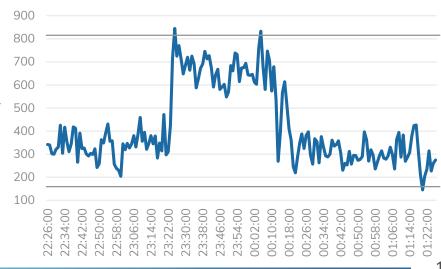
- Define threshold based on box plot statistics
- Issue warning when threshold is exceeded

Problem

May detect normal states as outliers



UNIVERSITÄT



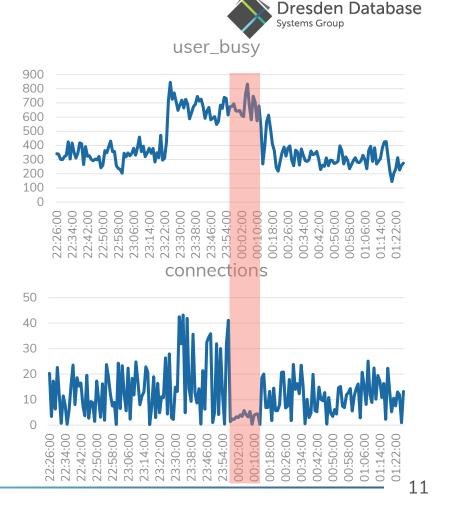
user_busy

Co-development of measurements

- Examine proportions of several measurements
- Issue warnings for abnormal proportions

Problem

- Know all effects in advance
- Lots of manual work

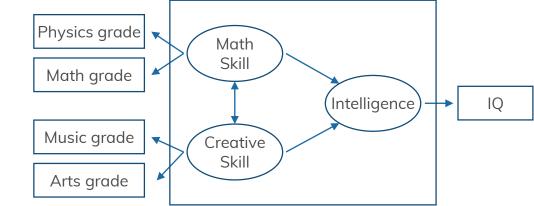


Structural Equation Modeling

- Model influences between system components
- Analysis of Latent Factors

Model Properties

- Item
 - Measurable variables
- Latent Factor
 - Not measurable variables
- Measurement model
 - Model connections between items and factors using covariance



Structural Equation Modeling

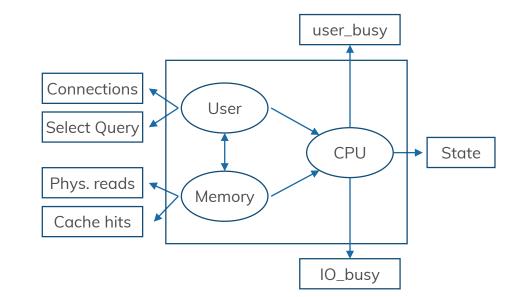
- Model influences between system components
- Analysis of Latent Factors

Model Properties

Item

UNIVERSITÄT

- Measurable variables
- Latent Factor
 - Not measurable variables
- Measurement model
 - Model connections between items and factors using covariance

