
Steffen Hölldobler

The Weak Completion Semantics
Technische Universität Dresden, Germany

North-Caucasus Federal University, Stavropol, Russian Federation
sh@iccl.tu-dresden.de

March 11, 2019
Unpublished Manuscript

Subject to Revision
Please do not circulate

Comments and Corrections are Very Welcome



ii



iii

Preface

I stumbled into the field of Cognitive Science when I gave a lecture at the summer school
of the International Center of Computational Logic at the Technische Universität Dresden
in the year 2007. After presenting our idea to compute semantic operators associated with
logic programs by feed-forward connectionist networks and to recursively propagate inter-
pretations through these networks until they converge to stable states I asked with caution
whether these stable states, which represent least models of the programs, have something
in common with mental models. Michiel van Lambalgen, who was in the audience, raised
his arm and answered: these are mental models.

After the summer school, one of our students in the European Master’s Program in Compu-
tational Logic at that time, Carroline Devi Puspa Kencana Ramli, asked me for interesting
topics for a master thesis. Like me she had attended the summer school and was interested
in the work by Keith Stenning and Michiel van Lambalgen. Michiel had presented main
results from their upcoming book on Human Reasoning and Cognitive Science at the sum-
mer school. I suggested that Carroline may start by providing proofs for some of the formal
results claimed by Keith and Michiel. Carroline studied these results for two weeks and
came back with: I found a counter-example. Thus, her master thesis project became much
more interesting than expected.

Bertram Fronhöfer and me cross-checked: Carroline was right. We had the feeling that the
problem was related to the three-valued logic used by Keith and Michiel. As we had no
background in three-valued logics we started to read the first paper ever published on this
subject to the best of our knowledge, viz. the paper by Jan Łukasiewicz from 1920. I still
remember that we were sitting at the round table in the front of my office for several hours
discussing this paper and its implications, when somehow it became clear to us that under
this logic the model intersection property holds for normal logic programs. This was the
origin of the Weak Completion Semantics.

Carroline wrote a wonderful master thesis, probably the best I have ever seen. We published
various papers based on her thesis: the main theoretical results defining the basis of theWeak
Completion Semantics, the conditions for the semantic operator to become a contraction
mapping as well as the connectionist computation of the semantic operator and its least
fixed point.

We were now able to adequately model the first six experiments of Ruth Byrne’s suppres-
sion task. For the remaining six experiments, the Weak Completion Semantics had to be
extended by abduction. Christoph Wernhard and Tobias Philipp, at that time a student
in our international master program in Computational Logic, extended abductive frame-
works to the three-valued logic underlying the Weak Completion Semantics. Surprisingly,
the suppression task could only be adequately solved if we apply skeptical abduction. In the
meantime, in all human reasoning tasks which we have considered so far and where it was
necessary to apply abduction, we had to apply skeptical abduction

Our first papers on the Weak Completion Semantics were published at conferences about
logic programming and logic based knowledge representation and reasoning. Whenever we
presented our approach colleagues immediately asked about its relation to the well-founded
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semantics. Emmanuelle-Anna Dietz, my PhD student at that time, looked into this problem.
Together with Christoph we found that as long as programs do not have positive cycles, they
can be transformed such that the Weak Completion Semantics of the program and the well-
founded semantics of its transformation are indeed identical, but they deviate as soon as
positive cylces are present.

As we were unaware of any experimental data showing the behavior of humans in the presence
of positive cycles, we asked Marco Ragni to help us setting up an experiment. The cycles
which we tested were probably to short, but almost none of the participants gave the answer
corresponding to the predictions of the well-founded semantics.

When Emma went to the Universidade Nova de Lisboa to study with Luís Moniz Pereira,
Luís became involved and asked many questions about reasoning with conditionals as well as
extensions of abduction. Our research greatly benefitted from Luís’ tremendous experience
and background knowledge.

In the year 2015 Emma was asked by Philip N. Johnson-Laird whether we might be in-
terested in applying the Weak Completion Semantics to syllogistic reasoning. Phil had
published a meta-study on this subject together with Sangeet Khemlani. So we tried. Sur-
prisingly, our first attempt was already competitive and a little later, with lots of help by
Ana Oliviera da Costa, at that time a master student in the European Master’s Program in
Computational Logic, the Weak Completion Semantics outperformed the twelve cognitive
theories mentioned in the meta-study. At this point, I was encouraged to call our approach
a cognitive theory. Richard Mörbitz, at that time a student in the Diplom program in Com-
puter Science, looked into the problem of clustering reasoners in order to explain conflicting
answers given by the participants in the meta-study.

Working with Emma and Marco we had a first solution for the selection task, but we were
not completely happy, as the distinction between the abstract and the social task were made
by practical considerations. This changed when Isabelly Lourêdo Rocha, at that time a
master student in the European Master’s Program in Computational Logic, looked into
obligation and factual conditionals, and showed how elegantly the selection task can be
solved by making such a distinction.

Luis Palacios Medinacelli, at that time a master student in the European Master’s Program
in Computationpal Logic, looked into connectionist models for skeptical abduction and ex-
tended the known connectionist models for creduluos abduction. Together with Carroline
and Emma we developed a complete connectionist implementation of the Weak Completion
Semantics. In this implementation, possible explanations are generated in a predefinded
sequence. Isabelly showed in her master thesis that it is possible to train connectionist net-
works to generate explanations in any sequence, which is a prerequisite for developing ideas
on bounded skeptical abduction.

Together with Emma and Raphael Höps, at that time a bachelor student in Computer
Science, we showed that the Weak Completion Semantics can compute preferred models of
spatial reasoning task.

In 2017 Luís Moniz Pereira gave me his new book on Programming Machine Ethics which
he had written together with Ari Saptawijaya. We offered a reading class on this subject
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and asked the students to implement ethical decision problems in the fluent calculus. In the
end, Dominic Deckert, at that time a student in the Diplom-program in Computer Science,
wrote his project on this topic.

However, in order to use the fluent calculus within the Weak Completion Semantics we
had to extend it to handle equational theories. In fact, all theoretical result obtained so
far had to be cross-checked and extended. Luckily, at that time Sibylle Schwarz and Lim
Yohanes Stefanus were in Dresden. Sibylle was on a sabbatical and Stef was a guest lecturer.
Together with Emma we got the job done.

My daugther Pamela developed the logo of the Weak Completion Semantics.
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Chapter 1

Introduction

where we motivate and introduce the Weak Completion Semantics.

1.1 The Goal

Our long-term research goal is the development of a cognitive theory for adequately mod-
elling human reasoning tasks. The theory should be computational in that answers to queries
can be computed. The theory should be integrated in that different human reasoning tasks
can be modelled by the theory without changing the theory.

We believe that currently the Weak Completion Semantics (WCS) is a very good, if not
the best candidate for such an integrated and computational cognitive theory. The WCS is
based on ideas initially proposed by Keith Stenning and Michiel van Lambalgen in [60], but
is mathematically sound [34], has been applied to various human reasoning tasks like the
suppression task [16], the selection task [17], the belief-bias effect [55], or ethical decision
tasks [32], has outperformed the twelve cognitive theories considered by Philip N. Johnson-
Laird and Sangeet Khemlani [41] in syllogistic reasoning [52], and can be implemented in a
connectionist setting [18].

Given a human reasoning task, the first step within the WCS is to construct a logic program
representing the task. The construction of these programs is based on several principles,
some of which are well-established like using licenses for inferences [60], existential import,
or Gricean implicature, whereas others are novel like unknown generalization. If interpreted
under the three-valued logic of [46], the programs have a unique supported model, which can
be computed by iterating the semantic operator introduced by [60]. Reasoning is performed
and answers are computed with respect to these models. Skeptical abduction is added if
some observations in the given human reasoning task can not be explained otherwise.

1
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1.2 The Suppression Task

The suppression task is a set of twelve experiments carried out by Ruth M. J. Byrne for the
first time in the 1980s [11]. The experiments have been repeated several times leading to
similar results (see e.g. [20]).

1.2.1 Forward Reasoning

To start with, participants were told that

she has an essay to write (1.1)

and
if she has an essay to write then she will study late in the library (1.2)

and were asked whether given fact (1.1) and conditional (1.2) they are willing to conclude
that she will study late in the library. 96% of the participants drew this conclusion, whereas
the remaining 4% answered either no or I don’t know.

A second group of participants were given then conditional

if she has a textbook to read then she will study late in the library (1.3)

together with conditional (1.2) and fact (1.1). Again, they were asked whether they are
willing to conlcude that she will study late in the library and, again, 96% of the participants
drew this conclusion.

A third group of participants were given the conditional

if the library is open, then she will study late in the library (1.4)

together with conditional (1.2) and fact (1.1). But in this case, only 38% of the partici-
pants were willing to conclude that she will study late in the library. All experiments are
summarized in Table 1.2.

The answers of the three groups of participants cannot be explained by classical two-valued
logic. The first experiment can be modeled as an example of the usage of the classical
inference rule modus ponens: Given F and F → G then G follows in classical two-valued
logic, where F and G are formulas and → denotes implication. Instantiating F by she has
an essay to write and G by she will study late in the library allows to apply modus ponens
leading to the conclusion that she will study late in the library.

Classical two-valued logic is monotonic in the sense that drawn conclusions persist if addi-
tional knowledge is added to the knowledge base. In particular, adding conditional (1.3) to
the knowledge base consisting of conditional (1.2) and fact (1.1) still allows to apply modus
ponens to (1.1) and (1.2) to conclude that she will study late in the library. This can be
used to explain the answers given by the second group.
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Unfortunately, the monotonicity of classical two-valued logic will also allow to conclude that
she will study late in the library in the third experiment. However, the majority of the
participants did not draw this conclusion. Rather, they suppressed it. The majority of the
participants in the third group cannot have used classical logic to draw their conclusions.
This is a first example to show that human reasoning is nonmonotonic in that the addition
of new knowledge to a given knowledge base may lead to a revision of previously drawn
conclusions.

If the participants in the third group did not use classical two-valued logic what else did
they use? How did they come up with their answers? Can we formally specify a system in
which the three experiments can be uniformly modeled such that the answers given by the
majority of the participants can be computed? In this book we will argue that the Weak
Completion Semantics is a good candidate for such a formal system.

The Weak Completion Semantics uses a representation which is quite common in logic
programming and logic based knowledge representation and reasoning (see e.g. [44, 2]). The
fact (1.1) is represented by

e← >, (1.5)

where e is a (nullary) relation symbol or (propositional) atom representing that she has an
essay to write and > is a constant denoting truth. Conditionals are represented as licences for
inference [61] with the help of abnormality predicates. The conditional (1.2) is represented
by

`← e ∧ ¬ab1, 1 (1.6)

where ` is an atom representing that she will study late in the library and ab1 is an abnor-
mality predicate. As nothing abnormal with respect to conditional (1.2) is known in Byrne’s
experiment, we assume that ab1 is false. Such a (negative) assumption can be expressed by

ab1 ← ⊥, (1.7)

where ⊥ is a constant denoting falsehood. Altogether, we obtain a (logic) program consisting
of the (program) clauses (1.5), (1.6), and (1.7). In this program, each clause defines a
relation, viz. e, `, and ab1, respectively. More precisely, each clause is the if-half of a
definition. These if-halves are weakly completed by adding the corresponding only-if-halves
to obtain2

e ↔ >, (1.8)
` ↔ e ∧ ¬ab1,

ab1 ↔ ⊥.

1We assume that ¬ is binding stronger that ∧ and that ∧ is binding stronger than ← and ↔. Hence,
parenthesis can be omitted.

2Whenever we write programs only the first clause is numbered and that number refers to the program
as a whole.
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Programs as well as their weak completions will be interpreted under the three-valued
Łukasiewicz logic [46] (see Table 1.1). In a three-valued logic, all atoms are interpreted
by mapping them to either >, ⊥, or U, where U is a constant denoting unknowability. Such
a three-valued interpretation I can be represented by two sets I> and I⊥, where I> con-
tains all relation symbols mapped to true and I⊥ contains all relation symbols mapped to
false. Because an interpretation is a mapping, the intersection of I> and I⊥ must be empty.
Moreover, if a relation symbol does neither occur in I> nor in I⊥, then it is mapped to
unknown. For example, the interpretation

〈I>, I⊥〉 = 〈∅, ∅〉 (1.9)

maps the relation symbols e, `, and ab1 to unknown. This interpretation is often called the
empty interpretation. The interpretation

〈I>, I⊥〉 = 〈{e}, {ab1}〉 (1.10)

maps e to true, ab1 to false, and ` to unknown, whereas the interpretation

〈I>, I⊥〉 = 〈{e, `}, {ab1}〉 (1.11)

maps e and ` to true and ab1 to false.

The interpretation (1.11) maps each equivalence occurring in the weakly completed pro-
gram (1.8) to true. For the first and the last equivalence this follows immediately from
the definition of the interpretation. The right-hand-side e ∧ ¬ab1 of the second equivalence
evaluates to true because the negation of false is true and the conjunction of true and true
is true (see Table 1.1). Because the left-hand-side ` is also mapped to true by (1.11), the
equivalence is mapped to true as well. Interpretations which map all equivalences of a weakly
completed program to true are called models. In particular, interpretation (1.11) is a model
for (1.8). Interpretations (1.9) and (1.10) are not models for (1.8). The first and the last
equivalence are not mapped to true under (1.9) because e and ab1 are mapped to unknown.
Under (1.10) the first and the last equivalence are mapped to true, however, the second
equivalence is not. Its left-hand-side is mapped to unknown, whereas its right-hand-side is
mapped to true.

As shown in Chapter 3 each weakly completed program admits a least model if interpreted
under the three-valued Łukasiewicz logic [46]. In particular, the interpretation (1.11) is
the least model of the weakly completed program (1.8). Moreover, the least model can be
computed by iterating a semantic operator. Starting with the empty interpretation (1.9),
this operator computes immediate consequences as follows:

• Because e ↔ > is contained in (1.8), e must be mapped to true; because ab1 ↔ ⊥ is
contained in (1.8), ab1 must be mapped to false; thus, interpretation (1.10) is obtained.

3Kleene has defined various logics in [42]. Herein, we will refer to the logic presented in this table as
Kleene logic.

4Although this logic has already been considered in [42], it has received much attention in the logic
programming community after the publication of Fitting’s paper [21]. Therefore, we will refer to the
logic presented herein as Fitting logic.
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Classical two-valued logic

F ¬F
> ⊥
⊥ >

∧ > ⊥
> > ⊥
⊥ ⊥ ⊥

∨ > ⊥
> > >
⊥ > ⊥

← > ⊥
> > >
⊥ ⊥ >

↔ > ⊥
> > ⊥
⊥ ⊥ >

Łukasiewicz three-valued logic

F ¬F
> ⊥
⊥ >
U U

∧ > U ⊥
> > U ⊥
U U U ⊥
⊥ ⊥ ⊥ ⊥

∨ > U ⊥
> > > >
U > U U
⊥ > U ⊥

← > U ⊥
> > > >
U U > >
⊥ ⊥ U >

↔ > U ⊥
> > U ⊥
U U > U
⊥ ⊥ U >

Kleene three-valued logic3

F ¬F
> ⊥
⊥ >
U U

∧ > U ⊥
> > U ⊥
U U U ⊥
⊥ ⊥ ⊥ ⊥

∨ > U ⊥
> > > >
U > U U
⊥ > U ⊥

← > U ⊥
> > > >
U U U >
⊥ ⊥ U >

↔ > U ⊥
> > U ⊥
U U U U
⊥ ⊥ U >

Fitting three-valued logic4

F ¬F
> ⊥
⊥ >
U U

∧ > U ⊥
> > U ⊥
U U U ⊥
⊥ ⊥ ⊥ ⊥

∨ > U ⊥
> > > >
U > U U
⊥ > U ⊥

← > U ⊥
> > > >
U U U >
⊥ ⊥ U >

↔ > U ⊥
> > ⊥ ⊥
U ⊥ > ⊥
⊥ ⊥ ⊥ >

Table 1.1: Truth tables for classical two-valued logic as well as three-valued logics introduced
by Łukasiewicz and Kleene and used by Fitting. F denotes a formula. Under Łukasiewicz
logic, U← U = >, whereas under Kleene and Fitting logic, U← U = U. Under Łukasiewicz
logic, U↔ U = >, whereas under Kleene logic, U↔ U = U.
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• Under interpretation (1.10), the right-hand-side e ∧ ¬ab1 of the second equivalence
occurring in (1.8) is mapped to true; consequently, its left-hand-side ` must also be
mapped to true; thus, interpretation (1.11) is obtained.

Because (1.11) is the least model of the weakly completed program (1.8) and because ` is
mapped to true under this interpretation, the system concludes that she will study late in
the library.

In a nutshell, under the Weak Completion Semantics the following steps are taken given a
scenario:

1. Reasoning towards a (logic) program.

2. Weakly completing the program.

3. Computing its least model under Łukasiewicz logic.

4. Reasoning with respect to the least model.

5. If necessary, applying skeptical abduction.

The first four steps have already been demonstrated in modeling the first experiment. The
fifth step will be necessary in Subsections 1.2.3 and 1.2.4, which deal with experiments seven
to twelve.

In the second experiment, the additional conditional (1.3) is represented by

`← t ∧ ¬ab2, (1.12)

where t is an atom representing that she has a textbok to read and ab2 is another abnor-
mality predicate. As nothing abormal with respect to conditional (1.3) is known in Byrne’s
experiment, we assume that ab2 is represented by

ab2 ← ⊥. (1.13)

Altogether, we obtain a program consisting of the clauses (1.5), (1.6), (1.7), (1.12), and (1.13).
The weak completion of this program is

e ↔ >, (1.14)
` ↔ (e ∧ ¬ab1) ∨ (t ∧ ¬ab2),

ab1 ↔ ⊥,
ab2 ↔ ⊥.

To obtain the least model of (1.14) we start with the empty interpretation and proceed as
follows:
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• Because e ↔ > is contained in (1.14), e must be mapped to true; because ab1 ↔ ⊥
and ab2 ↔ ⊥ are contained in (1.14), ab1 and ab2 must be mapped to false; thus, we
obtain the interpretation

〈{e}, {ab1, ab2}〉.

• Under this interpretation the right-hand-side (e ∧ ¬ab1) ∨ (t ∧ ¬ab2) of the second
equivalence occurring in (1.14) is mapped to true; consequently, its left-hand-side `
must be mapped to true; thus, we obtain the interpretation

〈{e, `}, {ab1, ab2}〉.

As this interpretation is the least model of the weakly completed program (1.14), the system
concludes that she will study late in the library.

In the third experiment, the additional conditional (1.4) is represented by

`← o ∧ ¬ab3, (1.15)

where o is an atom representing the fact that the library is open and ab3 is yet another
abnormality predicate. As before we assume that ab3 is mapped to unknown:

ab3 ← ⊥. (1.16)

But as soon as the additional conditional (1.4) is given, we believe – following [61] – that
most participants recognize that the antecedent of (1.4) is in fact an additional condition for
going into the library or, as we prefer, that the the library not being open is an abnormality
with respect to conditional (1.2). This can be represented by

ab1 ← ¬o. (1.17)

Again following [61] we believe that not having a reason for going to the library prevents
somebody to go to the library, which can be represented by

ab3 ← ¬e (1.18)

with having an essay to write being the only reason mentioned in the third experiment.

