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Funktionsfähige Systeme, die ein Problem 
mit praktischer Relevanz lösen.
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TRUSTED COMPUTING BASE
Trusted Computing Base (TCB): Menge an 
Komponenten, denen eine Anwendung für das 
Erbringen ihrer Funktionalität vertrauen muss 

abhängig von Anwendung und Funktionalität 

Mikrokerne ermöglichen minimale, 
anwendungsspezifische TCBs
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Mikrokerne helfen, wachsende Komplexität von 
Systemen durch Zerlegung beherrschbar zu machen.
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fTPM: A Software-only Implementation of a TPM Chip

Himanshu Raj∗, Stefan Saroiu, Alec Wolman, Ronald Aigner, Jeremiah Cox,
Paul England, Chris Fenner, Kinshuman Kinshumann, Jork Loeser, Dennis Mattoon,

Magnus Nystrom, David Robinson, Rob Spiger, Stefan Thom, and David Wooten
Microsoft

Abstract: Commodity CPU architectures, such as
ARM and Intel CPUs, have started to offer trusted com-
puting features in their CPUs aimed at displacing dedi-
cated trusted hardware. Unfortunately, these CPU archi-
tectures raise serious challenges to building trusted sys-
tems because they omit providing secure resources out-
side the CPU perimeter.

This paper shows how to overcome these challenges
to build software systems with security guarantees sim-
ilar to those of dedicated trusted hardware. We present
the design and implementation of a firmware-based TPM
2.0 (fTPM) leveraging ARM TrustZone. Our fTPM is the
reference implementation of a TPM 2.0 used in millions
of mobile devices. We also describe a set of mechanisms
needed for the fTPM that can be useful for building more
sophisticated trusted applications beyond just a TPM.

1 Introduction

In recent years, commodity CPU architectures have
started to offer built-in features for trusted computing.
TrustZone on ARM [1] and Software Guard Extensions
(SGX) [25] on Intel CPUs offer runtime environments
strongly isolated from the rest of the platform’s soft-
ware, including the OS, applications, and firmware. With
these features, CPU manufacturers can offer platforms
with a set of security guarantees similar to those pro-
vided via dedicated security hardware, such as secure co-
processors, smartcards, or hardware security tokens.

Unfortunately, the nature of these features raises se-
rious challenges for building secure software with guar-
antees that match those of dedicated trusted hardware.
While runtime isolation is important, these features omit
many other secure resources present in dedicated trusted
hardware, such as storage, secure counters, clocks, and
entropy. These omissions raise an important question:
Can we overcome the limitations of commodity CPU se-

∗Currently with ContainerX.

curity features to build software systems with security
guarantees similar to those of trusted hardware?

In this work, we answer this question by implement-
ing a software-only Trusted Platform Module (TPM) us-
ing ARM TrustZone. We demonstrate that the low-level
primitives offered by ARM TrustZone and Intel SGX can
be used to build systems with high-level trusted comput-
ing semantics. Second, we show that these CPU security
features can displace the need for dedicated trusted hard-
ware. Third, we demonstrate that these CPU features can
offer backward compatibility, a property often very use-
ful in practice. Google and Microsoft already offer op-
erating systems that leverage commodity TPMs. Build-
ing a backwards compatible TPM in software means that
no changes are needed to Google and Microsoft operat-
ing systems. Finally, we describe a set of mechanisms
needed for our software-only TPM that can also be use-
ful for building more sophisticated trusted applications
beyond just a TPM.

This paper presents firmware-TPM (fTPM), an end-
to-end implementation of a TPM using ARM TrustZone.
fTPM provides security guarantees similar, although not
identical, to a discrete TPM chip. Our implementation
is the reference implementation used in all ARM-based
mobile devices running Windows including Microsoft
Surface and Windows Phone, comprising millions of mo-
bile devices. fTPM was the first hardware or software
implementation to support the newly released TPM 2.0
specification. The fTPM has much better performance
than TPM chips and is fully backwards compatible: no
modifications are required to the OS services or applica-
tions between a mobile device equipped with a TPM chip
and one equipped with an fTPM; all modifications are
limited only to firmware and drivers.

To address the above question, this paper starts with
an analysis of ARM TrustZone’s security guarantees. We
thoroughly examine the shortcomings of the ARM Trust-
Zone technology needed for building secure services,
whether for fTPM or others. We also examine Intel’s
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the device’s ECID, matches what was covered by the signature. These steps 
ensure that the authorization is for a specific device and that an old iOS version 
from one device can’t be copied to another. The nonce prevents an attacker 
from saving the server’s response and using it to tamper with a device or 
otherwise alter the system software.  

Secure Enclave 
The Secure Enclave is a coprocessor fabricated within the system on chip (SoC). 
It uses encrypted memory and includes a hardware random number generator. 
The Secure Enclave provides all cryptographic operations for Data Protection 
key management and maintains the integrity of Data Protection even if the 
kernel has been compromised. Communication between the Secure Enclave 
and the application processor is isolated to an interrupt-driven mailbox and 
shared memory data buffers. 

