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Requirements

System Architecture

Evolving
Data-Driven Applications

Data Volume
Data Variety

Throughput
Latency

Emerging Compute Unit Diversity

Emerging 
Network 
Diversity

Emerging 
Memory
Diversity

3D Mesh

Fully 
Connected

Multi-Socket

FPGA

ASICVector

DRAM

HBM

NVRAM

Design and implement concepts
to efficiently use these evolving hardware 

environment for database systems
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Hybrid DBMS/IR 
System

Data Curation

Documents and Information Retrieval

Open-world
SQL Queries

REA

Entity Augmentation Queries

Data Lake

WWW

Semantic Normalization

Column Specification

Top-k Consistent
Entity Augmentation 

System 
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*2vec

ANN Query 
Processing

Multi-variant Query 
Processing

Vector models

DrillBeyond

Retrofitting
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Data Analytics

Support/Extend Database Technology
▪ Sampling Techniques
▪ Integration of Machine Learning into 

RDBMS
▪ Cardinality estimation using Artificial 

Neural Networks
▪ Monitoring database health status

Working with Data
▪ Time series Forecasting
▪ Time series properties and generation
▪ Clustering with human feedback
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Agenda

What is a time series?

Health of a Database System
▪ Monitoring and Target
▪ Techniques

Feature-based Time Series Engineering
▪ Time Series Features
▪ What-if analysis

Forecasting Large-scale Time Series Data
▪ Forecasting Process
▪ Big Data Implications
▪ CSAR
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Terminology

Time Series
▪ Sequence of measure values
▪ Ordered by time
▪ Equidistant

- Constant time distance between measure 
values

▪ Complete
- No missing values



Health of a Database System
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Health of a Database System

Monitoring
▪ Several measurements that serve as indicator 

for the health status of the database

Target
▪ Issue automatic warning for situations that 

would lead to customer complaints

Possible Health indicators
▪ CPU (user_busy, io_busy, system_busy, idle)
▪ user connections
▪ physical reads/writes, …
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Health of a Database System

Threshold/Limits
▪ Define upper threshold
▪ Issue warning when threshold is exceeded

Problem
▪ Manual work
▪ Proper definition of threshold

- Too high  Warning too late
- Too low  Waring when there is no issue
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Health of a Database System

Automatic threshold using IQR
▪ Define threshold based on box plot statistics
▪ Issue warning when threshold is exceeded

Problem
▪ May detect normal states as outliers
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Health of a Database System

Co-development of measurements
▪ Examine proportions of several 

measurements
▪ Issue warnings for abnormal proportions

Problem
▪ Know all effects in advance
▪ Lots of manual work
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Health of a Database System

Structural Equation Modeling
▪ Model influences between system 

components
▪ Analysis of Latent Factors

Model Properties
▪ Item

- Measurable variables
▪ Latent Factor

- Not measurable variables
▪ Measurement model

- Model connections between items and factors 
using covariance

Intelligence

Creative
Skill

Math
Skill

Physics grade

Math grade

Music grade

Arts grade

IQ
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Health of a Database System

Structural Equation Modeling
▪ Model influences between system 

components
▪ Analysis of Latent Factors

Model Properties
▪ Item

- Measurable variables
▪ Latent Factor

- Not measurable variables
▪ Measurement model

- Model connections between items and factors 
using covariance

CPU

Memory

User
Connections

Select Query

Phys. reads

Cache hits

State

IO_busy

user_busy



Feature-based Time Series Engineering
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Process of Time Series Engineering

Time Series 
Dataset

Distance

Represent

Representation Engineering

Representation
Dataset

Generation Indexing

Representation

Classification Clustering

Data-mining Tasks

Figures: Kegel et al., 2018; Shieh and Keogh, 2013; Fulcher et al., 2013; Wang et al., 2006
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Example Time Series Features

Tests
p ~ 0.94
p < 2.2e-16

p-value of Normality test

Frequency DomainStationarity

ComponentsCorrelation

0

0,2

0,4

0,6

0,8

1

0 5 10 15 20

A
C

F

Lag

Distribution

Gaussian
Mean = -0.5
Skew = 0.3
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Time Series Components

Decomposition
▪ Base: stationary part of the time series
▪ Trend: long-term change in the mean level
▪ Season: cyclical repeated behavior
▪ Residuals: unstructured information assumed to be random

Additive Composition 𝑥𝑡 = 𝑏𝑎𝑠𝑒𝑡 + 𝑡𝑟𝑒𝑛𝑑𝑡 + 𝑠𝑒𝑎𝑠𝑜𝑛𝑡 + 𝑟𝑒𝑠𝑡

++= +

Series Base Trend Season Residuals

Often, base is part of 
the trend component!