Robert Anthony Kowalski discusses this example in [43] as well. In particular, in the context
of legal reasoning the two conditionals can be represented as context independent or context
dependent rules. In the former form they read:

If she has an essay to write and the library is open then she will study late in the
library.

If the library is open and she has a reason for studying in the library then she
will study late in the library.

whereas in the latter we obtain:
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If she has an essay to write then she will study late in the library. However, if
the library is not open then she will not study late in the library.

If the library is open then she will study late in the library. However, if she has
no reason for studying in the library then she will not study late in the library.

We believe that the context dependent form is more approprate as we usually do not know
all exceptions. We will come back to this problem in Section 4.5.

Altogether, we obtain a program consisting of the clauses (1.5), (1.6), (1.7), (1.15), (1.16),
(1.17), and (1.18). The weak completion of this program is

e ↔ >, (1.19)
` ↔ (e ∧ ¬ab1) ∨ (o ∧ ¬ab3),

ab1 ↔ ⊥∨ ¬o,
ab3 ↔ ⊥∨ ¬e.

To obtain the least model of (1.19) we start with the empty interpretation and proceed as
follows:

• Because e↔ > is contained in (1.19), e must be mapped to true; thus, we obtain the
interpretation

〈{e}, ∅〉.

• Under this interpretation the right-hand-side ⊥∨¬e of the last equivalence occurring
in (1.19) is mapped to false; thus, we obtain the interpretation

〈{e}, {ab3}〉.

One should observe that this interpretation maps all equivalences occurring in (1.19) to true.
In particular, both sides of the second and third equivalence are mapped to unknown and
U↔ U = > under Łukasiewicz logic. As this interpretation is the least model of the weakly
completed program (1.19), the system concludes that it does not know whether she will study
late in the library. In other words, the Weak Completion Semantics models the suppression
effect demonstrated by the participants of the third experiment.

1.2.2 Denial of the Antecedent

Byrne’s experiments four to six are repetitions of the experiments one to three except that
the fact (1.1) is replaced by

she does not have an essay to write (1.20)

and the participants were asked whether they are willing to conclude that she will not study
late in the library.
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In the fourth experiment the fact (1.20) and the conditional (1.2) were given. 46% of the
participants were willing to conclude that she will not study late in the library.

In the fifth experiment the conditional (1.3) was added to the conditional (1.2) and the
fact (1.20). In this case, only 4% of the participants were willing to conclude that she will
not study late in the library.

In the sixth experiment the conditional (1.4) was added to the conditional (1.2) and the
fact (1.20). In this case, only 63% of the participants were willing to conclude that she will
not study late in the library.

The answers of the participants can again not be modeled in classical two valued logic.
Given ¬F and F → G does not allow to conclude ¬G. Consider a two-valued interpretation
which maps F to false and G to true as well as the usual classical two-valued truth tables for
the negation ¬ and implication → (see Table 1.1). Then, ¬F as well as F → G are mapped
to true, but ¬G is mapped to false. Clearly, the participants who concluded that she will
not study late in the library did not use classical logic.

On the other hand, the fifth experiment demonstrates that the conlusion drawn in the forth
experiment is suppressed if additional knowledge becomes available.

Under the Weak Completion Semantics the fact (1.20) is modeled by

e← ⊥. (1.21)

For the fourth experiment we obtain the program consisting of the clauses (1.21), (1.6),
and (1.7). The weak completion of this program is

e ↔ ⊥, (1.22)
` ↔ e ∧ ¬ab1,

ab1 ↔ ⊥.

To obtain the least model of (1.22) we start with the empty interpretation and proceed as
follows:

• Because e↔ ⊥ and ab1 ↔ ⊥ are contained in (1.22), both, e and ab1, must be mapped
to false; thus, we obtain the interpretation

〈∅, {e, ab1}〉.

• Because under this interpretation the right-hand-side e∧¬ab1 of the second equivalence
occurring in (1.22) is mapped to false, its left-hand-side ` must be mapped to false as
well; thus, we obtain the interpretation

〈∅, {e, ab1, `}〉.
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As this interpretation is the least model for (1.22) the system concludes that she will not
study late in the library.

For the fifth experiment we obtain the program consisting of the clauses (1.21), (1.6), (1.7),
(1.12), and (1.13). The weak completion of this program is

e ↔ ⊥, (1.23)
` ↔ (e ∧ ¬ab1) ∨ (t ∧ ¬ab2),

ab1 ↔ ⊥,
ab2 ↔ ⊥.

To obtain the least model of (1.23) we start with the empty interpretation and proceed as
follows:

• Because e↔ ⊥, ab1 ↔ ⊥, and ab2 ↔ ⊥ are contained in (1.23), e, ab1, and ab2 must
be mapped to false; thus, we obtain the interpretation

〈∅, {e, ab1, ab2}〉.

As this interpretation is the least model for (1.23), the system concludes that it does not
know whether she will not study late in the library.

For the sixth experiment we obtain the program consisting of the clauses (1.21), (1.6), (1.7),
(1.15), (1.16), (1.17), and (1.18). The weak completion of this program is

e ↔ ⊥, (1.24)
` ↔ (e ∧ ¬ab1) ∨ (o ∧ ¬ab3),

ab1 ↔ ⊥∨ ¬o,
ab3 ↔ ⊥∨ ¬e.

To obtain the least model of (1.24) we start with the empty interpretation and proceed as
follows:

• Because e↔ ⊥ is contained in (1.24), e must be mapped to false; thus, we obtain the
interpretation

〈∅, {e}〉.

• Because under this interpretation the right-hand-side ⊥ ∨ ¬e of the last equivalence
occurring in (1.24) is mapped to true, ab3 must be mapped to true as well; thus we
obtain the interpretation

〈{ab3}, {e}〉.

• Because under this interpretation the right-hand-side (e ∧ ¬ab1) ∨ (o ∧ ¬ab3) of the
second equivalence occurring in (1.24) is mapped to false, ` must be mapped to false
as well; thus, we obtain the interpretation

〈{ab3}, {e, `}〉.
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As this interpretation is the least model for (1.24), the system concludes that she will not
study late in the library.

1.2.3 Affirmation of the Consequent

Byrne’s experiments seven to nine are repetitions of the experiments one to three except
that the fact (1.1) is replaced by

she will study late in the library (1.25)

and the participants were asked whether they are willing to conclude that she has an essay
to write.

In the seventh experiment the fact (1.25) and the conditional (1.2) were given. 72% of the
participants were willing to conclude that she has an essay to write.

In the eighth experiment the conditional (1.3) was added to the conditional (1.2) and the
fact (1.25). In this case, only 13% of the participants were willing to conclude that she has
an essay to write.

In the ninth experiment the conditional (1.4) was added to the conditional (1.2) and the
fact (1.25). In this case, only 71% of the participants were willing to conclude that she has
an essay to write.

These experiments are different than the experiments considered in the previous subsections
as conditional (1.2) is represented by `← e∧¬ab1 in (1.6), which is already a definition for `.
Just adding ` ← > to (1.6) does not seem to be particular meaningful. Rather, this seems
to be a case for applying abduction [29]. Can ` be explained by adding certain facts to the
knowledge base? In the context of logic programming [38], fact (1.25) is consider to be an
observation which needs to be explained by adding abducibles to a given program. Possible
abducibles are usually atoms which are undefined in the given program. Explanations are
subsets of the set of abducibles such that these subsets together with the given program
entail the observation. In most cases, minimal subsets are preferred.

For the seventh experiment the program consists of the clauses (1.6) and (1.7). Hence, the
atoms ` and ab1 are defined, but the atom e is undefined. As we are using a three-valued
logic, the set of abducibles is

{e← >, e← ⊥}.

e can be added either as a positive fact or as a negative assumption to the program. Adding
the first abducible e ← > to (1.6) and (1.7) and weakly completing the program we ob-
tain (1.8), whose least model is

〈{e, `}, {ab1}〉.

This model does not only explain the observation ` by mapping it to true, but e is mapped
to true as well. Hence, the system will conclude that she has an essay to write. The answer
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is quite intuitive. In the given context the only reason for studying late in the library is the
need to write an essay.

One should observe that adding the second abducible e← ⊥ to (1.6) and (1.7) and weakly
completing the program we obtain

e ↔ ⊥,
` ↔ e ∧ ¬ab1,

ab1 ↔ ⊥.

The least model of this weakly completed program is

〈∅, {ab1, e, `}〉.

This model does not explain the observation ` as it maps ` to false.

One should also observe, that adding both abducibles to (1.6) and (1.7) and weakly com-
pleting the program will lead to the equivalence

e↔ >∨⊥,

which is equivalent to
e↔ >.

Hence, this case is equivalent to considering only the first abducible. But, it shows another
feature of the Weak Completion Semantics: If a positive fact like e ← > and a negative
assumption like e ← ⊥ occur together in a program and the program is weakly completed,
then the negative assumption is overwritten by the positive fact.

For the eighth experiment the program consists of the clauses (1.6), (1.7), (1.12), and (1.13).
Hence, the atoms `, ab1, and ab2 are defined, whereas the atoms e and t are undefined. Thus,
the set of abducibles is

{e← >, e← ⊥, t← >, t← ⊥}.

Adding the first abducible e ← > to (1.6), (1.7), (1.12), and (1.13) and weakly completing
the program we obtain (1.14), whose least model is

〈{e, `}, {ab1, ab2}〉. (1.26)

This model explains `. The reason for going to the library is also spelled out, viz. that she
has an essay to write.

But in the context of this experiment, another reason for going to the library is mentioned
explicitely, viz. that she has a textbook to read. Indeed, adding the third abducible t ← >
to (1.6), (1.7), (1.12), and (1.13) and weakly completing the program we obtain

t ↔ >,
` ↔ (e ∧ ¬ab1) ∨ (t ∧ ¬ab2),

ab1 ↔ ⊥,
ab2 ↔ ⊥,
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whose least model is
〈{t, `}, {ab1, ab2}〉. (1.27)

This model explains ` as well and the reason for going to the library in this model is that
she has a textbook to read.

In fact, e← > and t← > are the only minimal explanations for ` in this case. However, the
models (1.26) and (1.27) differ in their interpretation of the atom e. Whereas (1.26) maps
e to >, (1.27) maps e to U. Taking both models into account and reasoning skeptically [?],
the system concludes that it does not know whether she has an essay to write.

One should observe that in this case a creduluous reasoner would have concluded that she
has an essy to write, because there is a model, viz. (1.26), which maps the observation ` and
the atom e to true. As reported in [11], only 13% of the partipants drew this conclusion.
This is the first example discussed in this book indicating that humans seem to reason
skeptically.

For the ninth experiment the program consists of the clauses (1.6), (1.7), (1.15), (1.16),
(1.17), and (1.18). Hence, the atoms `, ab1, and ab3 are defined, whereas the atoms e and o
are undefined. Thus, the set of abducibles is

{e← >, e← ⊥, o← >, o← ⊥}.

Adding the abducibles e ← > and o ← > to (1.6), (1.7), (1.15), (1.16), (1.17), and (1.18)
and weakly completing the program we obtain

e ↔ >,
o ↔ >,
` ↔ (e ∧ ¬ab1) ∨ (o ∧ ¬ab3),

ab1 ↔ ⊥∨ ¬o,
ab3 ↔ ⊥∨ ¬e,

whose least model is
〈{e, o, `}, {ab1, ab3}〉.

This model explains the observation `. As it maps e to true, the system concludes that she
has an essay to write. One should observe that the set

{e← >, o← >}

is the only minimal explanation for the observation `. Deleting, for example, o ← > from
this set would lead to the weakly completed program (1.19), whose least model is

〈{o}, {ab3}〉.

It does not explain the observation `.
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1.2.4 Denial of the Consequent

Byrne’s experiments ten to twelve are repetitions of the experiments one to three except
that the fact (1.1) is replaced by

she will not study late in the library (1.28)

and the participants were asked whether thet are willing to conclude that she does not have
an essay to write.

In the tenth experiment the fact (1.28) and the conditional (1.2) were given. 92% of the
participants were willing to conclude that she does not have an essay to write.

In the eleventh experiment the conditional (1.3) was added to the conditional (1.2) and the
fact (1.28). In this case, only 96% of the participants were willing to conclude that she does
not have an essay to write.

In the twelvth experiment the conditional (1.4) was added to the conditional (1.2) and the
fact (1.28). In this case, only 33% of the participants were willing to conclude that she does
not have an essay to write.

As in the previous Subsection 1.2.3 the clause ` ← e ∧ ¬ab1 representing conditional (1.2)
is a definition for ` and, hence, (1.28) should again be considered as an observation which
needs to be explained.

For the tenth experiment the program consists of the clauses (1.6) and (1.7). Hence, the set
of abducibles is

{e← >, e← ⊥}.

Adding the second abducible e← ⊥ to (1.6) and (1.7) and weakly completing the program
we obtain (1.22), whose least model is

〈∅, {e, ab1, `}〉.

This model does not only explain the observation by mapping ` to ⊥, but it also maps e to
false. Hence, the system will conclude that she does not have an essay to write. One should
observe that

{e← ⊥}

is the only explanation for the observation (1.28).

For the eleventh experiment the program consists of the clauses (1.6), (1.7), (1.12), and (1.13).
Hence, the set of abducibles is

{e← >, e← ⊥, t← >, t← ⊥}.

The only minimal explanation for the observation (1.28) is

{e← ⊥, t← ⊥}.
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Adding the abducibles e ← ⊥ and t ← ⊥ to (1.6), (1.7), (1.12), and (1.13) and weakly
completing the program we obtain

e ↔ ⊥,
t ↔ ⊥,
` ↔ (e ∧ ¬ab1) ∨ (t ∧ ¬ab2),

ab1 ↔ ⊥,
ab2 ↔ ⊥,

whose least model is
〈∅, {e, t, ab1, ab2, `}〉.

This model maps ` and e to false. Hence, the system will conclude that she does not have
an essay to write.

For the twelvth experiment the program consists of the clauses (1.6), (1.7), (1.15), (1.16),
(1.17), and (1.18). The set of abducibles is

{e← >, e← ⊥, o← >, o← ⊥}.

There are two minimal explanations for the observation (1.28), viz.

{e← ⊥}

and
{o← ⊥}.

Adding e← ⊥ to (1.6), (1.7), (1.15), (1.16), (1.17), and (1.18) and weakly completing the
program we obtain (1.24), whose least model is

〈{ab3}, {e, `}〉. (1.29)

Adding o← ⊥ to (1.6), (1.7), (1.15), (1.16), (1.17), and (1.18) and weakly completing the
program we obtain

o ↔ ⊥,
` ↔ (e ∧ ¬ab1) ∨ (o ∧ ¬ab3),

ab1 ↔ ⊥∨ ¬o,
ab3 ↔ ⊥∨ ¬e

whose least model is
〈{ab1}, {o, `}〉. (1.30)

Comparing (1.29) and (1.30) and reasoning skeptically, the system will conclude that it does
not know whether she does not have an essay to write. One should observe, that because
of (1.29) a creduluous reasoner would have concluded she does not have an essay to write.
However, as reported by Byrne, only 33% of the participants were willing to do so. This is
the second example discussed in this book showing that humans seem to reason skeptically.

The results are summarized in Table 1.2.
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Ex. facts conditionals queries WCS
(1.1) (1.20) (1.25) (1.28) (1.2) (1.3) (1.4)
e ¬e ` ¬` ` ¬` e ¬e

1 X X 96% >
2 X X X 96% >
3 X X X 38% U

4 X X 46% >
5 X X X 4% U

6 X X X 63% >
7 X X 72% >
8 X X X 13% U

9 X X X 71% >
10 X X 92% >
11 X X X 96% >
12 X X X 33% U

Table 1.2: The results of the suppression task as reported in [11] and the conclusions drawn
by the Weak Completion Semantics (WCS).



Chapter 2

Foundations

where we define some basic notions concerning logics, fixed point theory, metric
methods, the fluent calculus, and connectionist networks. Experienced readers
may skip this chapter. It was added to make the book self-contained.

2.1 Logics

We consider an alphabet consisting of

• a finite set of function symbols with arity greater or equal than 0,

• a countably infinite set of variables,

• a finite or countably infinite set of relation symbols with arity greater or equal than 0,

• the connectives ¬, ∧, ∨, ←, and ↔ called negation, conjunction, disjunction, implica-
tion, and equivalence, respectively,

• the existential quantifier ∃,

• the universal quantifier ∀,

• the special symbols ′(′, ′)′, and ′,′, i.e. the parenthesis and the comma.

Nullary function symbols are often called constant symbols, whereas nullary relation symbols
are often called propositional variables. We usually assume that the alphabet is implicitely
given.

The set of terms is the smallest set satisfying the following conditions:

17
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1. Each variable is a term.

2. If f is an n-ary function symbol, n ≥ 0, and t1, . . . , tn are terms, then f(t1, . . . , tn)
is a term as well.

In case of nullary function symbols we write c instead of c().

The set of atoms consists of all expressions of the form p(t1, . . . , tn), where p is an n-ary
relation symbol, n ≥ 0, and t1, . . . , tn are terms. In case of nullary relation symbols we
write p instead of p().

A literal is either an atom or its negation. For example, let ab be a nullary relation symbol.
Then, ab and ¬ab are literals

A term, atom or literal is said to be ground if and only if it does not contain the occurrence
of a variable. For example, let p be a unary relation symbol, a a constant symbol, and X a
variable. Then, p a1 and a are ground, whereas pX and X are not ground.

The set of formulas is the smallest set satisfying the following conditions:

1. Each atom is a formula.

2. If F is a formula, then so is ¬F .

3. If F and G are formulas, then so are (F ∧G), (F ∨G), (F ← G), and (F ↔ G).

4. If F is a formula and X is a variable, then (∀X)F and (∃X)F are formulas as well.

We assume the following precedence hierarchy � among the connectives and the quantifiers:

{∀,∃} � ¬ � ∧ � ∨ � {←,↔}.

For example, let e, `, and ab1 be propositional variables. Then,

e, `, ab1, ¬ab1, e ∧ ¬ab1, `← e ∧ ¬ab1

are formulas, where the last formula corresponds to

(`← (e ∧ ¬ab1))

because of the precedence hierarchy.

Equality is a particular relation enjoying certain properties which require particular atten-
tion. An equation is an atom of the form s ≈ t, where s and t are terms and ≈ is a binary
relation symbol written infix. Let 1 be a constant symbol and ◦ a binary function symbol
written infix. Then, the equations

X ◦ 1 ≈ X, (2.1)
X ◦ Y ≈ Y ◦X,

(X ◦ Y ) ◦ Z ≈ X ◦ (Y ◦ Z)

1If p is a unary relation symbol and is applied to a constant symbol a or a variable X, then we write p a
and pX instead of p(a) and p(X), respectively.
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state that 1 is a unit with respect to ◦ and that ◦ is commutative as well as associative. In
other words, equations (2.1) specify an AC1-theory. The equations presented in (2.1) are
assumed to be universally closed in that each variable occurring in an equation is assumed
to be prefixed by a universal quantifier. For example,

X ◦ 1 ≈ X

should be understood as
(∀X)X ◦ 1 ≈ X.

Because equations, atoms, formulas (see below) are usually assumed to be unviversally
closed, we omit the universal quantifiers.

The equality relation enjoys some typical properties, viz. reflexivity, symmetry, transitivity
as well as substitutivity for function and relation symbols. These properties can be expressed
by the following (universally closed) axioms of equality :

X ≈ X ← >, (2.2)
X ≈ Y ← Y ≈ X,
X ≈ Z ← X ≈ Y ∧ Y ≈ Z,

f(X1, . . . , Xn) ≈ f(Y1, . . . , Yn) ←
n∧
i=1

Xi ≈ Yi,

r(Y1, . . . , Yn) ← r(X1, . . . , Xn) ∧
n∧
i=1

Xi ≈ Yi.