The Secure Enclave includes a dedicated Secure Enclave Boot ROM. Similar to 
the application processor Boot ROM, the Secure Enclave Boot ROM is immutable 
code that establishes the hardware root of trust for the Secure Enclave. 

The Secure Enclave runs a Secure Enclave OS based on an Apple-customized 
version of the L4 microkernel. This Secure Enclave OS is signed by Apple, 
verified by the Secure Enclave Boot ROM, and updated through a personalized 
software update process. 

When the device starts up, an ephemeral memory protection key is created by 
the Secure Enclave Boot ROM, entangled with the device’s UID, and used to 
encrypt the Secure Enclave’s portion of the device’s memory space. Except 
on the Apple A7, the Secure Enclave memory is also authenticated with the 
memory protection key. On A11 (and newer) and S4 SoCs, an integrity tree is used 
to prevent replay of security-critical Secure Enclave memory, authenticated by 
the memory protection key and nonces stored in on-chip SRAM. 

Data saved to the file system by the Secure Enclave is encrypted with a key 
entangled with the UID and an anti-replay counter. The anti-replay counter 
is stored in a dedicated nonvolatile memory integrated circuit (IC). 

On devices with A12 and S4 SoCs, the Secure Enclave is paired with a secure 
storage integrated circuit (IC) for anti-replay counter storage. The secure 
storage IC is designed with immutable ROM code, a hardware random number 
generator, cryptography engines, and physical tamper detection. To read and 
update counters, the Secure Enclave and storage IC employ a secure protocol 
that ensures exclusive access to the counters. 

Anti-replay services on the Secure Enclave are used for revocation of data over 
events that mark anti-replay boundaries including, but not limited to, the following: 

• Passcode change 
• Touch ID or Face ID enable/disable 
• Touch ID fingerprint add/delete 
• Face ID reset 
• Apple Pay card add/remove 
• Erase All Content and Settings 

iOS Security  |  May 2019  8
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Werner Haas2, Anders Fogh3, Jann Horn4, Stefan Mangard1,

Paul Kocher5, Daniel Genkin6,9, Yuval Yarom7, Mike Hamburg8

1Graz University of Technology, 2Cyberus Technology GmbH,
3G-Data Advanced Analytics, 4Google Project Zero,

5Independent (www.paulkocher.com), 6University of Michigan,
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Abstract
The security of computer systems fundamentally relies
on memory isolation, e.g., kernel address ranges are
marked as non-accessible and are protected from user
access. In this paper, we present Meltdown. Meltdown
exploits side effects of out-of-order execution on mod-
ern processors to read arbitrary kernel-memory locations
including personal data and passwords. Out-of-order
execution is an indispensable performance feature and
present in a wide range of modern processors. The attack
is independent of the operating system, and it does not
rely on any software vulnerabilities. Meltdown breaks
all security guarantees provided by address space isola-
tion as well as paravirtualized environments and, thus,
every security mechanism building upon this foundation.
On affected systems, Meltdown enables an adversary to
read memory of other processes or virtual machines in
the cloud without any permissions or privileges, affect-
ing millions of customers and virtually every user of a
personal computer. We show that the KAISER defense
mechanism for KASLR has the important (but inadver-
tent) side effect of impeding Meltdown. We stress that
KAISER must be deployed immediately to prevent large-
scale exploitation of this severe information leakage.

1 Introduction

A central security feature of today’s operating systems
is memory isolation. Operating systems ensure that user
programs cannot access each other’s memory or kernel
memory. This isolation is a cornerstone of our computing
environments and allows running multiple applications at
the same time on personal devices or executing processes
of multiple users on a single machine in the cloud.

On modern processors, the isolation between the ker-
nel and user processes is typically realized by a supervi-

9Work was partially done while the author was affiliated to Univer-
sity of Pennsylvania and University of Maryland.

sor bit of the processor that defines whether a memory
page of the kernel can be accessed or not. The basic
idea is that this bit can only be set when entering kernel
code and it is cleared when switching to user processes.
This hardware feature allows operating systems to map
the kernel into the address space of every process and
to have very efficient transitions from the user process
to the kernel, e.g., for interrupt handling. Consequently,
in practice, there is no change of the memory mapping
when switching from a user process to the kernel.

In this work, we present Meltdown10. Meltdown is
a novel attack that allows overcoming memory isolation
completely by providing a simple way for any user pro-
cess to read the entire kernel memory of the machine it
executes on, including all physical memory mapped in
the kernel region. Meltdown does not exploit any soft-
ware vulnerability, i.e., it works on all major operating
systems. Instead, Meltdown exploits side-channel infor-
mation available on most modern processors, e.g., mod-
ern Intel microarchitectures since 2010 and potentially
on other CPUs of other vendors.