StochasticDeterministic
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Time Series Decomposition

Basic Idea
▪ Moving-average filter of continuous 

windows
▪ 𝑡𝑟𝑡 =

𝑥𝑡+𝑥𝑡−1+𝑥𝑡−2+…+𝑥𝑡−𝑁+1

𝑁

▪ Extraction of trend by windows that take into 
account the season length

▪ Extraction of season by averaging each time 
instance of the same seasonal position (all 
Mondays, all Tuesdays,…)

▪ Disadvantage: does not decompose the 
endpoints

Average Centering
▪ A technique needed if season length is even
▪ Take two moving averages and average 

their result

Series (daily)
1st week 2nd week

1 2 3 4 5 6 7 1 2 3 …

Trend 4 5 6 7 …

Series (annual)

1st year 2nd year 3rd year

1 2 3 4 1 2 3 4 1 2 …

Trend ?

1 2 3 4 1 2 3 4 1 2 …

Trend 3 …

A season of 
length 7 such 
as
- Monday (1)
- Tuesday (2)
- …
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Time Series Decomposition
Retrieval of Trend
▪ Moving-average filtering
▪ In case of even season 

length, centralize first

Season Retrieval
▪ Detrend series
▪ Figure represents the 

average of each time 
instance of a season

▪ De-mean figure

Residuals
▪ Subtract components

trend <- filter(series, rep_len(1,7)/7)

detrend <- series – trend

season <- figure - mean(figure)

residuals <- series - season - trend

Series
1st week 2nd week

1 2 3 4 5 6 7 1 2 3 …

Trend 4 5 6 7 …

1st week 4 5 6 7

2nd week 1 2 3 4 5 6 7

… …

Last
week 1 2 3 4

Figure ∅𝟏 ∅𝟐 ∅𝟑 ∅𝟒 ∅𝟓 ∅𝟔 ∅𝟕
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Feature-based Generation Method (FBG)

Idea
▪ Feature-based representation
▪ Recombination of deterministic features
▪ Simulation of residuals with statistical model

Use cases
▪ Anonymization of data sets
▪ Generate a data set that is closely related to 

the original data set but does not contain the 
actual data

Workflow

Distance

Statistical Model
Distribution Autocorrelation 

of lag 1

Recombination

Deterministic 
Features

Stochastic 
Features

Given
Dataset

Generated Dataset

Kegel et al., 2018

1
1

2
2

3
31 2 31 2 3

2 3 1
1‘ 2‘ 3‘
3 1 1 2 2 3
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What-if Analysis

General Idea
▪ Represent time series by their features
▪ Generate a what-if scenario by setting factors that modify features

𝑆𝑙𝑜𝑝𝑒 = 85

Series

Decomposition

Feature Extraction

Modification

What-If 
Scenario

𝑆𝑙𝑜𝑝𝑒 = 100
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Feature Extraction

Feature Space and Selected Time Series

N1085 N1078

N2374

N0754

Season Determination 𝑅𝑠𝑒𝑎𝑠2

▪ 𝑅𝑠𝑒𝑎𝑠
2 = 1 −

𝑣𝑎𝑟 𝑟𝑒𝑠𝑡

𝑣𝑎𝑟 𝑟𝑒𝑠𝑡+𝑠𝑒𝑎𝑠𝑡

Strong
Season

Weak
Season
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Feature Extraction