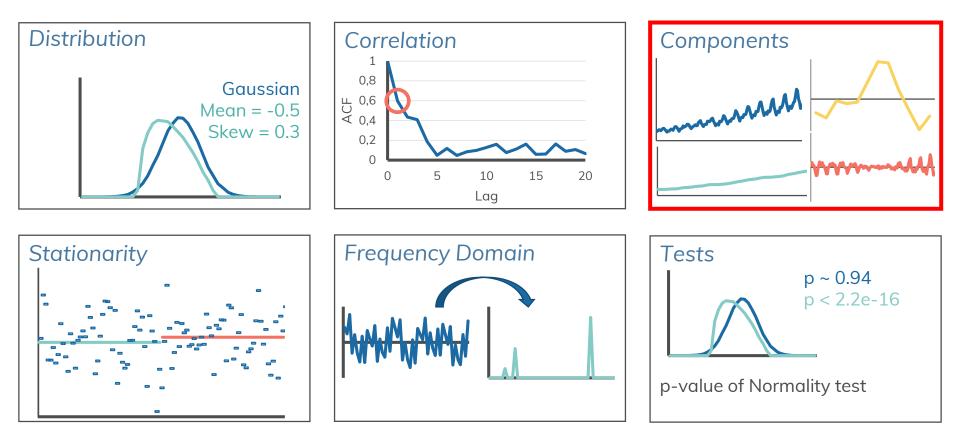


Feature-based Time Series Engineering

Dresden Database Process of Time Series Engineering Systems Group **Representation Engineering** Data-mining Tasks Generation Indexing root Original - - FBG Genetic Algorithm $\{0*, 0*, 1*\}$ [0*,1*,1*] [0*,1*,0*] {00,1*,1*} [01,1*,1*] Time Series Representation [01, 10, 1*] {01, 11, 1*} Dataset Dataset 1984 1985 $\{01, 10, 10\}$ $\{01, 10, 11\}$ Represent Classification Clustering Representation electrocardiogram Operation 1 Distance Operation X earn classifiers

Figures: Kegel et al., 2018; Shieh and Keogh, 2013; Fulcher et al., 2013; Wang et al., 2006

Example Time Series Features

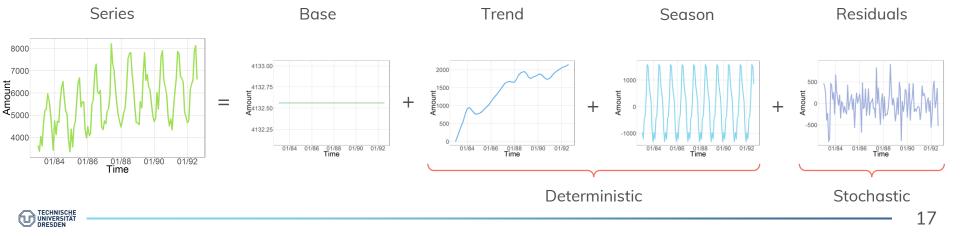


Time Series Components

Decomposition

- Base: stationary part of the time series
- Trend: long-term change in the mean level
- Season: cyclical repeated behavior
- Residuals: unstructured information assumed to be random

Additive Composition $x_t = base_t + trend_t + season_t + res_t$



Often, base is part of

the trend component!

Dresden Database

Systems Group

18

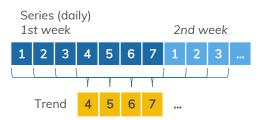
Time Series Decomposition

Basic Idea

- Moving-average filter of continuous windows
- $tr_t = \frac{x_t + x_{t-1} + x_{t-2} + \dots + x_{t-N+1}}{N}$
- Extraction of trend by windows that take into account the season length
- Extraction of season by averaging each time instance of the same seasonal position (all Mondays, all Tuesdays,...)
- Disadvantage: does not decompose the endpoints

Average Centering

- A technique needed if season length is even
- Take two moving averages and average their result



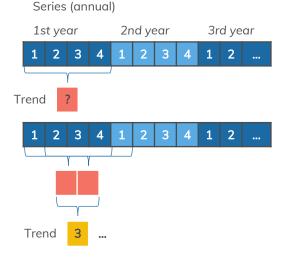
A season of length 7 such as

resden Database

- Monday (1)
- Tuesday (2)

- ...