The substitutivity axioms are defined for each function symbol f and each relation symbol r
occurring in the underlying alphabet. Universal quantifiers have been omitted.

An equational theory consists of set of (universally closed) equations together with the
(universally closed) axioms of equality. It is specified by the set of equations.

An equational theory defines a finest congruence relation ≡ on the set of ground terms
(see e.g. [30]). Let t be a ground term. [t] denotes the congruence class defined by ≡ and
containing t. Suppose that the set of equations is

a ≈ b,

b ≈ c,

where a, b, and c are constant symbols. Then,

a ≡ b ≡ c

and
[a] = [b] = [c].

If the set of equations is empty, then the congruence class defined by ≡ and containing t
consists only of t. In this case, we write t instead of [t].
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We abbreviate p([t1], . . . , [tn]) by [p(t1, . . . , tn)]. Furthermore, [p(t1, . . . , tn)] = [q(s1, . . . , sm)]
if and only if p = q, n = m, and [ti] = [si] for all 1 ≤ i ≤ n. If the set of equations
is empty, then we write p(t1, . . . , tn) instead of [p(t1, . . . , tn)]; furthermore, p(t1, . . . , tn) =
q(s1, . . . , sm) if and only if p = q, n = m, and ti = si for all 1 ≤ i ≤ n.
For example, consider the set (2.1) of equations. Let d, t1, and t2 be constant symbols and p
a binary relation symbol. Then,

[d ◦ t2] = [t2 ◦ d],

[d ◦ t1 ◦ d] = [t1 ◦ d ◦ d ◦ 1],

[p(d ◦ t2, d ◦ t1 ◦ d)] = [p(t2 ◦ d, t1 ◦ d ◦ d ◦ 1)].

The Herbrand universe is the quotient of the set of ground terms modulo ≡. In the literature,
the notion of a Herbrand universe is often restriced to the case where the equational theory
is empty, whereas if the equational theory is not empty, then this set is called the Herbrand
E-universe (see e.g. [37]). But this distinction seems to be superfluous as by definition, if
E is empty, then the Herbrand E-universe becomes the Herbrand universe. Hence, in this
book we opted for dropping the prefix ’E ’.
The Herbrand base is the set of all expressions of the form [p(t1, . . . , tn)], where p is an n-ary
function symbol and [ti], 1 ≤ i ≤ n, are elements of the Herbrand universe. In the literature,
the notion of a Herbrand base is often restricted to the case where the equational theory
is empty, whereas if this is not the case, then this set is called Herbrand E-base. For the
reasons discussed above we are dropping the prefix ’E ’. As before, if the equational theory
is empty, we omit the squared brackets and write p(t1, . . . , tn) instead of [p(t1, . . . , tn)].

An interpretation is a mapping from the set of formulas into the set of truth values. In this
book we only consider interpretations which map a given equational theory to the truth value
> denoting truth. In other words, we consider only interpretations which satisfy a given
equational theory. Such interpretations are often called E-interpretations in the literature
(see e.g. [37]). But as we will only consider E-interpretations, we are again dropping the
prefix ’E ’.
We will usually consider the truth values >, ⊥, and U denoting truth, falsehood, and un-
knowability, respectively. The truth ordering on {⊥,U,>} is defined by

⊥ <t U <t >.

An interpretation is defined by the truth tables for the connectives and the mapping of the
ground atoms to the truth values. Several examples are given in Table 1.1.

It remains to represent the mapping of the ground atoms to truth values. A three-valued
interpretation I can be represented by 〈I>, I⊥〉, where I> and I⊥ are disjoint subsets of the
Herbrand base such that [A] ∈ I> if and only if I(A) = >, [A] ∈ I⊥ if and only if I(A) = ⊥,
and [A] 6∈ I> ∪ I⊥ if and only if I(A) = U, where A is a ground atom.

An interpretation I is a model for a formula F , in symbols I |= F , if and only if I maps F to
>. As interpretations have to satisfy a given equational theory and the axioms of equality,
so do models.
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2.2 Fixed Point Theory

Let S be a set. A (binary) relation R on S is a subset of S × S. xRy denotes (x, y) ∈ R.
A relation ≤ on S is a partial order if the following conditions hold:

• reflexivity : (∀x ∈ S) (x ≤ x).

• antisymmetry : (∀x, y ∈ S) (x ≤ y ∧ y ≤ x→ x = y).

• transitivity : (∀x, y, z ∈ S) (x ≤ y ∧ y ≤ z → x ≤ z).

For example, (2S ,⊆) is a partially ordered set.

Let (S,≤) be a partially ordered set.

• a ∈ S is an upper bound of X ⊆ S if for every x ∈ X we have x ≤ a.

• a ∈ S is the least upper bound of X ⊆ S if a is an upper bound of X and for every
upper bound a′ of X we find a ≤ a′.

• lub (X ) denotes the least upper bound of X if it exists.

• b ∈ S is a lower bound of X ⊆ S if for every x ∈ X we have b ≤ x.

• b ∈ S is the greatest lower bound of X ⊆ S if b is a lower bound of X and for every
lower bound b′ of X we find b′ ≤ b.

• glb (X ) denotes the greatest lower bound of X if it exists.

• A non-empty subset X of S is directed if for every x, y ∈ X there exists some z ∈ X
such that x ≤ z and y ≤ z.

A partially ordered set C is a complete partial order if C has a least element and for every
directed subset X of C there exists lub (X ) ∈ C and lub (X ) ∈ C.
Let (S,≤) be a partially ordered set and f : S → S a mapping.

• f is monotonic if for every x, y ∈ S such that x ≤ y we find f(x) ≤ f(y).

• f is continuous if for every directed subset X of S we find

f(lub (X )) = lub ({f(x) | x ∈ X}).

Proposition 1 Every continuous mapping is montonic.

Proof [?].

Theorem 2 (Knaster-Tarski) Let C be a complete partial order and f a monotonic mapping
on C. Then, f has a least fixed point.
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Proof [13].

Proposition 3 Let C be a complete partial order with least element ⊥, f a monotonic
mapping on C, x the least fixed point of f , and

x0 = ⊥,
xα = f(xα−1) for every non-limit ordinal α > 0,
xα = lub {xβ | β < α} for every limit ordinal α.

Then, for some ordinal γ we find x = xγ .

Proof [40].

Theorem 4 (Kleene fixed point theorem) Let C be a complete partial order with least ele-
ment ⊥ and f a continuous mapping on C. Then, the least fixed point of f is

lub ({fn(⊥) | n ≥ 0}).

Proof [13].

Lemma 5 Let X be a directed set and Y be a finite subset of X . Then, X contains an upper
bound of Y.

Proof [?].

As an immediate consequence of Lemma 5 we obtain:

Corollary 6 Any finite directed set contains its own least upper bound.

Proposition 7 Let C be a finite complete partial order and f a monotonic mapping on C.
Then, f is continuous.

Proof [27].

From Proposition 7 and Theorem 4 we conclude:

Corollary 8 Let C be a finite complete partial order with least element ⊥ and f be a mono-
tonic mapping on C. Then, the least fixed point of f is

lub ({fn(⊥) | n ≥ 0}).

2.3 Metrics

A metric on a setM is a mapping d :M×M→ R such that
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1. d(x, y) = 0 if and only if x = y,

2. d(x, y) = d(y, x),

3. d(x, z) ≤ d(x, y) + d(y, z).

(M, d) is called metric space.

A sequence s1, s2, . . . is Cauchy if for every ε > 0 there is an integer N such that for all
n,m ≥ N , d(sn, sm) ≤ ε.
A sequence s1, s2, . . . converges if there is an s such that, for every ε > 0, there is an integer
N such that for all n ≥ N , d(sn, s) ≤ ε.
Let (M, d) be a metric space.

• (M, d) is complete if every Cauchy sequence converges.

• A mapping f :M→M is a contraction if for all x, y ∈ M there exists a k ∈ R with
0 < k < 1 such that d(f(x), f(y)) ≤ k · d(x, y).

Theorem 9 (Banach Contraction Mapping Theorem) A contraction mapping f defined on
a complete metric space (M, d) has a unique fixed point. The sequence y, f(y), f(f(y)), . . .
converges to this fixed point for any y ∈M.

Proof [7].

2.4 The Fluent Calculus

The fluent calculus is a first-order calculus for reasoning about actions and causality. The
original idea was published together with Josef Schneeberger in [35]. The name fluent
calculus was coined later by Michael Thielscher in [65].

The basic idea underlying the fluent calculus is to consider states of the world as multisets of
fluents. Multisets are reified and represented as terms in an equational logic program with
the help of the AC1-theory (2.1). In fact, there is a one-to-one correspondence between a
multiset2 of the form

{̇t1, . . . , tn}̇

and the AC1-term
t1 ◦ . . . ◦ tn ◦ 1,

where they AC1-symbols ◦ and 1 do not occur in the terms ti, 1 ≤ i ≤ n.
As example consider a scenario where a student is working late at the university: She would
like to eat a cookie (c) which she had bought earlier and would like to drink a lemonade (`);
checking her purse, she only has a dollar note (d) and a quater (q). In the basement of the

2Multisets are denoted by putting a dot on top of the curly brackets.
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building the university has set up a change machine, which allows to change a dollar note
into four quaters, and a vending machine, which allows to buy a lemonade for three quaters.

The initial state can be descibed by the multiset

{̇c, d, q}̇ (2.3)

which is represented by the term
c ◦ d ◦ q ◦ 1.

which is equal to
c ◦ d ◦ q

under AC1 (2.1). There are two actions, viz. exchanging a dollar note into four quaters and
buying a lemonade for three quaters, which are represented by

action(d, change, q ◦ q ◦ q ◦ q) ← > (2.4)
action(d ◦ d ◦ d, get , `) ← >

The first argument of action represents the preconditions, the second argument is the name,
and the third argument represents the immediate effects of the action.

Causalities are expressed by the ternary relation causes, where

causes(s, p, s′)

expresses that the execution of plan p transforms state s into state s′ and a plan is a sequence
of actions. The relation causes can be defined recursively on the structure of plans:

causes(X, [ ], X) ← >, (2.5)
causes(X, [H|T ], Y ) ← action(P,H,E) ∧X ≈ P ◦ Z ∧ causes(E ◦ Z, T, Y ),

X ≈ X ← >.

The first clause expresses that the empty plan [ ] causes no change of the current stateX. The
second clause expresses that a plan with initial action (or head) H and remaining sequence
of actions (or tail) T transforms the current state X into state Y if there is an action with
name H, preconditions P , and immediate effects E, which is applicable in X, its execution
leads to the successor state E ◦Z, and the successor state is recursively transformed into Y
by T . More precisely, H is applicable in X if we find a Z such that X ≈ P ◦Z. The fluents
occurring in P are consumed and deleted from X, whereas Z is equal to the remaining
fluents occurring in X. In this way, Z is the solution to the frame problem [48, 49, 31]. Z
can be computing by unifying the terms X and P ◦ Z modulo the equational theory (2.1)
[62]. Formally, SLDE-resolution [30] is applied to solve the planning problem consisting of
the clauses occurring in (2.4) and (2.5) and the initial query

← causes(c ◦ d ◦ q, P, c ◦ ` ◦X)

asking whether there exists a plan P and fluents X such that the initial state (2.3) is
transformed into a state where the student has a cookie, a lemonade, and X.
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In the discussed scenario, the initial state (2.3) is transformed into

{̇c, q, q, q, q, q}̇ (2.6)

by applying the change action, which is further transformed into

{̇c, `, q, q}̇ (2.7)

by applying the get action. In the first step d is consumed and four quaters are added
leading to (2.6). In the second step, three quarters are consumed and the lemonade ` is
produced leading to (2.7).

It has been shown in [26] that the basic fluent calculus is equivalent to the multiplicative
fragment of linear logic [47, 24] and the linear connection method [9]. In each of these calculi,
actions are applied to a state by consuming its preconditions and producing its immediate
effects.

There are many extensions of the basic fluent calculus, for example, to provide solutions
to the ramification and the qualification problem [63, 64, 66]. In Section 4.6 we will be
particularly concerned with the ramification problem, i.e., the problem to determine the
indirect effects of an action. For example, if we are moving a box from one place to another,
then anything that is in the box will go with it, although none of the content of the box is
explicitely specified by the move action.

2.5 Connectionist Networks
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Chapter 3

Theory

where we rigorously develop the theory of the Weak Completion Semantics.

3.1 Programs

A (normal logic) program P is a finite or countably infinite set of clauses of the form

A← Body, (3.1)

where the head A is an atom but not an equation and Body is either a non-empty conjunction
of literals, >, or ⊥. Clauses are assumed to be universally closed. Clauses of the form A← >
and A ← ⊥ are called (positive) facts and (negative) assumptions, respectively. All other
clauses are called rules. A program is said to be a datalog program if and only if the terms
occurring in this program are variables and constant symbols.

For example, consider the program

e ← >,
` ← e ∧ ¬ab1, (3.2)

ab1 ← ⊥.

The first clause is a fact, the second a rule, and the last an assumption.

Let P be a program. The underlying alphabet consists precisely of the symbols occurring
in P. If P is a first-order program, then the alphabet must contain at least one constant
symbol as, otherwise, the Herbrand universe would be empty.

A ground instance of a clause (3.1) is obtained from (3.1) by replacing each variable occurring
in A and Body by a ground term. This replacement needs to be consistent in that multiple

27
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occurrences of the same variable are replaced by the same ground term. For example,

q(s(a))← q(a)

and
q(s(s(a)))← q(s(a))

are ground instances of the rule
q(s(X))← q(X),

where q is a unary relation symbol, s a unary function symbol, a a constant symbol, and X
a variable. The ground instance of a program P is obtained from P by replacing each clause
occurring in P by the set of its ground instances. For example, let P consist of the clauses

q(a) ← >,
q(s(X)) ← q(X).

Then, the ground instance of P is the following infinite set of clauses:

q(a) ← >,
q(s(a)) ← q(a),

q(s(s(a))) ← q(s(a)),

...
...

... .

Let gP denote the ground instance of P. One should observe that the ground instance of
a propositional program, i.e. a program in which only nullary relation symbols occur, is the
program itself. For example, all programs considered in Chapter 1 like (3.2) are propositional
and, in these cases, gP = P.

In the remainder of this section we assume that programs are ground. Let P be a ground
program.

A (ground) atom A is defined in P iff P contains a clause of the form A← Body; otherwise
A is said to be undefined. The set of all atoms that are defined in P is denoted by def P.
For example,

def (3.2) = {e, `, ab1}.

All relation symbols occurring in the program (3.2) are defined. Consider the program

e ← >, (3.3)
` ← e ∧ ¬ab1,
` ← t ∧ ¬ab2,

ab1 ← ⊥,
ab2 ← ⊥.
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Then,
def (3.3) = {e, `, ab1, ab2},

whereas t is undefined. Likewise, consider the program

e ← >, (3.4)
` ← e ∧ ¬ab1,
` ← o ∧ ¬ab3,

ab1 ← ⊥,
ab1 ← ¬o,
ab3 ← ⊥,
ab3 ← ¬e.

Then,
def (3.4) = {e, `, ab1, ab3},

whereas o is undefined.

Let A be a ground atom. ¬A is assumed in P if and only if P contains an assumption
A← ⊥ and P does neither contain a fact A← > nor a rule A← Body. For example,

• ¬ab1 is assumed in (3.2),

• ¬ab1 and ¬ab2 are assumed in (3.3),

• nothing is assumed in (3.4).

Consider the following transformation for a given ground program P:

1. For all A ∈ def P, replace all clauses of the form A ← Body1, A ← Body2, . . .
occurring in P by A← Body1 ∨ Body2 . . . ∨ . . . .

2. Add A← ⊥ for all undefined ground atoms A occurring in P.

3. Replace all occurrences of ← by ↔.

The resulting set of equivalences is called the completion of P following [12].1 It is denoted
by cP. If the second step is ommitted then the resulting set of equivalences is called the
weak completion of P following [34]. It is denoted by wcP. For example,

• wc(3.2) = c(3.2) = (1.8).

• wc(3.3) = (1.14), whereas c(3.3) contains all equivalences occurring in wc(3.3) together
with the equivalence

t↔ ⊥.
1Keith Leonhard Clark has used a different syntactic form in [12]. In classical two-valued logic his form
is semantically equivalent to the one used herein. We will come back to this in Section 4.5.
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• wc(3.4) = (1.19), whereas c(3.4) contains all equivalences occurring in wc(3.4) together
with the equivalence

o↔ ⊥.

• The programs, their weak completions, and the least models of the weak completions
for the first six experiments of the suppression task are shown in Table 3.1.

As another example consider the program which consists of the clauses

pa ← >, (3.5)
qb ← rb.

As its completion we obtain

pa ↔ >,
pb ↔ ⊥,
qa ↔ ⊥,
qb ↔ rb,
ra ↔ ⊥,
rb ↔ ⊥,

whereas its weak completion is

pa ↔ >,
qb ↔ rb.

One should observe, that under the completion not only ra and rb are equivalent to false, but
also pb and qa, whereas under the weak completion these atoms are all mapped to unknown.
We will come back to this example in Section 4.5.

3.2 The Meaning of Programs

Throughout this section we consider a given logic program P and a given equational theory.
Each equational theory defines a finest congruence relation ≡ on the set of ground terms as
discussed in Chapter 2. The equational theory may be empty, in which case ≡ is syntactic
equality.

Interpretations are mappings from the set of formulas into the set {>,U,⊥}. They are
represented by two sets I> and I⊥ consisting of the set of all ground atoms which are
mapped to true and false, respectively. An interpretation I is a model for a program P, in
symbols I |= P, if and only if I maps each clause occurring in P to true (see Chapter 2).
Because clauses are universally closed, I maps a clause to true if and only if it maps each
ground instance of the clause to true.
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Consider the following program, its weak completion, and its completion:

P wcP cP
` ← e ∧ ¬ab1 ` ↔ (e ∧ ¬ab1) ` ↔ (e ∧ ¬ab1)
` ← t ∧ ¬ab2 ∨ (t ∧ ¬ab2) ∨ (t ∧ ¬ab2)
e ← > e ↔ > e ↔ >

ab1 ← ⊥ ab1 ↔ ⊥ ab1 ↔ ⊥
ab2 ← ⊥ ab2 ↔ ⊥ ab2 ↔ ⊥

t ↔ ⊥

Then, we obtain:
I I(P) I(wcP) I(cP)

〈{e, ab1}, ∅〉 > ⊥ ⊥
〈{e, `}, {ab1, ab2}〉 > > U
〈{e, `, t}, {ab1, ab2}〉 > > ⊥
〈{e, `}, {ab1, ab2, t}〉 > > >

Remember that we interprete formulas under Łukasiewicz logic [46] (see Table 1.1). We
intent to show that under this logic the model intersection property holds for programs as
well as their weak completions. In other words, the intersection of all models for a program
is a model for the program, where the intersection of two models 〈I>, I⊥〉 and 〈J>, J⊥〉 is
defined as 〈I> ∩ J>, I⊥ ∩ J>〉. If the model intersection property holds then there is a least
model. Thus, if we want to compute the logical consequences of programs or their weak
completions then we need to consider only their least models.