Trend Determination 𝑅𝑡𝑟2

▪ 𝑅𝑡𝑟
2 = 1 −

𝑣𝑎𝑟 𝑟𝑒𝑠𝑡

𝑣𝑎𝑟 𝑟𝑒𝑠𝑡+𝑡𝑟𝑡

Trend Slope 𝜃2
▪ Suppose a linear trend 

within STL trend:
𝑡𝑟𝑡 = 𝜃1 + 𝜃2 ⋅ 𝑙𝑡 + 𝛿𝑡

Trend Linearity 𝑅𝑙𝑖𝑛
2

▪ 𝑅𝑙𝑖𝑛
2 = 1 −

𝑣𝑎𝑟 𝛿𝑡

𝑣𝑎𝑟 𝑡𝑟𝑡

Strong
Trend

Weak
Trend

Positive
Trend

Negative
Trend

Non-linear
Trend

Linear
Trend
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Component Modification

Trend Determination Factor
▪ Strengthen/weaken trend

𝑡𝑟𝑡,𝑓 = 𝜃1 + 𝒇 ⋅ (𝜃2 ⋅ 𝑙𝑡 + 𝛿𝑡)

𝑅𝑡𝑟
2 = 1 −

𝑣𝑎𝑟 𝑟𝑒𝑠𝑡

𝑣𝑎𝑟 𝑟𝑒𝑠𝑡 + 𝑡𝑟𝑡,𝑓

Season Determination Factor
▪ Strengthen/weaken season

𝑠𝑒𝑎𝑠𝑡,𝑘 = 𝒌 ⋅ 𝑠𝑒𝑎𝑠𝑡

𝑅𝑠𝑒𝑎𝑠
2 = 1 −

𝑣𝑎𝑟 𝑟𝑒𝑠𝑡

𝑣𝑎𝑟 𝑟𝑒𝑠𝑡 + 𝑠𝑒𝑎𝑠𝑡,𝑘



Forecasting Large-scale Time Series Data
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1. Model 
Identification

Forecasting Process

2. Model 
Estimation

3. Forecast 
Calculation

4. Model 
Evaluation

5. Model 
Adaptation

Method Error AIC

ARIMA 23.47 25.72

HoltWinters 18.38 20.43

VAR

MARS

Optimize

Predict

Evaluate

𝑆𝑀𝐴𝑃𝐸 =
1

𝑛
෍

𝑡=1

𝑛
𝑥𝑡 − ො𝑥𝑡

Τ𝑥𝑡 + ො𝑥𝑡 2

0

2

4

6

8

10

12

0 5 10 15 20

Er
ro

r

Maintenance

𝜏
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Traditional Time Series Forecasting

Univariate Forecast Models
▪ ARIMA/Exponential Smoothing
▪ Focus on only one time series at a time
▪ Widely applied in many domains
▪ auto.ARIMA/ETS to properly configure the 

model for a given time series

Model

ො𝑦𝑡+1 = 𝑐 + 𝜖𝑡 +෍

𝑖=1

𝑝

𝜙𝑖𝑦𝑡−𝑖+1 +෍

𝑗=1

𝑞

𝜃𝑗𝜖𝑡−𝑗+1
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Large-scale Time Series Data

Many and Long Series
▪ High number of monitored objects (Smart 

Meter in every household, sales of individual 
products)

▪ Fine monitoring granularity leads to very long 
time series histories

High Levels of Noise
▪ Time series on fine granularity tend to be very 

noisy

Missing values
▪ Missing values lead to inapplicability of all 

most conventional models

…

…
…

…
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Cross-sectional Forecasting

Core Approach
▪ Represent a whole data set with one model
▪ Focus on cross-sections instead of the entire 

time series
▪ Model transition from one cross-section to 

the next one
▪ All time series with values in the blue cross-

sections contribute to the model training
▪ The model represents the average transition 

of the entire data set

model training

෠Ԧ𝑦𝑡+1 = 𝑐 + 𝜙1 ∙ Ԧ𝑦𝑡

Model

…

…
…

…



30

𝜙predictionmodel training

෠Ԧ𝑦𝑡+1 = 𝑐 + 𝜙1 ∙ Ԧ𝑦𝑡

Model

Cross-sectional Forecasting

Core Approach
▪ Represent a whole data set with one model
▪ Focus on cross-sections instead of the entire 