Systems Group



Time Series Decomposition

Retrieval of Trend

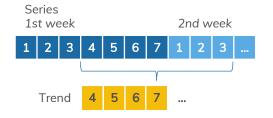
- Moving-average filtering
- In case of even season length, centralize first

Season Retrieval

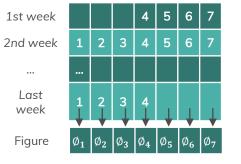
- Detrend series
- Figure represents the average of each time instance of a season
- De-mean figure

Residuals

UNIVERSITÄT



trend <- filter(series, rep_len(1,7)/7)</pre>



season <- figure - mean(figure)</pre>

residuals <- series - season - trend

Subtract components

detrend <- series - trend

Kegel et al., 2018

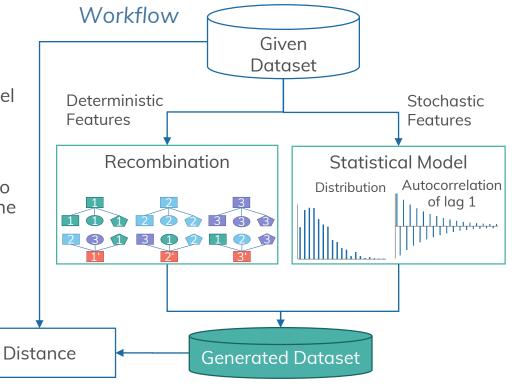
Feature-based Generation Method (FBG)

Idea

- Feature-based representation
- Recombination of deterministic features
- Simulation of residuals with statistical model

Use cases

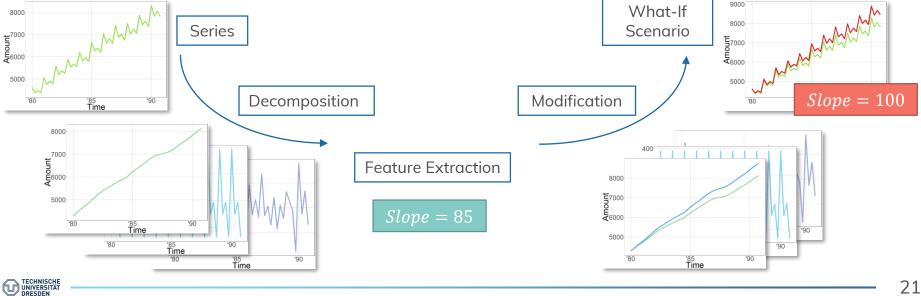
- Anonymization of data sets
- Generate a data set that is closely related to the original data set but does not contain the actual data



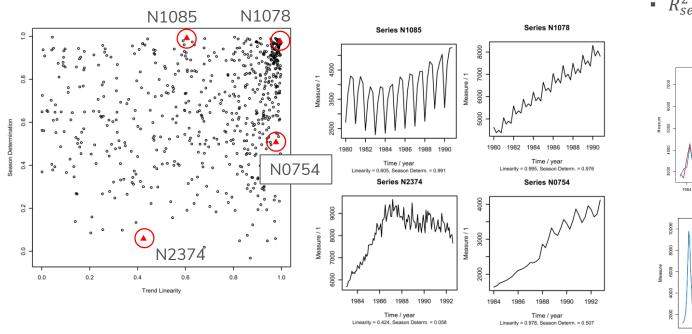
What-if Analysis

General Idea

- Represent time series by their features
- Generate a what-if scenario by setting factors that modify features



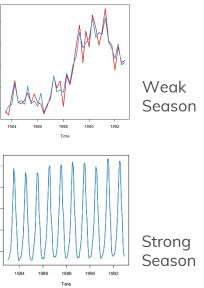
Feature Extraction



Feature Space and Selected Time Series

Season Determination R_{seas}^2

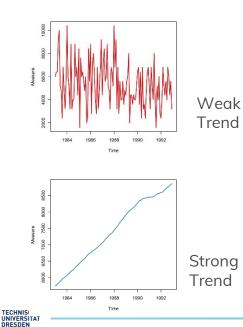
• $R_{seas}^2 = 1 - \frac{var(res_t)}{var(res_t + seas_t)}$



Feature Extraction

Trend Determination R_{tr}^2

• $R_{tr}^2 = 1 - \frac{var(res_t)}{var(res_t + tr_t)}$



Trend Slope θ_2

1984 1986 1988 1990 1992

1984

Time

1988 1990 1992

Time

• Suppose a linear trend within STL trend: $tr_t = \theta_1 + \theta_2 \cdot l_t + \delta_t$