In classical, two valued logic, the model intersection property holds for definite programs, i.e.
programs in which the body of each clause is a conjunction of atoms or the constant > (see
e.g. [44, 2]). In this case, the proof is quite straightforward by showing that the intersection
of two models of a program is again a model of the program. Unfortunately, this is not
the case if programs are interpreted under Łukasiewicz logic. As an example consider a
(definite) program consisting of

p ← q1 ∧ r1, (3.6)
p ← q2 ∧ r2,

the empty equational theory, and the interpretations

〈∅, {p, q1, r2}〉

and
〈∅, {p, q2, r1}〉.

Both interpretations are models for the program as they map the bodies as well as the heads
of the clauses to false. However, their intersection

〈∅, {p}〉
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is not a model for the program as this interpretation maps the bodies to unknown and the
heads to false and ⊥ ← U = U in Łukasiewicz logic (see Table 1.1).

To prove the model intersection property under Łukasiewicz logic we proceed in two steps.
Firstly, we show in Proposition 10 that if an interpretation 〈I>, I⊥〉 is a model for a program
then 〈I>, ∅〉 is a model as well. In other words, instead of mapping atoms to false, they may
be mapped to unknown. Secondly, we consider only models of the form 〈I>, ∅〉 and show in
Proposition 11 that the intersection of two such models is again a model.

Proposition 10 Let I be an interpretation. If I = 〈I>, I⊥〉 |= P then I ′ = 〈I>, ∅〉 |= P.

Proof Let P be a program and I = 〈I>, I⊥〉 |= P, i.e. for all clauses A ← Body ∈ gP
we find I(A ← Body) = >. By definition of the Łukasiewicz implication, we have I(A ←
Body) = > if and only if I(A) ≥t I(Body) with respect to the truth ordering ⊥ <t U <t >.
We consider all possible cases for I(A) and show that I ′ |= A← Body by I ′(A) ≥t I ′(Body):

1. If I(A) = > then A ∈ I> and, because I ′ = 〈I>, ∅〉 we find I ′(A) = > as well. In this
case, I ′(A) ≥t I ′(Body) holds for any Body because I ′(Body) ∈ {⊥,U,>} and > is the
truth-maximal element occurring in {⊥,U,>}.

2. If I(A) = U then A 6∈ I> ∪ I⊥. Hence, A 6∈ I> and because I ′ = 〈I>, ∅〉 we find
I ′(A) = U as well. From I |= A ← Body, i.e. I(A ← Body) = >, we learn I(Body) ≤t
I(A) = U and, therefore, I(Body) ∈ {⊥,U}. Hence, we find a conjunct L in Body such
that I(L) = mint{I(L) | L is a conjunct in Body} = I(Body) ∈ {⊥,U}, where mint
denotes the minimal element with respect to the truth ordering <t. We consider two
cases for the literal L:

(a) If L is an atom then I(L) ∈ {⊥,U} and we find

I ′(Body) = I ′(L) = U = I ′(A)

by the definition of I ′⊥, i.e. I ′⊥ = ∅.
(b) If L is a negated atom, i.e. L = ¬B with B being an atom then because I(L) =

I(¬B) ∈ {⊥,U} we find I(B) ∈ {U,>} and I ′(B) ∈ {U,>}. Hence, I ′(¬B) ∈
{⊥,U}.

In both cases, we have I ′(A← Body) = > by U = I ′(A) ≥t I ′(Body).

3. If I(A) = ⊥ then I ′(A) = U by the definition I ′⊥ = ∅. From I |= A ← Body, i.e.
I(A← Body) = >, we learn

I(Body) = mint{I(L) | L is a conjunct in Body} = ⊥.

Hence, there is a conjunct L in Body such that

I(L) = mint{I(L) | L is a conjunct in Body} = I(Body) = ⊥.

We consider two cases for the literal L:
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(a) If L is an atom then I ′(L) = U and we find I ′(Body) ≤t I ′(L) = U ≤t I ′(A).

(b) If L is a negated atom, i.e. L = ¬B for an atom B, then I(B) = > = I ′(B).
Hence, I ′(Body) = I ′(¬B) = ⊥ ≤t I ′(A).

In both cases, we have I ′(A← Body) = > by U = I ′(A) ≥t I ′(Body). 2

For example, consider the program (3.2), the empty equational theory, and the interpretation

〈{e, `}, {ab1}〉.

It is a model for the program because it maps each clause to true. But,

〈{e, `}, ∅〉

is also a model for (3.2). Because ab1 is mapped to unknown and U ← ⊥ = >, the third
clause occurring in (3.2) is mapped to true. Because the body e∧¬ab1 of the second clause
is mapped to unknown, the head is mapped to true, and > ← U = >, the second clause is
mapped to true as well. The head and the body of the first clause are mapped to true and,
thus, the first clause is also mapped to true.

As another example consider the program (3.6) and the empty equational theory. The
empty interpretation 〈∅, ∅〉 is a model for this program as it maps all bodies and all heads
to unknown and U← U = U in Łukasiewicz logic (see Table 1.1).

As a third example consider the program consisting of the clauses

qX ← ¬pX, (3.7)
pa ← >

and the equational theory consisting of

a ≈ b.

The interpretation
〈{[pa]}, {[qb]}〉

is a model for (3.7). pa is mapped to true and, hence, the fact pa ← > is mapped to true.
Because interpretations must satisfy the equational theory and a ≡ b, pb is also mapped to
true. Consequently, all ground instances of the right-hand-side ¬pX of the rule occurring
in (3.7) are mapped to false. Because [qb] = [qa] and qb is mapped to false, the rule is
mapped to true. The interpretation

〈{[pa]}, ∅〉

is a model for (3.7) as well. Under this interpretation, each instance of the body ¬pX of
the rule is again mapped to false, but each instance of the head qX is mapped to unknown.
Under Łukasiewicz logic, U← ⊥ = > (see Table 1.1).
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Proposition 11 If 〈I>1 , ∅〉 |= P and 〈I>2 , ∅〉 |= P then 〈I>1 ∩ I>2 , ∅〉 |= P.

Proof Let P be a program, 〈I>1 , ∅〉 |= P and 〈I>2 , ∅〉 |= P, i.e. for all rules A← Body ∈ gP
we find I1(A) ≥t I1(Body) and I2(A) ≥t I2(Body). Let I = 〈I>1 ∩ I>2 , ∅〉. Because its second
component I⊥ is the empty set we find I(A) = mint(I1(A), I2(A)) ∈ {U,>} for all ground
atoms A.

We have to show that I |= A ← Body for every clause A ← Body ∈ gP. We consider all
possible cases for I(A) and show I(A← Body) = > by I(A) ≥t I(Body):

1. If I(A) = > then for any Body we find I(A) ≥t I(Body) because I(A) = > is the
truth-maximal element in {⊥,U,>}.

2. If I(A) = mint(I1(A), I2(A)) = U then I(Body) ≤t U by the following case analysis:

(a) If I1(A) = mint(I1(A), I2(A)) = U, we find I1(Body) ≤t U because I1(A ←
Body) = >. Therefore, I(Body) = mint(I1(Body), I2(Body)) ≤t U.

(b) If I2(A) = mint(I1(A), I2(A)) = U, we find I2(Body) ≤t U because I2(A ←
Body) = >. Therefore, I(Body) = mint(I1(Body), I2(Body)) ≤t U.

In both cases, we have I(Body) = mint(I1(Body), I2(Body)) ≤t U = I(A). Therefore,
I(A← Body) = >.

3. The case I(A) = ⊥ is impossible because I⊥ = ∅.

Because the interpretation I = 〈I>1 ∩ I>2 , ∅〉 is a model for each clause occurring in gP, we
conclude I |= P. 2

As example consider the empty equational theory and the program consisting of the rule

p← q ∧ ¬r.

The interpretations
〈{p, q}, ∅〉

and
〈{p, r}, ∅〉

are models for this program. Likewise, their intersection

〈{p, q} ∩ {p, r}, ∅〉 = 〈{p}, ∅〉

is a model.

Theorem 12 The model intersection property holds for P, i.e. ∩{I | I |= P} |= P.
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Proof. The claim follows immediately from Propositions 10 and 11. 2

The least model of a program is the intersection of all models of the program. As examples
consider the empty equational theory and the programs (3.2), (3.3), and (3.4). Their least
model is

〈{e}, ∅〉.

The interpreation
〈{[pa]}, ∅〉 = 〈{[pb]}, ∅〉

is the least model of program (3.7) and the equational theory {a ≈ b}.
The empty interpretation is the least model of the program consisting only of the rule

p← q (3.8)

and the empty equational theory. One should observe that this does not hold if we interprete
programs under the Kleene or the Fitting logic. In this case, the interpretations

〈{p, q}, ∅〉

and
〈∅, {p, q}〉

are models for (3.8). However, their intersection is the empty interpretation and this is not
a model for (3.8) as U← U = U under Kleene and Fitting logic (see Tables 1.1). The model
intersection property does not hold if we interprete programs under the Kleene or Fitting
logic.

Theorem 13 The model intersection property holds for wcP as well.

We will prove this result in Section 3.3.

Several examples of this result have already been discussed in Chapter 1. The empty in-
terpretation is the least model of the weak completion of the program (3.8). One should
observe that the equivalence p↔ q has also a least model under Fitting logic, but not under
Kleene logic.

Corollary 14 If I is a model for the weak completion of a program P then I is a model
for P.

Proof The result follows immediately from the observation that the law of equivalence,
i.e. F ↔ G is semantically equivalent to (F ← G) ∧ (G ← F ), holds under Łukasiewicz
logic und the weak completion of a program is nothing but the addition of only-if-halves of
definitions. 2
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One should observe that this result does not hold under Fitting logic. The empty interpre-
tation is the least model for p↔ q. However, it is not a model for p← q.

Table 3.1 depicts the programs, their weak completions, and the least models of their weak
completions for the first six experiments reported in [11] and discussed in Chapter 1.

Let P and P ′ be sets of formulas and F a formula. A logic is monotonic if and only if the
following holds: if P |= F then P ∪ P ′ |= F , where |= is the entailment relation defined by
the logic. For example, classical two-valued logic is monotonic.

A logic is nonmonotonic if and only if it is not monotonic, i.e. if we find sets of formulas P
and P ′ and a formula F such that P |= F and P ∪ P ′ 6|= F . In the Weak Completion
Semantics we will reason with respect to the least model of a weakly completed program.
Let

P = {ab← ⊥}

Then, the least model of the weak completion of this program is

〈∅, {ab}〉

and the formula ¬ab follows. If we add to P the set

P ′ = {ab← >},

then the weak completion of P ∪ P ′ consists of the equivalence

ab↔ ⊥∨>.

Its least model is
〈{ab}, ∅〉

from which we cannot conclude ¬ab anymore. Rather, ab is now entailed. The example
nicely illustrates a feature of the Weak Completion Semantics: negative assumptions will be
overridden as soon as positive information becomes available.

3.3 Computing Least Models

In this section we address the question of how to compute the least model of the weak
completion of a program. The idea goes back to [4], where Krzysztof R. Apt and Maarten
H. van Emden showed that the least model of a definite logic program can be computed as
the least fixed point of a semantic operator associated with the program. Given a program
P and a classical two-valued interpretation I, the operator maps a ground atom A to true
if there exists a clause of the form

A← Body (3.9)

occurring in gP such that I(Body) = >. In other words, A is an immediate consequence
of the given interpretation I and the program P. The set of all immediate consequences is
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Ex. P wcP MP
1 e ← > e ↔ > 〈{e, `}, {ab1}〉

` ← e ∧ ¬ab1 ` ↔ e ∧ ¬ab1
ab1 ← ⊥ ab1 ↔ ⊥

2 e ← > e ↔ > 〈{e, `}, {ab1, ab2}〉
` ← e ∧ ¬ab1 ` ↔ (e ∧ ¬ab1) ∨ (t ∧ ¬ab2)
` ← t ∧ ¬ab2 ab1 ↔ ⊥

ab1 ← ⊥ ab2 ↔ ⊥
ab2 ← ⊥

3 e ← > e ↔ > 〈{e}, {ab3}〉
` ← e ∧ ¬ab1 ` ↔ (e ∧ ¬ab1) ∨ (o ∧ ¬ab3)
` ← o ∧ ¬ab3 ab1 ↔ ⊥∨ ¬o

ab1 ← ⊥ ab3 ↔ ⊥∨ ¬e
ab3 ← ⊥
ab1 ← ¬o
ab3 ← ¬e

4 e ← ⊥ e ↔ ⊥ 〈∅, {e, `, ab1}〉
` ← e ∧ ¬ab1 ` ↔ e ∧ ¬ab1

ab1 ← ⊥ ab1 ↔ ⊥
5 e ← ⊥ e ↔ ⊥ 〈∅, {e, ab1, ab2}〉

` ← e ∧ ¬ab1 ` ↔ (e ∧ ¬ab1) ∨ (t ∧ ¬ab2)
` ← t ∧ ¬ab2 ab1 ↔ ⊥

ab1 ← ⊥ ab2 ↔ ⊥
ab2 ← ⊥

6 e ← ⊥ e ↔ ⊥ 〈{ab3}, {e, `}〉
` ← e ∧ ¬ab1 ` ↔ (e ∧ ¬ab1) ∨ (o ∧ ¬ab3)
` ← o ∧ ¬ab3 ab1 ↔ ⊥∨ ¬o

ab1 ← ⊥ ab3 ↔ ⊥∨ ¬e
ab3 ← ⊥
ab1 ← ¬o
ab3 ← ¬e

Table 3.1: Examples for programs, their weak completions, and their least models. In each
of these cases the equational theory is empty.
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again an interpretation and, hence, we can iterate the operator. Apt and van Emden showed
that if we start this process with the empty interpretation then the operator admits a least
fixed point which is equal to the least model of the program.

In [21], Melvin Fitting extended this idea to normal logic program by showing that completed
logic programs admit a least model under the three-valued Fitting logic which can also
be computed as the least fixed point of a semantic operator. Given a program P and an
interpretation I = 〈I>, I⊥〉, the Fitting operator computes positive immediate consequences
as above. In addition, the operator maps a ground atom A to false if for all clauses of the
form (3.9) occurring in gP we find that I(Body) = ⊥. One should observe that if gP does
not contain a clause of the form (3.9) then A is mapped to false. In other words, if A is
undefined in gP then the Fitting operator maps A to false. This corresponds to the second
step in the completion of a program: if A is undefined then A← ⊥ is added to the program,
which in the third step of the completion process is turned into A↔ ⊥.
The Fitting operator was modified by Keith Stenning and Michiel van Lambalgen in [61] in
that A is mapped to false if and only if there occurs a rule of the form (3.9) in gP and for all
rules of this form we find that I(Body) = ⊥. As shown in [40, 34] with this modification, the
least fixed point of this operator is equal to the least model of the weak completion of the
given program P. In this book, we extend these results to logic programs with non-empty
equational theories.

Let P be a program, E an equational theory, and I an interpretation. We define ΦP(I) =
〈J>, J⊥〉, where

J> = {[A] | there exists A← Body ∈ gP and I(Body) = >},
J⊥ = {[A] | there exists A← Body ∈ gP

and for all A′ ← Body ∈ gP with [A] = [A′] we find I(Body) = ⊥}.

In the remainder of this section let P be a program and E be an equational theory. Recall
that E defines a finest congruence relation ≡ on the set of ground terms (see Section 2.1).
Let X be a set of interpretations. We define

X> = {I> | 〈I>, I⊥〉 ∈ X}

and
X⊥ = {I⊥ | 〈I>, I⊥〉 ∈ X}.

As an example consider the program consisting of

pX ← qX (3.10)

and the equational theory consisting of

a ≈ b. (3.11)



3.3. COMPUTING LEAST MODELS 39

〈∅, ∅〉

〈{[pa]}, ∅〉 〈{[qb]}, ∅〉 〈∅, {[qb]}〉 〈∅, {[pa]}〉

〈{[pa], [qb]}, ∅〉 〈{[pa]}, {[qb]}〉 〈{[qb]}, {[pa]}〉 〈∅, {[pa], [qb]}〉

Figure 3.1: The Hasse diagram of the set of interpretations for the program (3.10) and the
equational theory (3.11) with respect to the relation ⊆.

The set of interpretations is shown in Figure 3.1. It is partially order with respect to the
relation ⊆. But it is not directed. For example, for the interpretations

〈{[pa], [qb]}, ∅〉

and
〈{[pa]}, {[pb]}〉

there is no interpretation which is a superset of both. However, the subset

{〈{[pa], [qb]}, ∅〉, 〈{[pa]}, ∅〉, 〈{[qb]}, ∅〉, 〈∅, ∅〉}

is directed. Now let X be this subset. Then,

X> = {{[pa], [qb]}, {[pa]}, {[qb]}, ∅},
X⊥ = {∅, ∅, ∅, ∅},⋃
X> = {[pa], [qb]},⋃
X⊥ = ∅

and
〈
⋃
X>,

⋃
X⊥〉 = 〈{[pa], [qb]}, ∅〉

is the least upper bound of X . This is not a coincidence, but holds in general as the following
proposition shows.

Proposition 15 Let X be a directed set of interpretations. Then, the interpretation I =
〈
⋃
X>,

⋃
X⊥〉 is the least upper bound of X .

Proof
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1. Firstly, we show that 〈
⋃
X>,

⋃
X⊥〉 is an interpretation.

By definition,
⋃
X> and

⋃
X⊥ are unions of ≡-congruence classes. It remains to show

that
⋃
X> ∩

⋃
X⊥ = ∅. Assume we find [A] with [A] ∈

⋃
X> ∩

⋃
X⊥. Then, there

exist interpretations J1 ∈ X and J2 ∈ X such that [A] ∈ J>1 and [A] ∈ J⊥2 . Because the
set X is directed, it contains a common upper bound K of J1 and J2, where [A] ∈ K>
and [A] ∈ K⊥. Then, K> ∩ K⊥ 6= ∅ and K is not an interpretation. This contradicts
the precondition that X is a directed set of interpretations. Hence, the assumption
[A] ∈

⋃
X> ∩

⋃
X⊥ is false and 〈

⋃
X>,

⋃
X⊥〉 is an interpretation.

2. Secondly, we show that 〈
⋃
X>,

⋃
X⊥〉 is an upper bound of X , i.e. for all J ∈ X we

find J> ⊆
⋃
X> and J⊥ ⊆

⋃
X⊥.

(a) J> ⊆
⋃
X> because for all [A] ∈ J> we find [A] ∈

⋃
{J> | J ∈ X} = X>.

(b) J⊥ ⊆
⋃
X⊥ because for all [A] ∈ J⊥ we find [A] ∈

⋃
{J⊥ | J ∈ X} = X⊥.

3. Thirdly, it remains to show that 〈
⋃
X>,

⋃
X⊥〉 is the least upper bound of X , i.e. for

every upper bound J of X , we have
⋃
X> ⊆ J> and

⋃
X⊥ ⊆ J⊥.

Assume that X has an upper bound J where
⋃
X> 6⊆ J> or

⋃
X⊥ 6⊆ J⊥.

(a) Assume there is an [A] ∈
⋃
X> such that [A] 6∈ J>. By [A] ∈

⋃
X>, there is an

interpretation K ∈ X where [A] ∈ K>. Because [A] 6∈ J>, J is not an upper
bound for X .