time series
▪ Model transition from one cross-section to 

the next one
▪ All time series with values in the blue cross-

sections contribute to the model training
▪ The model represents the average transition 

of the entire data set

Model Application
▪ Assume the transition remains constant over 

seasons
▪ Apply model on the most current data
▪ Train a specific model for every transition in 

a season

…

…
…

…

Still misses adaptability!
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෠Ԧ𝑦𝑡+1 = 𝑐 + 𝜙1 ∙ Ԧ𝑦𝑡 + 𝜙2 ∙ Ԧ𝑦𝑡−1 +Φ1 ∙ Ԧ𝑦𝑡−𝑠+1
+ −Φ1𝜙1 ∙ Ԧ𝑦𝑡−𝑠 +(−Φ1𝜙2) ∙ Ԧ𝑦𝑡−𝑠−1

model training

…

…
…

…

CSAR – Autoregression

Non-seasonal Autoregression
▪ Model the dependency of future values of 

their direct predecessors

Seasonal Autoregression
▪ Model the dependency of future values of 

their seasonal predecessors

Correction Terms
▪ Necessary if non-seasonal and seasonal 

components are combined

෠Ԧ𝑦𝑡+1 = 𝑐 + 𝜙1 ∙ Ԧ𝑦𝑡 +⋯+ 𝜙𝑝 ∙ Ԧ𝑦𝑡−𝑝+1

෠Ԧ𝑦𝑡+1 = 𝑐 + Φ1 ∙ Ԧ𝑦𝑡−𝑠+1 +⋯+Φ𝑃 ∙ Ԧ𝑦𝑡−𝑃∙𝑠+1
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CSAR – Autoregression

Model Application
▪ On most recent data
▪ On all time series which have all necessary 

values

Behavioral Deviation
▪ Some time series do not follow the common 

behavior of the majority

…

…
…

…

𝜙1𝜙2

Φ1

model training

forecast
calculation

෠Ԧ𝑦𝑡+1 = 𝑐 + 𝜙1 ∙ Ԧ𝑦𝑡 + 𝜙2 ∙ Ԧ𝑦𝑡−1 +Φ1 ∙ Ԧ𝑦𝑡−𝑠+1
+ −Φ1𝜙1 ∙ Ԧ𝑦𝑡−𝑠 +(−Φ1𝜙2) ∙ Ԧ𝑦𝑡−𝑠−1
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CSAR – Error Terms

Non-seasonal Error Terms
▪ Adjust forecasts according to systematic 

non-seasonal misprediction
▪ Deviation of individual time series from the 

general model for the data set

Seasonal Error Terms
▪ Adjust forecasts according to systematic 

seasonal misprediction
▪ Systematic deviation in the seasonal pattern

Missing Data
▪ If real value or forecast is missing, the value 

is ignored

𝑒𝑡 = 𝑦𝑡 − ො𝑦𝑡

𝑒𝑡+1
𝑛 =

1

𝑓 + 𝐹
෍

𝑖=0

𝑓−1

𝑒𝑡−𝑖
𝑛 +෍

𝑗=1

𝐹

𝑒𝑡+1−𝑗∙𝑠
𝑛

ො𝑦𝑡+1
𝑛 = 𝑐 + 𝑒𝑡+1

𝑛

…

Ø
ො𝑦𝑡

F=1 f=2

…

…
…

…
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CSAR – Model Components

Autoregression
▪ 𝒑 specifies number of non-seasonal AR terms
▪ 𝑷 specifies number of seasonal AR terms

Error Terms
▪ 𝒇 specifies number of non-seasonal error terms
▪ 𝑭 specifies number of seasonal error terms

Model Configuration
▪ Adaptation to data set specific characteristics
▪ Influence on forecast accuracy
▪ Influence on execution time

model training

…

…
…

…

𝑝 = 1 𝑃 = 2

𝐹 = 1 𝑓 = 2

…

…
…

…
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auto.CSAR – Structured Greedy Search