Negative

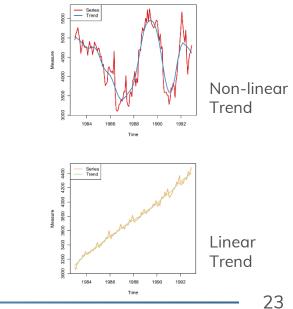
Trend

Positive

Trend

Trend Linearity R_{lin}^2

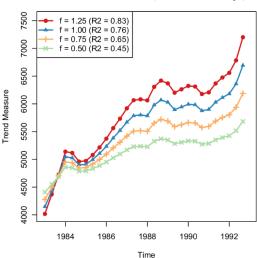
•
$$R_{lin}^2 = 1 - \frac{var(\delta_t)}{var(tr_t)}$$



Component Modification

Trend Determination Factor

- Strengthen/weaken trend
 - $tr_{t,f} = \theta_1 + \mathbf{f} \cdot (\theta_2 \cdot l_t + \delta_t)$ $R_{tr}^2 = 1 \frac{var(res_t)}{var(res_t + tr_{t,f})}$

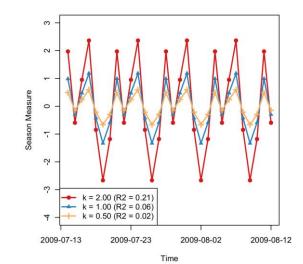


Dresden Database

Season Determination Factor

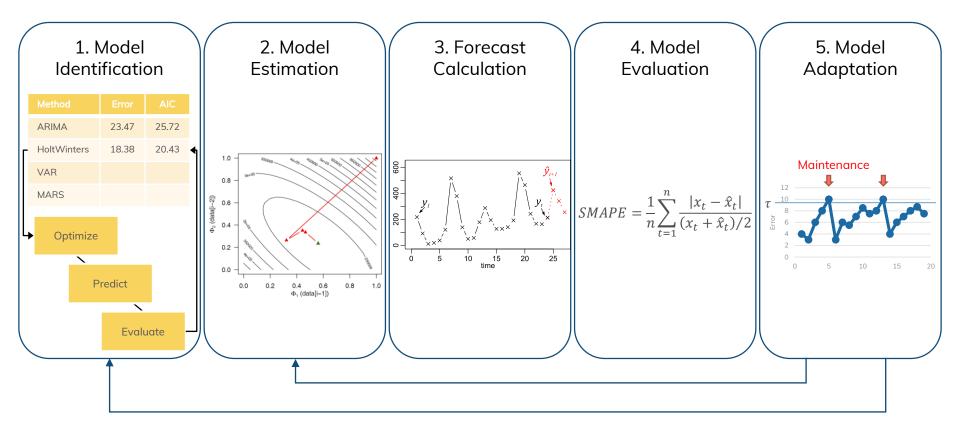
• Strengthen/weaken season $seas_{t,k} = \mathbf{k} \cdot seas_t$

$$R_{seas}^{2} = 1 - \frac{var(res_{t})}{var(res_{t} + seas_{t,k})}$$



Forecasting Large-scale Time Series Data

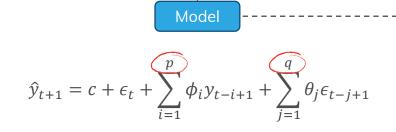
Forecasting Process



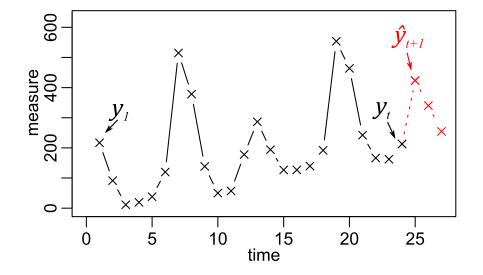
Traditional Time Series Forecasting

Univariate Forecast Models

- ARIMA/Exponential Smoothing
- Focus on only one time series at a time
- Widely applied in many domains
- auto.ARIMA/ETS to properly configure the model for a given time series