(b) Assume there is an [A] ∈
⋃
X⊥ such that [A] 6∈ J⊥. By [A] ∈

⋃
X⊥, there is an

interpretation K ∈ X where [A] ∈ K⊥. Because [A] 6∈ J⊥, J is not an upper
bound for X .

In both cases, the assumption that the upper bound J of X differs from 〈
⋃
X>,

⋃
X⊥〉

leads to a contradiction. Hence, 〈
⋃
X>,

⋃
X⊥〉 is the least upper bound of X . 2

Corollary 16 The set of all interpretations I is a complete partial order with respect to ⊆.

Proof. Reflexivity, antisymmetry and transitivity hold for ⊆. The least element of I is
〈∅, ∅〉. By Proposition 15, every directed subset of I has a least upper bound in I. 2

Figure 3.1 shows the set of all interpretations for the program (3.10) and the equational
theory (3.11).

Proposition 17 For each program P and equational theory E the mapping ΦP is mono-
tonic.

Proof Assume I = 〈I>, I⊥〉 and J = 〈J>, J⊥〉 are interpretations for P with I> ⊆ J>

and I⊥ ⊆ J⊥. We show that ΦP(I) = I ′ = 〈I ′>, I ′⊥〉 ⊆ 〈J ′>, J ′⊥〉 = J ′ = ΦP(J).
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1. I ′> ⊆ J ′>: By the definition of I ′ = ΦP(I), we have [A] ∈ I ′> if and only if there is a
clause A← Body in gP such that either

(a) Body = > (i.e. A ← Body is a fact) and, therefore, J(Body) = > and [A] ∈ J ′>
or

(b) I(Body) = mint{I(L) | L is a literal occurring in Body} = >. Then, for all con-
juncts L occurring in Body we have one of the following cases:
i. If L = B for a ground atom B and I(B) = > then [B] ∈ I> ⊆ J>.
ii. If L = ¬B for a ground atom B and I(B) = ⊥ then [B] ∈ I⊥ ⊆ J⊥.

In both cases, J(Body) = >. By definition of J ′ = ΦP(J) we find [A] ∈ J ′>.

2. I ′⊥ ⊆ J ′⊥: By the definition of ΦP we have [A] ∈ I ′⊥ if and only if

(a) there exists a clause A← Body ∈ gP and
(b) for all rules A′ ← Body ∈ gP with [A′] = [A] we have I(Body) = ⊥.

Hence, for all clauses Ai ← Bodyi ∈ gP where [Ai] = [A] we find Bodyi = ⊥ (i.e. the
clause Ai ← Bodyi is a negative assumption) or

I(Bodyi) = mint{I(L) | L is a literal occurring in Bodyi} = ⊥,

i.e. there is a literal L occurring in Bodyi such that I(L) = ⊥. We have one of the
following cases:

(a) If Bodyi = ⊥ then J(Bodyi) = ⊥.
(b) If L = B for a ground atom B and I(B) = ⊥ then [B] ∈ I⊥ ⊆ J⊥.
(c) If L = ¬B for a ground atom B and I(B) = > then [B] ∈ I> ⊆ J>.

In any of these cases, for all clauses Ai ← Bodyi ∈ gP where [Ai] = [A], we find that

J(Bodyi) = mint{J(L) | L is a literal occurring in Body} = ⊥

and, therefore, [A] ∈ J ′⊥ by definition of J ′ = ΦP(J).

ΦP is monotonic because I ′ ⊆ J ′, i.e. I ′> ⊆ J ′> and I ′⊥ ⊆ J ′⊥. 2

Unfortunately, ΦP is generally not continuous. Consider the program P consisting of the
clauses

q(a) ← >, (3.12)
q(s(X)) ← q(X),

p ← ¬q(X),

and the empty equational theory. The least fixed point of ΦP is

〈{[q(sk(a))] | k ∈ N}, {[p]}〉
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and is reached after iterating ΦP ω + 1 times, where ω is the first limit ordinal. Hence,
by Kleene’s fixed point Theorem 4, ΦP is not continuous. One should observe that the
Herbrand base contains infinitely many equivalence classes

[p], [q(a)], [q(s(a))], . . . ,

each of which has one element.

Likewise, consider the program P consisting of the clauses

q(1) ← >, (3.13)
q(X ◦ a) ← q(X),

p ← ¬q(X)

and the AC1-theory (2.1) defined in Section 2.1. The least fixed point of ΦP is

〈{[q(1 ◦
k︷ ︸︸ ︷

a ◦ . . . ◦ a)] | k ∈ N}, {[p]}〉 (3.14)

and is reached after iterating ΦP ω + 1 times. Again, ΦP is not continuous. One should
observe that the Herbrand base contains infinitely many equivalence classes, viz.

[p], [q(1)], [q(a)], [q(a ◦ a)], . . . .

With the exception of [p] each of these equivalence classes is infinite because

1 ≡ 1 ◦ 1 ≡ 1 ◦ 1 ◦ 1 ≡ . . .

and
a ≡ a ◦ 1,

where ≡ is the finest congruence relation on the set of ground terms defined by (2.1).

Because ΦP is montonic, the least fixed point of ΦP can be obtained by iterating ΦP starting
with the empty interpretation. But, if ΦP is not continuous then we may have to iterate
beyond the first limit ordinal ω. So, we are searching for conditions where this is not
necessary, viz., for cases, where ΦP is continuous.

Proposition 18 For each finite propositional program P the mapping ΦP is continuous.

Proof Because the set of all propositional variables in a finite propositional program P
is finite and we only have finitely many truth values, the set I of all interpretations is
finite. By Corollary 16, I is a complete partial order with respect to the relation ⊆. By
Proposition 17, ΦP is monotonic on I. Moreover, I is finite and, thus, by Proposition 7,
ΦP is continuous. 2



3.3. COMPUTING LEAST MODELS 43

Proposition 19 If the Herbrand base for a program P and a set of equations E is finite
then the mapping ΦP is continuous.

Proof Let P be a program and E be a set of equations such that the Herbrand base as well
as E is finite. The result follows immediately from Proposition 18 and the fact that there is
a bijection between the Herbrand base and an equally large set of propositional atoms. 2

As an example consider the equational theory consisting of the equation

a ≈ c

and the program P consisting of the clauses

qa ← >,
qb ← >,
pX ← qX.

In this case, the Herbrand base is

{[qa], [qb], [pa], [pb]}

with [qa] = [qc] and [pa] = [pc]. Let r1 − r4 be four propositional variables and define the
bijection

[qa]⇔ r1, [qb]⇔ r2, [pa]⇔ r3, [pc]⇔ r4.

If this bijection is applied to each element of an equivalence class, then the propositional
program consisting of the clauses

r1 ← >,
r2 ← >,
r3 ← r1,
r4 ← r2

is equivalent to gP. One should observe that the ground instances pa ← qa and pc ← qc
are both mapped onto r3 ← r1.

Unfortunately, this result is insufficient for using the fluent calculus in general as the fluent
calculus utilizes a binary function symbol ◦ in order to represent multisets of fluents. As
shown in (3.14), ◦ may be used to define infinitely many equivalence classes in the Herbrand
base of a program. However, in the fluent calculus the function symbol ◦ is only used to rep-
resent multisets. If we consider only finite multisets in the same way as Bart Selman, Hector
Joseph Levesque, and David G. Mitchell consider only finite plans in [59] then the Herbrand
base for a given program is finite and, consequently, Proposition 19 applies. Likewise, if
the initial state is finite and there is no action whose application leads to an increase of the
number of fluents occurring in a state then the Herbrand base of such a program can also
be restricted to a finite set. In particular, in the context of human reasoning episodes such
restrictions appear to be quite reasonable. In the trolley problems discussed in Section 4.6
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the largest multiset has size six, the initial states are always finite, and there is no action
which increases the number of fluents occurring in a state.

On the other hand, if we consider finite datalog programs and finite sets of equations between
constants then the Herbrand base is also finite.

We proceed to show that for a given program P and a given set of equations E , the least
model of wcP and the least fixed point of ΦP coincide.

Lemma 20 Let P be a program, E an equational theory, J the least fixed point of ΦP , and I
a model of wcP. Then, for every ground atom A the following holds:

1. If J(A) = > then I(A) = >.

2. If J(A) = ⊥ then I(A) = ⊥.

Proof Let J be the least fixed point of ΦP . It can be computed by iterating ΦP starting
from the empty interpretation as follows:

J0 = 〈∅, ∅〉, (3.15)
Jα = ΦP(Jα−1) for every non-limit ordinal α > 0, (3.16)

Jα =
⋃
β<α

Jβ for every limit ordinal α. (3.17)

Then, there must be some ordinal αP such that J = JαP . We will prove by transfinite
induction that for every ordinal α and every ground atom A the following holds:

1. If Jα(A) = > then I(A) = >.

2. If Jα(A) = ⊥ then I(A) = ⊥.

With this result, the claim will follow from Propositions 3 and 17.

Turning to the induction proof, we consider three cases: the base case when the ordinal
α = 0 and two inductive cases, one for non-limit ordinals and the other for limit ordinals:

1. Let α = 0. Then, by (3.15) we find Jα = 〈∅, ∅〉. Because there is no atom such that
Jα(A) = > or Jα(A) = ⊥, the claim follows trivially.

2. Let α > 0 be a non-limit ordinal. By the inductive hypothesis we find for every ground
atom B that:

If Jα−1(B) = >, then I(B) = >. (3.18)
If Jα−1(B) = ⊥, then I(B) = ⊥. (3.19)

Moreover, by (3.16) we find Jα = ΦP(Jα−1) and we distinguish two two cases:
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(a) If Jα(A) = > then according to the definition of ΦP there must be some clause
A′ ← Bodyi in gP with [A′] = [A] such that Jα−1(Bodyi) = >. We distinguish
two cases with respect to the form of Bodyi.
i. If

Bodyi = B1 ∧B2 ∧ · · · ∧Bk ∧ ¬Bk+1 ∧ ¬Bk+2 ∧ · · · ∧ ¬Bm,
where each Bj , 1 ≤ j ≤ m, is a ground atom. Then, for each s with 1 ≤ s ≤ k
we have Jα−1(Bs) = > and for each t with k < t ≤ m we have Jα−1(Bt) = ⊥.
Using the induction hypothesis and, in particular, (3.18) and (3.19) we learn
that for each s with 1 ≤ s ≤ k we have I(Bs) = > and for each t with
k < t ≤ m we have I(Bt) = ⊥. Hence, I(Bodyi) = >.

ii. If
Bodyi = >,

then I(Bodyi) = I(>) = >.
In either case, I(Bodyi) = >. Furthermore, in wcP there is a formula of the form
A′ ↔ F , where F is a disjunction with Bodyi as one of the disjuncts. Thus, we
have I(F ) = > and also I(A′ ↔ F ) = > because I is a model of wcP. This
implies I(A′) = >. Because [A] = [A′] and I satisfies E , I(A) = > holds as well.

(b) If Jα(A) = ⊥ then according to the definition of ΦP there must be a clause of
the form A ← Body in gP and all clauses of the form A′ ← Bodyi in gP with
[A′] = [A] we find Jα−1(Bodyi) = ⊥. Pick an arbitrary but fixed j. Again, we
distinguish two cases with respect to the form of Bodyj .
i. If

Bodyj = B1 ∧B2 ∧ · · · ∧Bk ∧ ¬Bk+1 ∧ ¬Bk+2 ∧ · · · ∧ ¬Bm,
where Bl, 1 ≤ l ≤ m, are ground atoms then we have to consider two cases:
A. There is some s with 1 ≤ s ≤ k such that Jα−1(Bs) = ⊥. Then, by (3.19)

we find I(Bs) = ⊥ and, hence, I(Bodyj) = ⊥.
B. There is some t with k < t ≤ m such that Jα−1(Bt) = >. Then, by

(3.18) we obtain I(Bt) = > and, hence, I(Bodyj) = ⊥.
ii. If

Bodyj = ⊥,
then I(Bodyj) = ⊥.

In either case we have I(Bodyj) = ⊥. Because j was arbitrarily chosen, we can
conclude that for every i we have I(Bodyi) = ⊥. Furthermore, in wcP there is a
formula of the form A′ ↔ F with F = Body1∨Body2∨ . . .. So we have I(F ) = ⊥.
Because I is a model of wcP we find I(A′ ↔ F ) = >. This implies I(A′) = ⊥.
Because [A] = [A′] and I satisfies E , we conclude I(A) = ⊥.

3) Let α be a limit ordinal. By the induction hypothesis we find for every ground atom B
and every ordinal β < α that:

If Jβ(B) = >, then I(B) = >. (3.20)
If Jβ(B) = ⊥, then I(B) = ⊥. (3.21)
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Moreover, by (3.17) we have Jα =
⋃
β<α Jβ . There are again two cases to consider:

(a) If Jα(A) = > then there is some ordinal β < α such that Jβ(A) = >. By the
induction hypothesis (3.20) we have I(A) = >.

(b) If Jα(A) = ⊥ then there is some ordinal β < α such that Jβ(A) = ⊥. By the
induction hypothesis (3.21) we have I(A) = ⊥. 2

Lemma 21 If P is a program, E an equational theory, and J a fixed point of ΦP then J is
a model of wcP.

Proof By the definition of ΦP an interpretation I = 〈I>, I⊥〉 is a fixed point of ΦP if and
only if

I> = {[A] | there exists A← Body ∈ gP and I(Body) = >},
I⊥ = {[A] | there exists A← Body ∈ gP

and for all A′ ← Body ∈ gP with [A] = [A′] we find I(Body) = ⊥}.

We show that for every equivalence A ↔ F occurring in wcP we have I(A ↔ F ) = >, i.e.
I(A) = I(F ). We distinguish three cases:

1. If [A] ∈ I> then there is a clause A ← Body ∈ gP such that I(Body) = >. Hence,
for each equivalence A ↔ F ∈ wcP, where F = Body ∨ F ′ for a (possibly empty)
disjunction F ′, we have I(F ) = I(Body ∨ F ′) = maxt(I(Body), I(F ′)) = >. Hence,
I(A) = I(Body ∨ F ′) = I(F ) and, therefore, I(A↔ F ) = >.

2. If [A] ∈ I⊥ then there is a rule A← Body ∈ gP and for all rules A′ ← Body ∈ gP with
[A′] = [A] we have I(Body) = ⊥ = I(A). Hence, for each equivalence A′ ↔ F ∈ wcP
with [A′] = [A] we have I(F ) = ⊥ and, therefore, I(A′ ↔ F ) = >.

3. If [A] 6∈ I> ∪ I⊥ then there are two possibilities:

(a) There is no rule A′ ← Body ∈ gP with [A′] = [A] and, therefore, there is no
equivalence A′ ↔ F ∈ wcP.

(b) There are rules A′i ← Bodyi ∈ gP for i ∈ {1, . . . , n} with [A′i] = [A] and
I(A′i) = U, but neither I(Bodyi) = ⊥ for all i ∈ {1, . . . , n} nor there is an
i ∈ {1, . . . , n} such that I(Bodyi) = >. Hence,

I(
∨

i∈{1,...,n}

Bodyi) = max
t

({I(Bodyi) | i ∈ {1, . . . , n}}) = U

and, therefore, I(A′ ↔
∨
i∈{1,...,n} Bodyi) = >.

Hence, for each equivalence of the form A′ ↔ F occurring in wcP with [A′] = [A] we have
I(A′ ↔ F ) = > and, therefore, I is a model of wcP. 2
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Proposition 22 If J is the least fixed point of ΦP then J is a minimal model of wcP.

Proof By Lemma 21, the least fixed point J of ΦP is a model of wcP. By Lemma 20, for
every model I of wcP we have J> ⊆ I> and J⊥ ⊆ I⊥, i.e. J ⊆ I. Hence, J is a minimal
model of wcP. 2

Proposition 23 If I is a minimal model of wcP then I is the least fixed point of ΦP .

Proof Let I be a minimal model of wcP and J the least fixed point of ΦP . From Lemma 20
we learn that J> ⊆ I> and J⊥ ⊆ I⊥. From Proposition 22 we learn that J is a minimal
model of wcP. But then I = J because, otherwise, we have a conflict with the minimality
of I. 2

Proof of Theorem 13. The claim that wcP has a least model follows from Propositions 22
and 23 and the fact that the least fixed point of ΦP is unique. 2

Theorem 24 I is the least fixed point of ΦP if and only if I is the least model of wcP.

Proof The claim follows immediately from Propositions 22 and 23 and Theorem 13. 2

Table 3.1 shows the computation of the least fixed point for the first six examples of the
suppression task.

Let P be a program and E an equational theory. Furthermore, letMP denote the least fixed
point of ΦP . By the previous theorem, it is equal to the least model of the weak completion
of P. Remember thatMP satisfies E as well. A formula F follows from P under the Weak
Completion Semantics, in symbols P |=wcs F , if and only ifMP maps F to true.

In order to compute logical consequences of the weak completion of a program we need to
construct its least model. If the semantic operator is continuous, then this can be done as
follows. Starting with the empty interpretation, the semantic operator is iteratively applied
until a fixed point is reached:

ΦP ↑0 = 〈∅, ∅〉,
ΦP ↑(i+ 1) = ΦP(ΦP ↑ i) for i ≥ 0.

But several questions remain: What shall we do in case the semantic operator cannot be
shown to be continuous? More precisely, what shall we do in case the preconditions of the
Propositions 18 or 19 are not met?
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Ex. P wcP ΦP I> I⊥

1 e ← > e ↔ > 1 e ab1
` ← e ∧ ¬ab1 ` ↔ e ∧ ¬ab1 2 `

ab1 ← ⊥ ab1 ↔ ⊥
2 e ← > e ↔ > 1 e ab1

` ← e ∧ ¬ab1 ` ↔ (e ∧ ¬ab1) ∨ (t ∧ ¬ab2) ab2
` ← t ∧ ¬ab2 ab1 ↔ ⊥ 2 `

ab1 ← ⊥ ab2 ↔ ⊥
ab2 ← ⊥

3 e ← > e ↔ > 1 e
` ← e ∧ ¬ab1 ` ↔ (e ∧ ¬ab1) ∨ (o ∧ ¬ab3) 2 ab3
` ← o ∧ ¬ab3 ab1 ↔ ⊥∨ ¬o

ab1 ← ⊥ ab3 ↔ ⊥∨ ¬e
ab3 ← ⊥
ab1 ← ¬o
ab3 ← ¬e

4 e ← ⊥ e ↔ ⊥ 1 e
` ← e ∧ ¬ab1 ` ↔ e ∧ ¬ab1 ab1

ab1 ← ⊥ ab1 ↔ ⊥ 2 `

5 e ← ⊥ e ↔ ⊥ 1 e
` ← e ∧ ¬ab1 ` ↔ (e ∧ ¬ab1) ∨ (t ∧ ¬ab2) ab1
` ← t ∧ ¬ab2 ab1 ↔ ⊥ ab2

ab1 ← ⊥ ab2 ↔ ⊥
ab2 ← ⊥

6 e ← ⊥ e ↔ ⊥ 1 e
` ← e ∧ ¬ab1 ` ↔ (e ∧ ¬ab1) ∨ (o ∧ ¬ab3) 2 ab3
` ← o ∧ ¬ab3 ab1 ↔ ⊥∨ ¬o 3 `

ab1 ← ⊥ ab3 ↔ ⊥∨ ¬e
ab3 ← ⊥
ab1 ← ¬o
ab3 ← ¬e

Table 3.2: Examples for the computation of the least model of the weak completions of
programs. All iterations of ΦP start with the empty interpretation 〈∅, ∅〉. In the last two
columns the atoms added to I> and I⊥ in the ith iteration are depicted, where i = 1, 2, 3.
The iteration stops as soon as no new atoms are added, in which case the least fixed point
is reached.
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Do we always have to start the construction of the least fixed point with the empty inter-
pretation? This requirement seems to be rather strong in case of human reasoning episodes.
As an example consider the program P consisting of the following rules:

p ← q,
q ← p,

where p and q may denote that it is cold and Lucy is wearing a sweater, respectively. The
empty interpretation is the least fixed point of the weak completion of this program and we
obtain:

ΦP ↑1 = ΦP ↑0 = 〈∅, ∅〉.