While side-channel attacks typically require very spe-
cific knowledge about the target application and are tai-
lored to only leak information about its secrets, Melt-
down allows an adversary who can run code on the vul-
nerable processor to obtain a dump of the entire kernel
address space, including any mapped physical memory.
The root cause of the simplicity and strength of Melt-
down are side effects caused by out-of-order execution.

Out-of-order execution is an important performance
feature of today’s processors in order to overcome laten-
cies of busy execution units, e.g., a memory fetch unit
needs to wait for data arrival from memory. Instead of
stalling the execution, modern processors run operations

10Using the practice of responsible disclosure, disjoint groups of au-
thors of this paper provided preliminary versions of our results to par-
tially overlapping groups of CPU vendors and other affected compa-
nies. In coordination with industry, the authors participated in an em-
bargo of the results. Meltdown is documented under CVE-2017-5754.

USENIX Association 27th USENIX Security Symposium    973



TU Dresden Forschungslinie: Betriebssysteme

FIRMEN IN DRESDEN

 28

LazyFP: Leaking FPU Register State using
Microarchitectural Side-Channels

Julian Stecklina
Amazon Development Center Germany GmbH

jsteckli@amazon.de

Thomas Prescher
Cyberus Technology GmbH

thomas.prescher@cyberus-

technology.de

ABSTRACT
Modern processors utilize an increasingly large register set
to facilitate e�cient floating point and SIMD computation.
This large register set is a burden for operating systems, as
its content needs to be saved and restored when the operating
system context switches between tasks. As an optimization,
the operating system can defer the context switch of the FPU
and SIMD register set until the first instruction is executed
that needs access to these registers. Meanwhile, the old
content is left in place with the hope that the current task
might not use these registers at all. This optimization is
commonly called lazy FPU context switching. To make it
possible, a processor o�ers the ability to toggle the availability
of instructions utilizing floating point and SIMD registers.
If the instructions are turned o�, any attempt of executing
them will generate a fault.
In this paper, we present an attack that exploits lazy FPU
context switching and allows an adversary to recover the
FPU and SIMD register set of arbitrary processes or VMs.
The attack works on processors that transiently execute FPU
or SIMD instructions that follow an instruction generating
the fault indicating the first use of FPU or SIMD instructions.
On operating systems using lazy FPU context switching, the
FPU and SIMD register content of other processes or virtual
machines can then be reconstructed via cache side e�ects.
With SIMD registers not only being used for cryptographic
computation, but also increasingly for simple operations,
such as copying memory, we argue that lazy FPU context
switching is a dangerous optimization that needs to be turned
o� in all operating systems, if there is a chance that they
run on a�ected processors.

INTRODUCTION
As demonstrated by the Meltdown attack [4], Intel proces-
sors speculatively execute instructions past the kernel/user
privilege check and the generation of a page fault. Together
with the related Spectre attack [3], these attacks were a
revelation that microarchitectural design decisions in pro-
cessors a�ect security properties of computing devices and

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

sparked research into discovering further security-relevant
design issues in current general purpose CPU architectures.
In this paper, we introduce a new information leak vulner-
ability similar to Meltdown that a�ects popular operating
systems and hypervisors. We present practical attacks based
on this vulnerability leaking FPU register state across process
and virtual machine boundaries. In contrast to Meltdown,
we exploit the behavior of recent Intel processors when they
encounter a Device Not Available (#NM) exception instead
of a Page Fault (#PF) exception. This exception is used to
implement a context switch optimization called lazy FPU
context switching. We will demonstrate how speculative in-
struction execution can lead to full recovery of the FPU
register state of a victim process using unprivileged local
code execution in combination with this optimization.
The paper is structured as follows. We start with a back-
ground section that gives an overview over FPU state context
switching in operating systems and how the lazy FPU con-
text switching optimization works on Intel processors. We
will briefly revisit architectural details related to specula-
tive execution on out-of-order processors. Equipped with
this background knowledge, the following section builds the
LazyFP attack from a one-bit leak towards several practi-
cal attack variants. We will evaluate these variants. After
assessing the impact of this vulnerability to Intel AES-NI
and discussing mitigation, we review related work and finally
conclude.

BACKGROUND
In this section, we give relevant technical background that is
necessary to understand the LazyFP vulnerability.

The x87 FPU
The x87 floating-point unit (FPU) is a processor extension
with the original purpose of accelerating mathematical op-
erations on floating-point numbers. It has its own set of
instructions and registers. It is an integral part of every Intel
x86 microprocessor since the Intel 486DX introduced in 1989.
Up to the Intel 486DX, it used to be an optional external
co-processor.
Saving and restoring the FPU state to and from memory,
which is required to implement multitasking, was costly at
that time because memory was slow and limited. Addition-
ally, at that time usually only few applications actually used
the FPU. Switching FPU states on every context switch,
although the FPU is not used by all processes imposes unnec-
essary overhead. In order to be able to reduce this overhead,
a control register bit (cr0.ts) was introduced that allowed
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