UNIVERSITÄT



Large-scale Time Series Data

Many and Long Series

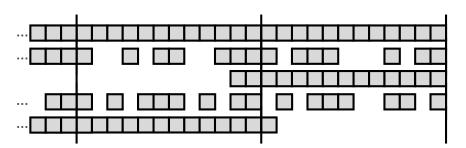
- High number of monitored objects (Smart Meter in every household, sales of individual products)
- Fine monitoring granularity leads to very long time series histories

High Levels of Noise

Time series on fine granularity tend to be very noisy

Missing values

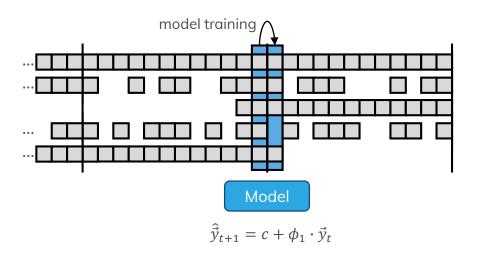
Missing values lead to inapplicability of all most conventional models



Cross-sectional Forecasting

Core Approach

- Represent a whole data set with one model
- Focus on cross-sections instead of the entire time series
- Model transition from one cross-section to the next one
- All time series with values in the blue crosssections contribute to the model training
- The model represents the average transition of the entire data set



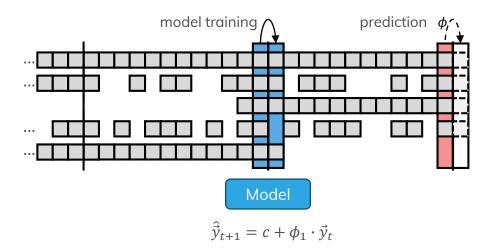
Cross-sectional Forecasting

Core Approach

- Represent a whole data set with one model
- Focus on cross-sections instead of the entire time series
- Model transition from one cross-section to the next one
- All time series with values in the blue crosssections contribute to the model training
- The model represents the average transition of the entire data set

Model Application

- Assume the transition remains constant over seasons
- Apply model on the most current data
- Train a specific model for every transition in a season



Still misses adaptability!

CSAR – Autoregression

Non-seasonal Autoregression

Model the dependency of future values of their direct predecessors

 $\hat{\vec{y}}_{t+1} = c + \phi_1 \cdot \vec{y}_t + \dots + \phi_p \cdot \vec{y}_{t-p+1}$

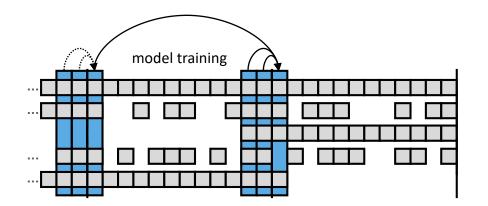
Seasonal Autoregression

Model the dependency of future values of their seasonal predecessors

 $\hat{\vec{y}}_{t+1} = c + \Phi_1 \cdot \vec{y}_{t-s+1} + \dots + \Phi_P \cdot \vec{y}_{t-P \cdot s+1}$

Correction Terms

 Necessary if non-seasonal and seasonal components are combined



$$\hat{\vec{y}}_{t+1} = c + \phi_1 \cdot \vec{y}_t$$

CSAR – Autoregression

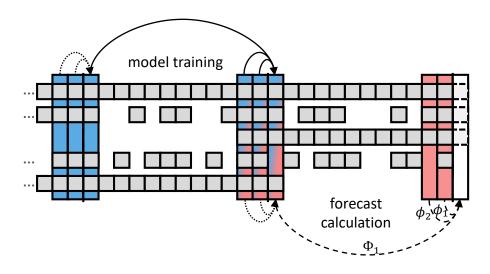
Dresden Database

Model Application

- On most recent data
- On all time series which have <u>all</u> necessary values