However, if we start the iteration with the interpretation

〈{p}, ∅〉

then
ΦP(〈{p}, ∅〉) = 〈{q}, ∅〉

and
ΦP(〈{q}, ∅〉) = 〈{p}, ∅〉.

Although ΦP has a fixed point, we will never reach it this way.

3.4 Semantic Operators as Contraction Mappings

We may not only use Kleene’s Fixed Point Theorem 4 to compute the least fixed point
of our semantic operator, but Banach’s Contraction Mapping Theorem 9. This does not
require the semantic operator to be continuous, but it must be a contraction mapping on a
complete metric space instead. But what kind of metric space shall we consider and under
which condition will the semantic operator be a contraction mapping? In the context of
logic programs these questions were first considered by Melvin Fitting in [22]. They were
extended to the three-valued Łukasiewicz logic by Carroline D. P. Kencana Ramli in [40, 33].
In this book, they will be further extended to allow for equational theories.

A level mapping for a program P is a function lvl from the set of ground atoms to N such
that lvl(A) = lvl(B) for each ground atom B with [A] = [B]. In other words, if two ground
atoms A and B are in the same equivalence class with respect to an equational theory E
then they must have the same level. Each level mapping is extended to a mapping from the
set of ground literals to N by lvl(¬A) = lvl(A) for each ground atom A.

Let lvl be a level mapping for the program P. P is acyclic with respect to lvl if and only if
for every rule A← L1 ∧ . . . ∧ Ln occurring in gP we find lvl(A) > lvl(Li) for all 1 ≤ i ≤ n.
P is acyclic if and only if P is acyclic with respect to some level mapping.

Although problem to determine whether a given program is acyclic is undecidable [3], we
may try to find appropriate level mappings.
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As an example consider the progam P with clauses

p ← r ∧ q,
q ← r ∧ p.

This program is not acyclic as by the first clause lvl(p) > lvl(q) and by the second clause
lvl(q) > lvl(p). In fact, ΦP has two fixed points, viz. the empty interpretation 〈∅, ∅〉 and
〈∅, {p, q}〉. By Banach Contraction Mapping Theorem 9, ΦP cannot be a contraction.

As another example consider the program P with clauses

p ← q ∧ r,
q ← ¬r, (3.22)
r ← >.

This program is acyclic with respect to the following level mapping:

A lvl(A)

r 0
q 1
p 2

Suppose we iterate the semantic operator Φ(4.38) starting with the interpretation 〈{q, r}, {p}〉:

Φ(4.38) I> I⊥

↑1 p q
r

↑2 r q
p

where ΦP ↑ 1 is the interpretation obtained by applying ΦP to the given interpretation and

ΦP ↑ (i+ 1) = ΦP(ΦP ↑ i)

for all i > 0. One should observe that Φ(4.38) ↑ 3 = Φ(4.38) ↑ 2.

Likewise, if we start with the interpretation 〈{p}, ∅〉 we obtain:

Φ(4.38) I> I⊥

↑1 r
↑2 r q
↑3 r q

p

In each case the iteration terminates with the interpretation

〈{r}, {q, p}〉

which is the least model of the weak completion of the given program. In the sequel, we will
show that this is not a coincidence, but holds in general for acylic programs.
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Proposition 25 Let P be a program, E an equational theory, lvl a level mapping for P, I
the set of interpretations for P, and I, J ∈ I. The function dlvl : I × I → R defined as

dlvl(I, J) =


1
2n I 6= J and

I(A) = J(A) 6= U for all A with lvl(A) < n and
I(A) 6= J(A) or I(A) = I(J) = U for some A with lvl(A) = n,

0 otherwise,

is a metric.

Proof We have to show that dlvl(I, J) = 0 if and only if I = J , dlvl is symmetric, and the
triangle inequality holds. Let I, J , and K be interpretations.

1. dlvl(I, J) = 0 if and only if I = J : If dlvl(I, J) = 0 then I and J coincide on all ground
atoms and, hence, are equal. Conversely, if I and J are equal then for all ground atoms
A we find I(A) = J(A) and, by definition, dlvl(I, J) = 0.

2. dlvl(I, J) = dlvl(J, I): This follows immediately as the definition of dlvl is symmetric.

3. dlvl(I, J) ≤ dlvl(I,K) + dlvl(K,J): If dlvl(I,K) = 0 then I and K are equal and can
be interchanged in the definition of the metric dlvl . We obtain

dlvl(I, J) = dlvl(K,J) = 0 + dlvl(K,J) = dlvl(I,K) + dlvl(K,J).

Likewise, if dlvl(K,J) = 0 we obtain

dlvl(I, J) = dlvl(I,K) = dlvl(I,K) = 0 = dlvl(I,K) + dlvl(K,J).

It remains to consider the case where dlvl(I,K) 6= 0 and dlvl(K,J) 6= 0. Then, we find
m, k ∈ N such that dlvl(I,K) = 1

2m and dlvl(K,J) = 1
2k
. Without loss of generality

we may assume that m ≤ k. We will show that dlvl(I, J) ≤ 1
2m . Consider some atom

A with lvl(A) < m. Then, we have I(A) = K(A) 6= U and K(A) = J(A) 6= U.
Consequently, I(A) = J(A) 6= U and we are done. 2

As an example consider the program P with clauses

even (0) ← >,
even (s(X)) ← ¬even (X).

Let
I = 〈{even (sk(0)) | k is even}, {even (sk(0)) | k is odd}〉,
J = 〈{even (sk(0)) | k is even}, ∅〉,

and
lvl(even (sk(0))) = k.

Then, gP is infinite, P is acyclic, and

dlvl(I, J) =
1

2
.
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Proposition 26 Let P be a program, E and equational theory, lvl a level mapping for P,
and I the set of interpretations for P. Then, (I, dlvl) is a complete metric space.

Proof We have to show that every Cauchy sequence of interpretations converges. Suppose
(Ik | k ≥ 1) is a Cauchy sequence of interpretations. Then, for every n ∈ N there is an K ∈ N
such that for alle k1, k2 ≥ K we find

dlvl(Ik1 , Ik2) ≤ 1

2n+1
.

Let Kn be the least such K for every n ∈ N. Hence,

Kn1
≤ Kn2

for any n1, n2 ∈ N with n1 ≤ n2.

Let the limit interpretation I be defined such that for any atom A we have I(A) = IK`
(A),

where ` = lvl(A).

We have to prove that for every ε > 0 there is some K ∈ N such that for any k ≥ K we
have dlvl(I, Ik) ≤ ε. We choose ε > 0 and let n ∈ N be such that 1

2n+1 ≤ ε. We will prove
dlvl(I, Ik) ≤ 1

2n+1 for any k ≥ Kn from which the claim will follow.

Consider an atom A with lvl(A) = ` ≤ n. Then, K` ≤ Kn and, hence, by the definition of
K` we have dlvl(IK`

, IKn
) ≤ 1

2`+1 . Consequently, by the definition of dlvl we have

I(A) = IK`
(A) = IKn

(A).

Furthermore, for any k ≥ Kn we have dlvl(IKn , Ik) ≤ 1
2n+1 . So we obtain

I(A) = IKn
(A) = Ik(A)

and, therefore, also

dlvl(I, Ik) ≤ 1

2n+1

which completes the proof. 2

Theorem 27 Let P be a program, E and equational theory, lvl a level mapping for P, and I
the set of interpretations for P. If P is acyclic with respect to lvl then ΦP is a contraction
on the metric space (I, dlvl).

We will prove the more general Theorem 30 in Subsection 4.5.2.

Corollary 28 If a program P is acyclic then ΦP has a unique fixed point which can be
computed by iterating ΦP up to ω times starting with any interpretation.

Proof The result follows from Theorems 27 and 9. 2

One should observe that Theorem 24 applies here. The unique fixed point of the semantic
operator ΦP is the least fixed point of ΦP and the least model of wcP.
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P AP
` ← e ∧ ¬ab1 e ← >

ab1 ← ⊥ e ← ⊥
ab1 ← >

` ← e ∧ ¬ab1 e ← >
` ← t ∧ ¬ab2 e ← ⊥

ab1 ← ⊥ t ← >
ab2 ← ⊥ t ← ⊥

ab1 ← >
ab2 ← >

` ← e ∧ ¬ab1 e ← >
` ← o ∧ ¬ab3 e ← ⊥

ab1 ← ⊥ o ← >
ab3 ← ⊥ o ← ⊥
ab1 ← ¬o
ab3 ← ¬e

Table 3.3: Examples for programs and their sets of abducibles. In each of these cases the
equational theory is empty.

3.5 Abduction

An integrity constraint is an expression of the form

U← L1 ∧ . . . ∧ Ln,

where each Li, 1 ≤ i ≤ n, is a literal. In the sequel, IC denotes a finite set of integrity
constraints.

Let I be an interpretation. I satisfies IC if and only if for each U← Body occurring in IC
we find I(Body) ∈ {U,⊥}.

Let P be a ground program. The set of abducibles is

AP = {A← > | A is defined in P}
∪ {A← ⊥ | A is defined in P}
∪ {A← > | ¬A is assumed in P}.

Hence, all undefined ground atoms are abducibles as positive ground facts or negative as-
sumptions. Moreover, if ¬A is assumed then the positive fact A ← > is also an abducible,
which can be abduced to defeat the negative assumption. In Table 3.3 the programs for the
experiments 7-12 of the suppression task are shown together with their sets of abducibles.

An abductive framework 〈P,A, IC, |=wcs〉 consists of
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1. a program P,

2. a set of abducibles A ⊆ AP ,

3. a set IC of integrity constraints,

4. the entailment relation |=wcs.

In the suppression task discussed in Chapter 1 we were using the abductive framework

〈P, {A← > | A is defined in P} ∪ {A← ⊥ | A is defined in P}, ∅, |=wcs〉. (3.23)

An observation O is a set of ground literals.

In the experiment 7 − 9 of the suppression task O = {`}, i.e. we are observing that she
is studying late in the library, whereas in the experiments 10 − 12 of the suppression task
O = {¬`}.
An observation O is explainable in the abductive framework 〈P,A, IC, |=wcs〉 if and only if
there exist X ⊆ A called explanation such that

1. MP∪X |=wcs L for all L ∈ O and

2. MP∪X satisfies IC.

Sometimes explanations are required to be minimal, where an explanation is minimal if it
cannot be subsumed by another explanation.

Under the Weak Completion Semantics each program P has a least model (Theorem 12).
For each explanation X , P ∪ X is a program and, hence, P ∪ X has a least model.

Table 3.4 shows the programs, abducibles, observations, and minimal explanations used in
experiments 7− 12 of the suppression task.

Let 〈P,A, IC, |=wcs〉 be an abductive framework, O an observation, and F a formula.

• F follows credulously from P and O if and only if there exists an explanation X for O
such that P ∪ X |=wcs F .

• F follows skeptically from P and O if and only if for all explanations X for O we find
P ∪ X |=wcs F .

Returning to the experiments presented in Table 3.4 we find:

• In experiments 7 and 9, e follows credulously as well as skeptically from the program
and the obervation.



3.5. ABDUCTION 55

Ex. P A O X
7 ` ← e ∧ ¬ab1 e ← > ` e ← >

ab1 ← ⊥ e ← ⊥
8 ` ← e ∧ ¬ab1 e ← > ` e ← > t ← >

` ← t ∧ ¬ab2 e ← ⊥
ab1 ← ⊥ t ← >
ab2 ← ⊥ t ← ⊥

9 ` ← e ∧ ¬ab1 e ← > ` e ← >
` ← o ∧ ¬ab3 e ← ⊥ o ← >

ab1 ← ⊥ o ← >
ab3 ← ⊥ o ← ⊥
ab1 ← ¬o
ab3 ← ¬e

10 ` ← e ∧ ¬ab1 e ← > ¬` e ← ⊥
ab1 ← ⊥ e ← ⊥

11 ` ← e ∧ ¬ab1 e ← > ¬` e ← ⊥
` ← t ∧ ¬ab2 e ← ⊥ t ← ⊥

ab1 ← ⊥ t ← >
ab2 ← ⊥ t ← ⊥

12 ` ← e ∧ ¬ab1 e ← > ¬` e ← ⊥ o ← ⊥
` ← o ∧ ¬ab3 e ← ⊥

ab1 ← ⊥ o ← >
ab3 ← ⊥ o ← ⊥
ab1 ← ¬o
ab3 ← ¬e

Table 3.4: The programs, abducibles, observations, and minimal explanations used in ex-
periments 7 − 12 of the suppression task. One should observe that only undefined atoms
can be abduced in the abductive framework (3.23).
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• In experiment 8, both, e and t, follow credulously, but neither e, t, ¬e nor ¬t follows
skeptically. However, e ∨ t follows skeptically.

• In experiments 10 and 11, ¬e follows skeptically because the program and the expla-
nation are weakly completed whereby e← ⊥ becomes e↔ ⊥.

• In experiment 12, both, ¬e and ¬o, follow credulously, but neither e, t, ¬e nor ¬t
follow skeptically. However, ¬e ∨ ¬o follows skeptically.

Comparing to the answers provided by the participants in the experiments of the suppression
task, experiments 8 and 12 show that humans seem to reason skeptically.



Chapter 4

Applications and Extensions

where we discuss various applications like the treatment of conditionals, the se-
lection task, syllogistic reasoning, and contextual abduction. It will become nec-
essary to extend the basic theory, but all extensions wil be conservative.

4.1 Conditionals

Conditionals are statements of the form

if antecedent then consequence.

Conditionals are categorized in many different ways (see e.g. [51] for an overview). For the
time being we will just consider indicative and subjunctive conditionals.

Indicative conditionals are conditionals, whose antecedent may or may not be true, whose
consequence may or may not be true, but the consequence is asserted to be true if the
antecedent is true.

Subjunctive conditionals or counterfactuals are conditionals whose antecedent is false, whose
consequence may or may not be true, but in the counterfactual circumstance of the an-
tecedent being true, the consequence is asserted to be true.

In the sequel, let
C ⇒ D

be a conditional, where the antecedent C and the consequent D are finite and consistent sets
of ground literals and a set of literals is consistent if and only if it does not contain an atom
and its negation.

Conditionals will be evaluated with respect to some background knowledge, which consists
of a program P, the empty equational theory E , and a set IC of integrity constraints. We will

57
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assume that P is either a finite propositional or a finite datalog program. Hence, by Propo-
sitions 18 or 19, respectively, the semantic operator ΦP is continuous and, consequently, by
Theorem 4 its least fixed point can be computed by iterating ΦP starting with the empty
interpretation. As usualMP denotes the least fixed point of ΦP . Moreover, we assume that
MP evaluates the integrity constraints IC to true.

This section is based on results first published in [14, 15].

4.1.1 Revision

Given some background knowledge P and IC, a conditional C ⇒ D is a counterfactual if
MP maps C to false. This holds if there is at least one literal occurring in C such that this
literal is mapped to false byMP . In the general case, each element of a subset S of C may
be mapped to false byMP .
Hence, in order to evaluate the counterfactual, we must revise the background knowlege
with respect to a consistent set S of ground literals, where we may assume that each literal
occurring in S is mapped to false byMP . Let P be a ground program and

clauses(S,P) = {A← Body ∈ P | A ∈ S ∨ ¬A ∈ S},

i.e. clauses(S,P) consists of the definitions for all atoms in P which occur positively or
negatively in S.
The revision of P with respect to S is defined as

rev(P,S) = (P \ clauses(S,P)) ∪ {A← > | A ∈ S} ∪ {A← ⊥ | ¬A ∈ S}.

This definition is very straightforward. The clauses which are responsible for mapping S to
false are removed, facts and assumptions which will map S to true are added.

Proposition 29

1. rev is non-monotonic.

2. IfMP(L) = U for all L ∈ S then rev is monotonic, i.e.MP ⊆Mrev(P,S).

3. Mrev(P,S)(S) = >.

Proof

1. We have to find P, S, and F such that P |=wcs F and rev(P,S) 6|=wcs F . Let
P = {a ← >}, S = {¬a} and F = a. We findMP = 〈{a}, ∅〉, rev(P,S) = {a ← ⊥},
Mrev(P,S) = 〈∅, {a}〉, P |=wcs a, and rev(P,S) 6|=wcs a.

2. MP andMrev(P,S) can be computed by iterating ΦP and Φrev(P,S), respectively. By
induction on n we can show that for all n ∈ N the relationship ΦP ↑n ⊆ Φrev(P,S) ↑n
holds. In case n = 0 we find

ΦP ↑0 = 〈∅, ∅〉 = Φrev(P,S) ↑0.
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We assume that the result holds for n and turn to the induction step:

ΦP ↑(n+ 1) = ΦP(ΦP ↑n) = 〈I>, I⊥〉, (4.1)

where

I> = {A | there exists A← Body ∈ gP and ΦP ↑n(Body) = >}
I⊥ = {A | there exists A← Body ∈ gP

and for all A← Body ∈ gP we find ΦP ↑n(Body) = ⊥}

AsMP(L) = U for all L ∈ S, we find that atom L is neither in I> nor in I⊥, where
atom L = L if L is an atom and atom L = A if L = ¬A. By the definition of revision,
however, atom L is either in J> or in J⊥, where

J> = {A | there exists A← Body ∈ g rev(P,S) and Φrev(P,S) ↑n(Body) = >}
J⊥ = {A | there exists A← Body ∈ g rev(P,S)

and for all A← Body ∈ g rev(P,S) we find Φrev(P,S) ↑n(Body) = ⊥}

As P and rev(P,S) contain identical definitions for atoms not occurring in S we
conclude by the induction hypothesis that I> ⊆ J>, I⊥ ⊆ J⊥ and

〈I>, I⊥〉 ⊆ 〈J>, J⊥〉 = Φrev(P,S)(Φrev(P,S) ↑n) = Φrev(P,S) ↑(n+ 1). (4.2)

The result follows by combining (4.1) and (4.2) and the induction theorem.

3. Follows immediately from the definition of revision and the monotonicity of ΦP . 2

4.1.2 Minimal Revision Followed by Abduction

We suggest to evaluate conditionals C ⇒ D with respect to the background knowledge P, E
and IC as follows:

IfMP(C) = > then the value of C ⇒ D isMP(D).
IfMP(C) = ⊥ then evaluate C ⇒ D with respect toMrev(P,S), where

S = {L ∈ C | MP(L) = ⊥}.
IfMP(C) = U then evaluate C ⇒ D with respect toMP′ , where

P ′ = rev(P,S) ∪ X ,
S is a smallest subset of C,
X ⊆ Arev(P,S) is an explanation for C \ S
such that P ′ |=wcs C andMP′ satisfies IC.