Step 1 – Base Models
▪ Compare basic model components
▪ Choose model with lowest error to identify 

most important model component

Step 2 – Search Around the best Model
▪ Based on result from Step 1
▪ Vary optimal model components by +/- 1
▪ Vary seasonal and non-seasonal 

components by +/- 1
▪ Invert the constant
▪ Repeat until an iteration returns no new best 

model

CSAR

𝑝 = 𝟏 𝑃 = 0
𝑓 = 0 𝐹 = 0

𝑝 = 0 𝑃 = 𝟏
𝑓 = 0 𝐹 = 0

𝑝 = 0 𝑃 = 0
𝑓 = 𝟏 𝐹 = 0

𝑝 = 0 𝑃 = 0
𝑓 = 0 𝐹 = 𝟏

…

…

𝑝 = 𝟏 𝑃 = 0
𝑓 = 0 𝐹 = 1

𝑝 = 0 𝑃 = 0
𝑓 = 0 𝐹 = 𝟐

𝑝 = 0 𝑃 = 𝟏
𝑓 = 0 𝐹 = 𝟐

…

…

𝑝 = 𝟏 𝑃 = 0
𝑓 = 0 𝐹 = 2

𝑝 = 0 𝑃 = 0
𝑓 = 0 𝐹 = 𝟑

𝑝 = 0 𝑃 = 𝟏
𝑓 = 0 𝐹 = 𝟑

…𝑝 = 𝟐 𝑃 = 0
𝑓 = 0 𝐹 = 2

𝑝 = 1 𝑃 = 0
𝑓 = 0 𝐹 = 𝟑

…
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Forecast Accuracy

Experimental Set-Up
▪ Calculate long-range forecasts

- Energy – 1 week (h=28)
- Payment – 2 weeks (h=14)

▪ Calculate SAPE error between 
forecast and real time series values 
(Symmetric Absolute Percentage Error)

Energy Payment

𝑆𝐴𝑃𝐸 =
𝑦 − ො𝑦

(|𝑦| + | ො𝑦|)/2
∙ 100

B
as

e 
Le

ve
l

To
p 

Le
ve

l



37

Data Set Partitioning

Univariate vs. CSAR
▪ Opposite extremes
▪ Univariate one model per time series
▪ CSAR one model for all time series

Partitioning
▪ Split data set into several Partitions
▪ Create one CSAR model for each partition

Expectation
▪ Better representation of time series
▪ Higher forecast accuracy

fe
at

ur
e 

B

feature A

o
o

o

o

o

oo o
o
o

Δ

ΔΔ
Δ

Δ Δ
Δ

Δ

Δ
Δ

Δ

Δ
ΔΔ

Δ Δ

Δ

Δ

x
x

x
x

xx

xx

x
x

x
x

x

x

xx

x
xx

x

x

x

x

x

x
x

x

x

x

x

xx

CSAR(2,0,0)T(1,0,1)12

CSAR(1,0,0)F(0,0,0)12

CSAR(1,0,1)T(2,0,0)12
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Model Adviser

Model Suitability
▪ Different models work well with different time
▪ Some are designed for very specific use cases

Which one to use?
▪ Not an easy decision for non-experts

Base Forecast Models

Exponential 

Smoothing

Machine 

Learning
(Auto)Regression

Domain Specific 

Extensions

AR
MA

ARMA
ARIMA

SARIMA
ARMAX

MLR
(Multiple Linear Regression)

VAR
(Vector Autoregression)

MARS
(Multivariate Adaptive Regression Splines)

GBM
(Gradient Boosting Machine)

CSAR
(Cross-sectional Autoregression)

SES
(Single Exponential 

Smoothing)
DES

(Double Exponential 
Smoothing)

TES/HoltWinters
(Triple Exponential 

Smoothing)

BN
(Bayesian Networks)

SVR
(Support Vector Regression)

ANN
(Artificial Neural Networks)

HWT
(Energy Single Equation)

EGRV
(Energy, Multi Equation)

IFS
(Weather)

Black-BoxGray-Box

White-Box
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Student Thesis Topics

https://wwwdb.inf.tu-dresden.de/study/theses/themen-fuer-arbeiten/

https://wwwdb.inf.tu-dresden.de/study/theses/themen-fuer-arbeiten/