Behavioral Deviation

 Some time series do not follow the common behavior of the majority



 $\hat{\vec{y}}_{t+1} = c + \phi_1 \cdot \vec{y}_t + \phi_2 \cdot \vec{y}_{t-1} + \Phi_1 \cdot \vec{y}_{t-s+1} \\ + (-\Phi_1 \phi_1) \cdot \vec{y}_{t-s} + (-\Phi_1 \phi_2) \cdot \vec{y}_{t-s-1}$

CSAR – Error Terms

Non-seasonal Error Terms

- Adjust forecasts according to systematic non-seasonal misprediction
- Deviation of individual time series from the general model for the data set

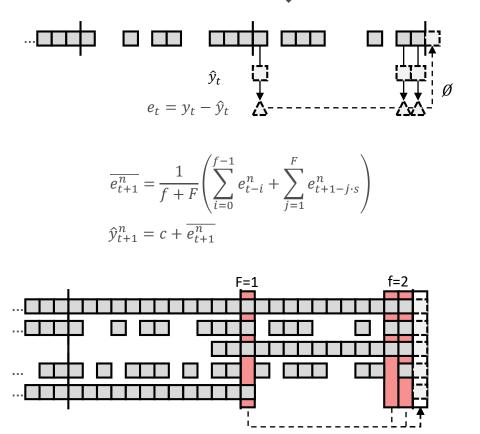
Seasonal Error Terms

- Adjust forecasts according to systematic seasonal misprediction
- Systematic deviation in the seasonal pattern

Missing Data

NIVERSITÄ

If real value or forecast is missing, the value is ignored



CSAR – Model Components

Autoregression

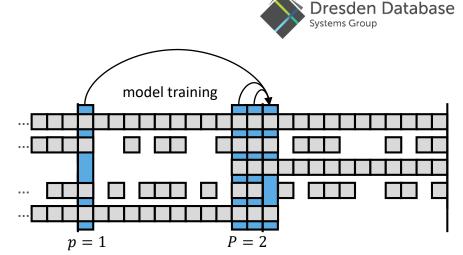
- *p* specifies number of non-seasonal AR terms
- **P** specifies number of seasonal AR terms

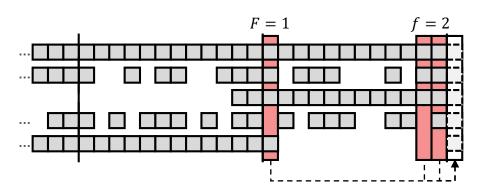
Error Terms

- *f* specifies number of non-seasonal error terms
- F specifies number of seasonal error terms

Model Configuration

- Adaptation to data set specific characteristics
- Influence on forecast accuracy
- Influence on execution time





auto.CSAR – Structured Greedy Search

Step 1 – Base Models

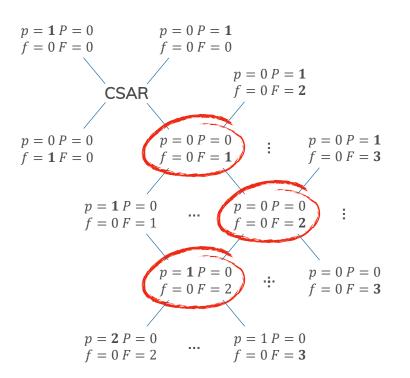
- Compare basic model components
- Choose model with lowest error to identify most important model component

Step 2 – Search Around the best Model

- Based on result from Step 1
- Vary optimal model components by +/- 1
- Vary seasonal and non-seasonal components by +/- 1
- Invert the constant