This procedure is called minimal revision followed by abduction or MRFA. Recall that skep-
ticial reasoning is applied under the Weak Completion Semantics. This applies to MRFA as
well. If in the caseMP(C) = U there are several P ′ then the evaluation of the conditional
C ⇒ D must be skeptical. Such examples are discussed in Section 4.1.3.
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The case, where the antecendent C of the conditional C ⇒ D is mapped to true underMP ,
is the easiest. The conditional is an indicative one. Hence, we evaluate the conclusion D
underMP . The value of the conditional is simply the value of D underMP .
If the antecedent C is false under MP then the conditional is a counterfactual. Hence, we
revise the background knowledge P with respect to the literals occurring in C which are
mapped to false under MP . Thereafter, the conditional is evaluated with respect to the
revised background knowledge. One should observe that the antecedent C is no longer false
under the revised background knowledge but may be true or unknown.

The most interesting case is when the antecedent C is unknown underMP . We are unaware
of any paper where this case has been studied. In the Weak Completion Semantics we can
apply abduction and/or revision. As we will show in Subsection 4.1.5 there are cases, which
can not be solved with abduction alone. Hence, we need revision. On the other hand,
revision is so powerful, that it can solve all cases, but in a very straightforward and direct
way. We propose to limit revision as much as possible. This is the reason for requiring that
S is a minimal subset of C; all other elements of S shall be explained by abduction.

4.1.3 The Suppression Task Revisited

The procedure minimal revision followed by abduction is an extension of the procedure
applied in Chapters 1 and 3 to model the selection task. But the selections task needs to
be slightly reformulated. Instead of adding a positive fact or a negative assumption to the
background knowledge and asking for a certain goal to hold, the fact and the assumption
become the antecedent of a conditional, whose consequent is the goal. Let us illustrate this
with the first experiment. Now, the background knowledge is conditional (1.2), i.e.

if she has an essay to write then she will study late in the library.

It is encoded as the program consisting of

` ← e ∧ ¬ab1, (4.3)
ab1 ← ⊥,

whose least model is
M(4.3) = 〈∅, {ab1}〉.

The set of integrity constraints is empty. The question is how to evaluate conditional

e⇒ ` (4.4)

with respect to program (4.3). The antecedent e is unknown under M(4.3). Because e is
undefined in (4.3), the minimal and skeptical explanation

{e← >}

can be abduced and added to the program. We are now back to the original encoding of the
first case of the selection task and obtain

M(4.3)∪{e←>} = 〈{e, `}, {ab1}〉.
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According to the procedure minimal revision followed by abduction, the value of condi-
tional (4.4) is

M(4.3)∪{e←>}(`) = >.

Experiments 2− 6 of the suppression task are solved in the same way.

In experiments 7− 12 of the suppression task abduction was already applied in Chapters 1
and 3 (see Table 3.4). This corresponds exactly to the procedure minimal revision followed
by abduction. Recall that in experiments 8 and 12 there were two minimal explanations
and we had to reason skeptically in order to adequately model the experimental data. This
applies to the procedure minimal revision followed by abduction as well. If in the case
MP(C) = U there are several P ′, then skeptical reasoning needs to be applied.

We will proceed by discussing various scenarios in order to illustrate minimal revision fol-
lowed by abduction.

4.1.4 The Shooting of Kennedy

The following example is discussed in [1]. Given the background knowledge:

If Oswald shot then the president was killed. If somebody else shot then the
president was killed. Oswald shot.

Evaluate the following conditionals:

1. If Oswald had not shot then someone else would have.

2. If Kennedy was killed and Oswald did not shoot then someone else did.

The background knowledge is encoded using the clauses

k ← os ∧ ¬abos, (4.5)
abos ← ⊥,

k ← ses ∧ ¬abses,
abses ← ⊥,

os ← >.

Its least model is
M(4.5) = 〈{os, k}, {abos, abses}〉.

The set IC of integrity constraints is empty.

To evaluate the first conditional os ⇒ ses1 we learn that

M(4.5)(¬os) = ⊥.

1We will omit curly brackets if C or D are singleton sets.
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Hence, the conditional is a counterfactual and we revise the background knowledge by re-
placing os ← > by os ← ⊥ to obtain

Mrev((4.5),{¬os}) = 〈∅, {os, abos, abses}〉.

Consequently, the antecedent ¬os of the conditional ¬os ⇒ ses is true, whereas its conse-
quent ses is unknown and, thus, the value of the conditional is unknown. It is even unknown
whether Kennedy was killed.

If, however, it was observed that Kennedy was killed then this corresponds to the second
conditional {k ,¬os} ⇒ ses. In this case, we learn

M(4.5)(k ∧ ¬os) = ⊥

with ¬os being the only literal occurring in {k ,¬os} which is mapped to false under
M(4.5). Consequently, we revise the program as before and evaluate the conditional un-
derMrev((4.5),{¬os}). Now, we learn that its antecendent is unknown because k is mapped
to unknown. But k can be explained. With

Arev((4.5),{¬os}) = {ses ← >, ses ← ⊥, abos ← >, abses ← >}

we learn that
X = {ses ← >}

is the only minimal explanation for k . We obtain

Mrev((4.5),{¬os})∪{ses←>} = 〈{ses, k}, {os, abos, abses}〉.

Evaluating the conditional {k ,¬os} ⇒ ses under this model we notice that its antecendent
as well as its consequent are true, and so is the conditional.

4.1.5 The Firing Squad

Judae Pearl discusses the following example in [54]:

If the court orders an execution then the captain will give the signal upon which
riflemen a and b will shoot the prisoner; consequently, the prisoner will be dead.
It is assumed that the court’s decision is unknown, that both riflemen are ac-
curate, alert and law-abiding, and that the prisoner is unlikely to die from any
other causes.

The reader is asked to evaluate the following conditionals:

1. If the prisoner is not dead then the captain did not signal.

2. If rifleman a shot then rifleman b shot as well.

3. If rifleman a did not shoot then the prisoner is not dead.



4.1. CONDITIONALS 63

4. If the captain gave no signal and rifleman a decides to shoot then the court did not
order an execution.

The background knowledge is encoded using the clauses

signal ← execution ∧ ¬ab1 (4.6)
ab1 ← ⊥

riflemana ← signal ∧ ¬ab2
ab2 ← ⊥

riflemanb ← signal ∧ ¬ab3
ab3 ← ⊥

dead ← riflemana ∧ ¬ab4
ab4 ← ⊥

dead ← riflemanb ∧ ¬ab5
ab5 ← ⊥

alive ← ¬dead ∧ ¬ab6
ab6 ← ⊥

and we obtain
M(4.6) = 〈∅, {abi | 1 ≤ i ≤ 6}〉.

The set IC of integrity constraints is empty. The abnormalities will not play a role in
evaluating the conditionals mentioned above. But they may be used to model exceptions like,
for example, that the firing pin of a rifle broken and this may cause the rifle to malfunktion
if a rifleman is pulling the trigger. The abnormalities may also be used to invalidate the
rules of the background knowledge, but there is no reason for questioning the rules. On the
other hand, it is explicitely stated that the court’s decision is unknown, which translates
into the undefinete atom execution and the set of abducibles

{execution ← >, execution ← ⊥}.

The fact
execution ← > (4.7)

explains the observation

{signal , riflemana , riflemanb , dead , ¬alive},

whereas the assumption
execution ← ⊥ (4.8)

explains the obervation

{¬signal , ¬riflemana , ¬riflemanb , ¬dead , alive}
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On the other hand, the observation

{¬signal , riflemana} (4.9)

cannot be explained at all. One may be tempted to consider the union of (4.7) and (4.8)
as a possible explanation. However, under the weak completion semantics this union is
translated into

execution ↔ >∨⊥

which is semantically equivalent to

execution ↔ >.

The assumption (4.8) is overridden and can no longer be applied to explain that the captain
did not signal.

The first conditional to be evaluated is

¬dead ⇒ ¬signal .

Its antecedent ¬dead is unknown underM(4.6). Adding the explanation (4.8) to the program
(4.6) we obtain

M(4.6)∪(4.8) = 〈{alive}, {signal , riflemana , riflemanb , dead} ∪ {abi | 1 ≤ i ≤ 6}〉

and the conditional is evaluated to true.

The second conditional is
riflemana ⇒ riflemanb .

Its antecenent riflemana is unknown under M(4.6). Adding the explanation (4.7) to the
program (4.6) we obtain

M(4.6)∪(4.7) = 〈{signal , riflemana , riflemanb , dead}, {alive} ∪ {abi | 1 ≤ i ≤ 6}〉

and the conditional is evaluated to true.

The third conditional is
¬riflemana ⇒ ¬dead .

Its antecedent ¬riflemana is unknown underM(4.6). As in the first case we add the expla-
nation (4.8) to the program and evaluate the conditional to true.

The forth conditional is

{¬signal , riflemana} ⇒ ¬execution.
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Its antecedent {¬signal , riflemana} is unknown underM(4.6) and, as discussed above, cannot
be explained. Hence, we must apply revision. There are two candidates for minimal revision,
viz.

{riflemana} (4.10)

and
{¬signal} (4.11)

Considering the first option, we revise program (4.6) with respect to (4.10) by deleting the
rule defining riflemana and adding the fact riflemana ← >. We obtain

Mrev((4.6),riflemana) = 〈{riflemana , dead}, {alive} ∪ {abi | 1 ≤ i ≤ 6}〉.

The second antecedent ¬signal is still unknown under this model. But now we can apply
abduction. The explanation (4.8) explains ¬signal and we obtain

Mrev((4.6),riflemana)∪(4.8)

= 〈{riflemana , dead}, {alive, execution, signal , riflemanb} ∪ {abi | 1 ≤ i ≤ 6}〉.

The conditional is true.

Considering the second option, we revise program (4.6) with respect to (4.11) by deleting
the rule defining signal and adding the assumption signal ← ⊥. We obtain

Mrev((4.6),¬signal) = 〈{alive}, {signal , riflemana , riflemanb , dead} ∪ {abi | 1 ≤ i ≤ 6}〉.

The second antecedent riflemana is false under this model and, hence, we would have to
revise the program again, but this time with respect to riflemana . But then, the revision is
no longer minimal. Hence, the second option is disgarded.

The first option can be nicely illustrated by considering the dependency graph of the pro-
gram (4.6). The depends on relation is the transitive closure of the following relation: Given
a ground program P, atom A depends on atom B if P contains a rule of the form A← Body
and B occurs (positively or negatively) in Body.

Fig. 4.1 shows the dependency graph of the program (4.6). Revision cuts the dependencies
from a particular node and assigns true or false to the node. Abduction assigns true or false
to the node marked execution. The revision step can be understood analogously to Pearl’s
interventions in his Do-Calculus [54], where the antecedent node is isolated from its parent
nodes in the network and imposed to be true or false.

4.1.6 The Forest Fire

This example is taken from [10].

Lightning causes a forest fire. Lightning happened. Dry leaves are usually
present.

The reader is asked to evaluate the conditional
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Figure 4.1: (Top) The dependency graph of program (4.6). Positive dependencies are de-
picted by solid arrows, negative dependencies by dotted arrows. •, ·, and ◦ denote nodes,
which are mapped to ⊥, U and > byM(4.6), respectively. The leaf node marked execution
is undefined, whereas all other nodes are defined. (Middle) The dependency graph of
rev((4.6), riflemana): riflemana does not depend on signal and ab2 anymore and is mapped
to true. (Bottom) The dependency graph of rev((4.6), riflemana) ∪ {execution ← ⊥}.
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If there had not been so many dry leaves on the forest floor then the forest fire
would not have occurred

The background knowledge can be encoded in a program consisting of the following clauses:

forestfire ← lightning ∧ ¬ab`, (4.12)
lightning ← >,

ab` ← ¬dryleaves,

dryleaves ← >.

The least model of this program is

M(4.12) = 〈{dryleaves, lightning , forestfire}, {ab`}〉.

The set IC of integrity constraints is empty.

To evaluate the conditional
¬dryleaves ⇒ ¬forestfire

we notice that its antecedent ¬dryleaves is mapped to false by M(4.12). Hence, the condi-
tional is a counterfactual. Reversing the program (4.12) by ¬dryleaves we obtain

Mrev((4.12),dryleaves) = 〈{lightning , ab`}, {dryleaves, forestfire}〉.

Because forestfire is mapped to false now, the counterfactual is mapped to true.

In [56] the background knowledge was extended by

Arson may cause a forest fire.

This additional knowledge can be encoded by

forestfire ← arson ∧ ¬aba (4.13)
aba ← ⊥.

Now we obtain

M(4.12)∪(4.13) = 〈{dryleaves, lightning , forestfire}, {ab`, aba}〉,

which maps the antecedent ¬dryleaves of the conditional

¬dryleaves ⇒ ¬forestfire

to false. Reversing the extended program by ¬dryleaves we learn

Mrev((4.12)∪((4.13),dryleaves) = 〈{lightning , ab`}, {dryleaves, aba}〉.

In this case, forestfire and, consequently, the counterfactual are evaluated to unknown. As
arson may have caused the forest fire, the absence of dry leaves is not sufficient to guarantee
that there will be no forest fire.
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4.1.7 Relevance

4.2 Obligation versus Factual Conditionals

The example is taken from [45, 19] with minor modifications.

If it rains then the roofs are wet and she takes her umbrella.

The logic program representing this background knowledge consists of the following clauses:

wet_roofs ← rain ∧ ¬abw, (4.14)
abw ← ⊥,

umbrella ← rain ∧ ¬abu,
abu ← ⊥.

The least model of program (4.14) is

M(4.14) = 〈∅, {abw, abu}〉.

The set of abducibles is
{rain ← >, rain ← ⊥}.

The set of integrity constraints is empty. We are going to evaluate several conditionals with
respect to this background knowledge.

1. If the roofs are not wet then it did not rain.

2. If she did not take her umbrella then it did not rain.

3. If the roofs are wet then it did rain.

4. If she took her umbrella then it did rain.

In the first two conditionals, the consequent of the background knowledge is denied, whereas
in the last two conditionals, the consequent of the background knowledge is confirmed.

4.2.1 Evaluation under MRFA

We start by applying the procedure minimal revision followed by abduction.

1. Consider the conditional
¬wet_roofs ⇒ ¬rain.

It is evaluated to true. Because

M(4.14)(¬wet_roofs) = U
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the third case applies. We find a minimal and skeptical explanation

{rain ← ⊥}

for ¬wet_roofs. Thus, the evaluation of the conditional continues with

M(4.14)∪{rain←⊥} = 〈∅, {rain,wet_roofs, umbrella, abw, abu}〉.

Because
M(4.14)∪{rain←⊥}(¬wet_roofs) = >

the first case applies and the conditional is evaluated to

M(4.14)∪{rain←⊥}(¬rain) = >.

2. Consider the conditional
¬umbrella ⇒ ¬rain.

It is also evaluated to true following the same steps as in the case of the first example.

3. Consider the conditional
wet_roofs ⇒ rain.

It is also evaluated to true following the same steps as in the case of the first example
except that the minimal and skeptical explanation

{rain ← >}

is abduced to explain the antecedent.

4. Consider the conditional
umbrella ⇒ rain.

It is also evaluated to true following the same steps as in the case of the third example.

The examples are summarized in Table 4.1. All conditionals are mapped to true. This is a
bit surprising. It is not clear that given the information that the roofs are not wet, humans
would conclude it did not rain in the same way as they would conclude it did not rain in case
the given information was she did not take her umbrella. The same holds for the affirmation
of the consequent. Given the information that she took her umbrella, it is again not clear
that humans would conclude it did rain in the same way as they would conclude it did rain
given the information that the roofs are wet.

It appears that the two conditionals of the background knowledge should be semantically
interpreted in two different ways. Such a semantic interpretation will be developed in the
remainder of this section.
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C D MRFA steps semantic MRFA steps
¬wet_roofs ¬rain 3: S = ∅ 3: S = ∅

X = {rain ← ⊥} X = {rain ← ⊥}
1: true 1: true

¬umbrella ¬rain 3: S = ∅ 3: S = ∅
X = {rain ← ⊥} X1 = {rain ← ⊥}

X2 = {abu ← >}
1: true 1: unknown

wet_roofs rain 3: S = ∅ 3. S = ∅
X = {rain ← >} X = {rain ← >}

1: true 1: true
umbrella rain 3: S = ∅ 3. S = ∅

X = {rain ← >} X1 = {rain ← >}
X2 = {umbrella ← >}

1: true 1: unknown

Table 4.1: Evaluating four examples under the procedures minimal revision followed by
abduction and its semantic version. 1 and 3 refer to the first and the third case of the
procedure.

4.2.2 Semantics of Conditionals

Obligation and Factual Conditionals

Consider the conditionals

if it rains then the roofs are wet (4.15)

and
if it rains then she takes her umbrella. (4.16)

The consequence of the first conditional is obligatory. We cannot easily imagine a case, where
the antecedent is true and the consequence is not. On the other hand, we can easily imagine
a situation, where the antecedent of the second conditional is true and the consequence is
not. The consequence of the second conditional is not obligatory. We will call the first
conditional a obligation conditional and the second one a factual conditional.

As explained in [10], a conditional whose consequence is denied is more likely to be evaluated
to true if it is an obligation conditional. This happens because for this type of conditional
there is a forbidden or unlikely possibility where antecedent and not consequent happen
together and, in this case, where the consequent is known to be false, it cannot be the
case that the antecedent is true as, otherwise, the forbidden possibility is violated. Thus,
not antecedent is concluded. Because in the case of a factual conditional this forbidden
possibility does not exist, a conditional whose consequence is denied should be evaluated as
unknown.
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There are many other obligation conditionals:

If the roofs are not wet then it did not rain.
If a german tourist wants to enter Russia then he needs a visa.
If there is no light then plants will not grow.

Likewise, there are many other factual conditionals:

If she did not take her umbrella then it did not rain.
If the sun is shining all day then I will water my garden in the evening.
If Carl is not doing his homework then he will fail the exam.

Subjects may classify conditionals as obligation or factual conditionals. This is an informal
and pragmatic classification. It depends on the background knowledge and experience of a
subject as well as on the context in which a conditional is stated.

Necessary and Sufficient Antecedents

The antecedent of conditional (4.15) is necessary. The consequent cannot be true unless the
antecedent is true. The antecedent of conditional (4.16) does not appear to be necessary.
There are many different reasons for taking an umbrella like, for example, that the sun is
shining. The antecedent of conditional (4.4) is sufficient.

Subjects may classify antecedents as necessary or sufficient. The classification is informal
and pragmatic. It depends on the background knowledge and experience of a subject as well
as on the context in which the condition is stated.

4.2.3 Representing Obligation and Factual Conditionals

Obligation and factual conditionals are represented by programs as before. Thus, the pro-
gram (4.14) remains unchanged. However, the semantics of conditionals is taken into con-
sideration when modifying the set of abducibles for a given program P:

AP = {A← > | A is undefined in P} (4.17)
∪ {A← ⊥ | A is undefined in P} (4.18)
∪ {A← > | A is head of a conditional with sufficient antecedent in P} (4.19)
∪ {ab← > | ab occurs in the body of a factual conditional in P} (4.20)

The sets (4.17) and (4.18) are the usual facts and assumptions for the undefined atoms
occurring in the program P, respectively. The set (4.19) contains facts for the heads of
conditionals with sufficient antecedent occurring in P. If an antecedent of a conditional is
sufficient then there may be other reasons for establishing the conclusion of the conditional.
The set (4.60) contains facts for the abnormalities occurring in factual conditionals. The
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antecedent of a factual conditional may be true, yet the conclusion of the conditional may
still not hold. Adding a fact for the abnormality occurring in the body of the representation
of a factual conditional will force this abnormality to become true and its negation to become
false. Hence, the body of the clause will be false.