UNIVERSITÄ

Repeat until an iteration returns no new best model

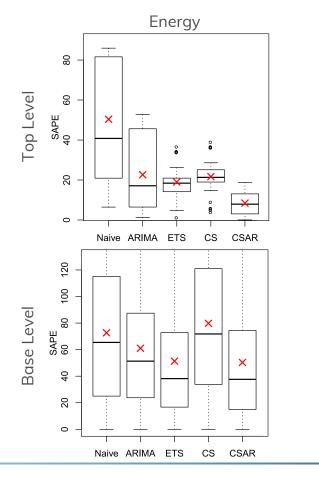


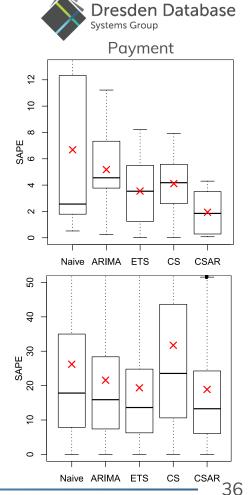
Forecast Accuracy

Experimental Set-Up

- Calculate long-range forecasts
 - Energy 1 week (h=28)
 - Payment 2 weeks (h=14)
- Calculate SAPE error between forecast and real time series values (Symmetric Absolute Percentage Error)

$$SAPE = \frac{|y - \hat{y}|}{(|y| + |\hat{y}|)/2} \cdot 100$$





Data Set Partitioning

Univariate vs. CSAR

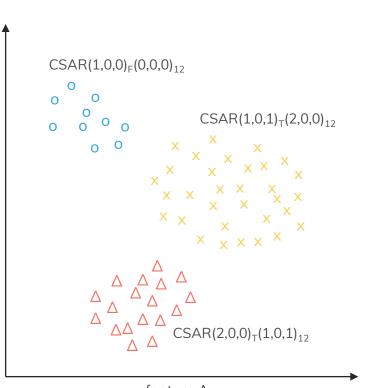
- Opposite extremes
- Univariate one model per time series
- CSAR one model for all time series

Partitioning

- Split data set into several Partitions
- Create one CSAR model for each partition

Expectation

- Better representation of time series
- Higher forecast accuracy



ш

feature

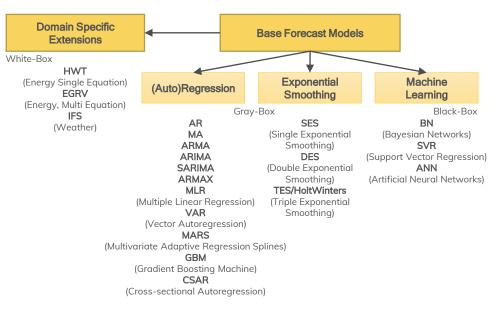
Model Adviser

Model Suitability

- Different models work well with different time
- Some are designed for very specific use cases

Which one to use?

Not an easy decision for non-experts



Student Thesis Topics

Topics for Student Theses

Student Theses at the Chair of Databases

https://wwwdb.inf.tu-dresden.de/study/theses/themen-fuer-arbeiten/

Themenschwerpunkte

Aktuell werden studentische Arbeiten in folgenden Themenschwerpunkten vergeben:

Bereiche und aktuelle Angebote	Ansprechpartner
DB-Systemarchitektur, skalierbare und sichere Datenverarbeitung, DB-Systeme auf moderner Hardware	Dirk Habich
Eine Auswahl aktueller Themen.	
Benchmark Design für adaptive Datenbanksysteme	
Integration des ERIS Storage Systems in Apache Spark	
Implementierung und Optimierung eines Codesgenerators f ür Kompressionsalgorithmen	
Evaluierung der Intel SGX Erweiterung f ür eine sichere Datenverarbeitung	
Implementierung und Evalution eines Storage Moduls f ür Graphdaten in ERIS	
Informationsextraktion, Information Retrieval, Machine Learning	Maik Thiele
Eine Auswahl aktueller Themen.	
Word2Vec-Modell über Webtabellen	
Column-specification mit System T	
Zeitreihenanalyse und -prognose	
Für weitere individuelle Angebote kontaktieren Sie bitte den zuständigen Ansprechpartner.	