4.2.4 Evaluation under Semantic MRFA

We may evaluate the conditional 1.-4. introduced at the beginning of Section 4.2 using the
modified set of abducibels specified in Section 4.2.3. For program (4.14) we obtain the set

A(4.14) = {rain ← >, rain ← ⊥, abu ← >, umbrella ← >}.

1. The evaluation of the conditional

¬wet_roofs ⇒ ¬rain

remains the same because the explanation for the antecedent ¬wet_roofs is unique.
Thus, the consequence ¬rain is a skeptical consequence from program (4.14) and the
observation ¬wet_roofs. The conditional is true.

2. The evaluation of the conditional

¬umbrella ⇒ ¬rain

changes. Because of the modified set of abducibles A(4.14) there are now two minimal
explanations for the antecedent ¬umbrella:

X1 = {rain ← ⊥}

as before and
X2 = {abu ← >}.

Whereas
(4.14) ∪ X1 |=wcs ¬rain

we find that
(4.14) ∪ X2 6|=wcs ¬rain.

Reasoning skeptically the conditional is unknown.

3. The evaluation of the conditional

wet_roofs ⇒ rain

remains the same. The conditional is true following the same steps as before.
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4. The evaluation of the conditional

umbrella ⇒ rain

changes. Because of the modified set of abducibles A(4.14) there are now two minimal
explanations for the antecedent ¬umbrella:

X1 = {rain ← >}

as before and
X2 = {umbrella ← >}.

Whereas
(4.14) ∪ X1 |=wcs rain

we find that
(4.14) ∪ X2 6|=wcs rain.

Reasoning skeptically the conditional is unknown.

The evaluation of the four examples under semantic minimal revision followed by abduction
is summarized in Table 4.1. Although we are unaware of any experimental data to support
the following hypothesis, we strongly believe that the semantic version of MRFA models
human reasoning much better than the original version.

4.3 The Selection Task

The selection task is yet another famous psychological experiment which has been repeated
many times leading to similar results. In its original, abstract version [67], participants were
told that cards had letters on one side and numbers on the other side. In Table 4.2(a) four
cards are depicted, showing the letters d and f as well as the numbers 3 and 7 . Then,
participants were given the conditional

if there is a d on one side of a card then there is a 3 on the other side. (4.21)

Finally, the participants were asked which cards must be turned to prove that the conditional
holds.

From a classical logic point of view, the conditional can be represented by the implication

d→ 3 .

In this case, the cards showing d (modus ponens) and 7 (modus tollens) must be turned.
As repeated experiments have shown consistently, the majority of the participants correctly
selected the card showing d. However, they failed to select the card showing 7 and incorrectly
selected the card showing 3 . In other words, the overall correctness of the answers for the
abstract selection task if modeled by a classical, two-valued implication is pretty bad.
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d

89%

f

16%

3

62%

7

25%

(a)

beer

95%

coke

0,025%

22

0,025%

16

80%

(b)

Table 4.2: (a) the abstract and (b) the social selection task.

Griggs and Cox [25] presented a version of the selection task which is structurally isomorphic,
but in a social context. Participants were told that cards are showing liquids on one side
and the age of the person drinking the liquid on the other side. In Table 4.2(b) four cards
are depicted, showing (alcoholic) beer and coke as well as the numbers 22 and 16 . Then,
the participants were given the conditional

if a person is drinking beer then the person must be over 19 years of age. (4.22)

Again, participants were asked which cards must be turned to prove that the conditional
holds. Participants consistently solved this task correctly by turning the cards showing beer
and 16 .

One explaination for the difference between the two cases can be found in [43], namely that
people consider the conditional in the abstract case as a belief. The participants perceived
the task to examine whether the conditional is either true or false. On the other hand,
in the social case, people consider the conditional as a social constraint which ought to be
true. Participants intuitively aim at preventing the violation of such a constraint, which is
normally done by observing whether the state of the world complies with the rule.

In [17] a computational logic approach using the Weak Completion Semantics has been
proposed to model the two cases of the selection task. The approach presented there does
not distinguish between the two conditionals, but instead models the different interpretations
outside of the logical framework.
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The different results for the abstract and the social case of the selection task with the same
structure confirms that the semantics of the conditionals is relevant for their evaluation.
Taking Bob Kowalski’s [43] explanation and the semantics presented in Section 4.2.2 into
account, we understand

• the conditional in the abstract case as a factual conditional with necessary antecedent

and

• the conditional in the social case as an obligation conditional with sufficient antecedent.

In the following, we will model the two cases within one logical framework by distinguishing
the abstract and the social case with respect to the classification of the conditionals.

4.3.1 Modeling the Abstract Case

The background knowledge of this case is given by the following program

3 ← d ∧ ¬aba, (4.23)
aba ← ⊥.

As the conditional was classified as a factual conditional with necessary antecedent, its set
of abducibles is

{d← >, d← ⊥, aba ← >}.

Observing a card, the decision by the participants is modeled by abductively explaining the
given observation O, computing the least model M(4.23)∪X of the weak completion of the
program (4.23) and the explanation X , and reasoning skeptically to decide whether the card
must be turned. In particular, a card is turned if and only if

1. 3 and d follow skeptically from program (4.23) and O or

2. for all explanations X explaining the observation ¬3 we find d← ⊥ ∈ X .

O d ¬d 3 ¬3

X d← > d← ⊥ d← > d← ⊥ aba ← >
Φ(4.23)∪X I> I⊥ I> I⊥ I> I⊥ I> I⊥ I> I⊥

0
1 d aba d d aba d aba

aba aba
2 3 3 3 3 3

decision turn no turn turn no turn
89% 16% 62% 25%
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• If O = {d} then the only explanation is {d← >} and we obtain

M(4.23)∪{d←>} = 〈{d, 3}, {aba}〉

As both, d and 3 are mapped to true, the card must be turned in order to verify that
a 3 is on the other side. This corresponds to modus ponens.

• If O = {¬d}, i.e. if, for example, an f is on the one side of a card, then the only
explanation is {d← ⊥} and we obtain

M(4.23)∪{d←⊥} = 〈∅, {d, aba, 3}〉

There is no need to turn the card as the antecedent d of the conditional (4.21) is false
and the conditional (4.21) is true.

• If O = {3} then the only explanation is {d← >} and we obtain

M(4.23)∪{d←>} = 〈{d, 3}, {aba}〉

As both, d and 3 are mapped to true, the card must be turned in order to verify that
a d is on the other side. This corresponds to the interpretation of d being a necessary
antecedent.

• If O = {¬3}, i.e. if, for example, a 7 is on the one side of a card, then there are two
minimal explanations, viz. {d← ⊥} and {aba ← >}, and we obtain

M(4.23)∪{d←⊥} = 〈∅, {d, aba, 3}〉

and
M(4.23)∪{aba←>} = 〈{aba}, {3}〉.

Reasoning skeptically we conclude that 3 is false, whereas d and aba are unknown.
There is no need to turn the card. One should observe that a creduluous reasoner
would have turned the card as the first explanation {d ← ⊥} leads to a least model
where d and 3 are mapped to false. Given the observation ¬3, the creduluous reasoner
must verify that there is no d on the other side of the card.

4.3.2 Modeling the Social Case

The background knowledge of this case is given by the following program

o ← b ∧ ¬abs, (4.24)
abs ← ⊥,

where b denotes beer and o denotes that the person is old enough to drink beer, i.e. older than
18. As the conditional was classified as an obligation conditional with sufficient antecedent,
its set of abducibles is

{b← >, b← ⊥, o← >}.
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Observing a card, the decision by the participants is again modeled by abductively explaining
the given observation O, computing the least model M(4.24)∪X of the weak completion of
the program (4.24) and the explanation X , and reasoning skeptically to decide whether the
card must be turned. In particular, a card is turned if and only if

1. o and b follow skeptically from program (4.24) and O or

2. for all explanations X explaining the observation ¬o we find b← ⊥ ∈ X .

O b ¬b o ¬o
X b← > b← ⊥ o← > b← > b← ⊥

Φ(4.24)∪X I> I⊥ I> I⊥ I> I⊥ I> I⊥ I> I⊥

0
1 b abs b o abs b abs b

abs abs
2 o o o o

decision turn no turn no turn turn
95% 0,025% 0,025% 80%

• If O = {b} then the only explanation is {b← >} and we obtain

M(4.24)∪{b←>} = 〈{b, o}, {abs}〉

As both, b and o are mapped to true, the card must be turned in order to verify that
the person drinking beer is old enough.

• If O = {¬b}, i.e. if, for example, a coke is shown on the one side of a card, then the
only explanation is {b← ⊥} and we obtain

M(4.24)∪{b←⊥} = 〈∅, {b, abs, o}〉

There is no need to turn the card as the antecedent b of the conditional (4.22) is false
and the conditional (4.22) is true.

• If O = {o}, i.e. if, for example, a 22 is on the one side of a card, then there are two
minimal explanations, viz. {o← >} and {b← >}, and we obtain

M(4.24)∪{o←>} = 〈{o}, {abs}〉

and
M(4.24)∪{b←>} = 〈{b, o}, {abs}〉.

Reasoning skeptically we conclude that o is true and aba is false. There is no need
to turn the card. One should observe that a creduluous reasoner would have to turn
the card. The second explanation {b ← >} leads to a least model where b and o are
mapped to true.
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• If O = {¬o} then the only explanation is {b← ⊥} and we obtain

M(4.24)∪{b←⊥} = 〈∅, {b, abs, o}〉

As ¬o is observed we must verify that there is no beer is on the other side.

The conditions for turning a card in the abstract and the social case of the selection task are
structurally identical. They can be generalized. Suppose we are considering cards with a
symbol of class x on one side and a symbol of class y on the other side. Given the conditional

if x then y

the background knowledge is encoded using the clauses

y ← x ∧ ¬ab,
ab ← ⊥.

The set of abducibles is determined based on the semantic interpretation of the conditional.
A card is turned if and only if

1. x and y follow skeptically from the program and the observation or

2. for all explanations X explaining the observation ¬y we find x← ⊥ ∈ X .

4.4 Syllogistic Reasoning

4.5 Contextual Abduction

Consider the following szenario:

Usually birds fly. Tweety and Jerry are birds.

This can be represented by a (data logic) program consising of the clauses

fly X ← bird X ∧ ¬abfly X, (4.25)
abfly X ← ⊥,

bird tweety ← >,
bird jerry ← >.

The least model of the weak completion of this program is

〈{bird tweety , bird jerry , fly tweety , fly jerry}, {abfly tweety , abfly jerry}〉.
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Its set of abducibles is
{abfly tweety ← >, abfly jerry ← >}.

If we observe that Tweety does not fly then there are two explanations, viz.

X1 = {abfly tweety ← >},
X2 = {abfly tweety ← >, abfly jerry ← >}

with X1 being the minimal one. If we add X1 to the program (4.25) and weakly complete
the extended program then we obtain the least model

〈{bird tweety , bird jerry , fly jerry , abfly tweety}, {fly tweety , abfly jerry}〉,

which entails the observation.

Now consider the extended scenario

Usually birds fly, but kiwis and penguins do not. Tweety and Jerry are birds.

This can be represented by a program consising of the clauses

fly X ← bird X ∧ ¬abfly X, (4.26)
abfly X ← kiwi X,

abfly X ← penguin X,

bird tweety ← >,
bird jerry ← >.

The least model of the weak completion of this program is

〈{bird tweety , bird jerry}, ∅〉.

Its set of abducibles consists of

kiwi tweety ← >, kiwi tweety ← ⊥,
kiwi jerry ← >, kiwi jerry ← ⊥,

penguin tweety ← >, penguin tweety ← ⊥,
penguin jerry ← >, penguin jerry ← ⊥.

If we observe that Jerry does fly then the minimal explanation

X = {kiwi jerry ← ⊥, kiwi penguin ← ⊥}

explains this observation. Thus, in order to explain the observation we need to consider
all known exceptions before we can conclude that Jerry does fly. In this case, we need to
assume that Jerry is not a kiwi and Jerry is not a penguin.

There are several problems with this approach. Firstly, to the best of our knowledge there
are currently 41 known classes of birds which do not fly. Secondly, there may be classes of
non-flying birds which we are unaware of. Hence, it is unlikely that humans consider all
known exceptions before concluding that Jerry does fly.
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L ctxt L

> >
⊥ ⊥
U ⊥

Table 4.3: The truth table for ctxt(L).

4.5.1 The Context Operator

Luís Moniz Pereira and Alexandre Miguel Pinto have introduced inspection points of the
form inspect L, where L is a literal [57]. Inspection points are treated as meta-predicates
belonging to a special case of abducibles: inspect L can only be abduced to explain some
observation in case L is abduced to explain some given observation. More formally, X is an
explanation if for each inspect L ∈ X we find that L ∈ X . That is, inspect L is only accepted
in the context of L.

Inspired by the idea underlying inspection points, we introduce a new truth-functional op-
erator ctxt (called context), whose meaning is specified in Table 4.3. With the help of
ctxt , preferences on explanations–among other things–can be syntactically specified. These
preferences are context-dependent.

The interpretation of ctxt can be understood as a mapping from three-valuedness to two-
valuedness. It is one possible way to capture negation as failure under the Weak Completion
Semantics. The original idea of negation as failure [12] is to derive the negation of a ground
atom A in case we fail to derive A, where the meaning of derivation failure depends on the
semantics. Negation as failure does not exist under the Weak Completion Semantics, quite
the contrary is the case. Consider a program consisting of the clauses

p ← q, (4.27)
p ← ⊥.

Its weak completion is
{p↔ q ∨ ⊥},

which is semantically equivalent to {p ↔ q}. The least model of {p ↔ q} is the empty
interpretation 〈∅, ∅〉. Both, p and q are unknown, whereas they would be false if negation
as failure had been adopted. The assumption p← ⊥ has been overridden by the rule p← q
and does not have any effect at all. On the other hand, ctxt L = ⊥ if L is unknown.

As another example consider the program consisting of the clauses

pX ← X ≈ a, (4.28)
q X ← X ≈ b ∧ rb,

X ≈ X ← >,
a ≈ b ← ⊥,
b ≈ a ← ⊥.
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As the weak completion of this program we obtain

p a ↔ a ≈ a,
p b ↔ b ≈ a,
q a ↔ a ≈ b ∧ r b,
q b ↔ b ≈ b ∧ r b,

a ≈ a ↔ >,
b ≈ b ↔ >,
a ≈ b ↔ ⊥,
b ≈ a ↔ ⊥,

whose least model is

〈{a ≈ a, b ≈ b, p a}, {a ≈ b, b ≈ a, p b, q a}〉. (4.29)

Compared to the weak completion of program (3.5) we find that pb and qa are mapped to
false, whereas ra and rb are still mapped to unknown. The main reasons for this difference
are the explicitly assumed inequalities a 6≈ b2 and b 6≈ a and the different form of specifying
the definition for pa and qb, viz. the from used by Keith Leonhard Clark in [12].

To specify inequalities like a 6≈ b or b 6≈ a seems possible if these inequalities are known and
if there are not too many. However, if we are modelling a company with 1000 employes,
we probably do not want to record explicitly that any two of these employees are different.
In many scenarios we may not even have the knowledge. For example, who knows the 41
different species of non-flying birds in the world? In such cases we would like to find a way to
somehow jump to the conclusion that two syntactically different constants denote different
object, or that two employes with different names are different persons, or that a bird is
flying. Of course, we should be willing to override such default conclusions. This is possible
if we use the context operator and replace program (4.28) by:

pX ← ctxt X ≈ a, (4.30)
q X ← ctxt X ≈ b ∧ r b,

X ≈ X ← >.

As the weak completion of (4.30) we obtain

p a ↔ ctxt a ≈ a,
p b ↔ ctxt b ≈ a,
q a ↔ ctxt a ≈ b ∧ r b,
q b ↔ ctxt b ≈ b ∧ r b,

a ≈ a ↔ >,
b ≈ b ↔ >,

whose least model is
〈{a ≈ a, b ≈ b, p a}, {p b, q a}〉. (4.31)

2We prefer to write ¬a ≈ b in the more common form a 6≈ b.



82 CHAPTER 4. APPLICATIONS AND EXTENSIONS

Comparing (4.29) and (4.31) we observe that the models are identical except for the inequal-
ities a 6≈ b and b 6≈ a. They are unknown under the model (4.31).

Program (4.30) is a so-called contextual program which will be formally introduced in the
next subsection.

4.5.2 Contextual Programs

Remember that literals are atoms or negated atoms. Let L be a literal. A contextual literal
is an expression of the form ctxt L or ¬ctxt L. A contextual rule is an expression of the form
A ← Body, where A is an atom and Body is a finite conjunction of literals and contextual
literals containing at least one contextual literal. A contextual program is a set of rules,
contextual rules, facts, and assumptions containing at least one contextual rule.

In other words, a set of clauses is a contextual program if and only if it contains an occurrence
of the context operator. Otherwise, it is just a program. We are quite carefully distinguishing
between programs and contextual programs as they have very different properties. This will
become clear in a moment.

As an example consider the contextual program consisting of the clauses

p ← ctxt q, (4.32)
p ← ⊥.

Its weak completion consists of the equivalence

p↔ ctxt q ∨ ⊥. (4.33)

The empty interpretation 〈∅, ∅〉 is not a model for (4.33): If q is unknown then ctxt q is
false and, consequently, the right-hand side of (4.33) is false, whereas its left-hand side p is
unknown. On the other hand,

〈∅, {p}〉 (4.34)

is a model for (4.33). This model is also computed by the semantic operator Φ(4.32) in one
iteration starting with the empty interpretation. It is a minimal model, but not the least
one.

〈{p, q}, ∅〉 (4.35)

is another minimal model. However, (4.35) cannot be computed by the semantic operator.
On the contrary, if start the iteration of the semantic operator with (4.35) we obtain:

Φ(4.32) I> I⊥

↑1 p
↑2 p

We will call (4.34) a supported model as it is a fixed point of the semantic operator. A least
model does not exist in this example.
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But fixed points do not always exist. As an example consider the contextual program which
consists only of the contextual rule

p← ctxt ¬p (4.36)

If we iterate the semantic operator starting with the empty interpretation then we obtain:

Φ(4.36) I> I⊥

↑1 p
↑2 p
↑3 p
...

...
...

There is no fixed point. The operator is no longer monotonic and, hence, the Knaster-Tarski
Theorem 24 is no longer applicable.

The contextual program (4.36) has two models, viz. the empty interpretation and the inter-
pretation 〈{p}, ∅〉. However, the weak completion of (4.36), viz. the equivalence

p↔ ctxt ¬p

has no model at all. It is unsatisfiable. One should remember that this cannot happen with
ordinary programs. If a program does not contain an occurrence of the context operator then
its weak completion has a least model by Theorem 13. For example, the empty interpretation
is the least model of p↔ ¬p.

Returning to the Tweety scenario, suppose we consider the program consisting of the clauses

fly X ← bird X ∧ ¬abfly X, (4.37)
abfly X ← ctxt kiwi X,

abfly X ← ctxt penguin X,

bird tweety ← >,
bird jerry ← >.

instead of (4.26), where we have revised the definition of abfly by introducing the context
operator in the bodies of the rules. If we iterate the semantic operator starting with the
empty interpretation we obtain:

Φ(4.37) I> I⊥

↑1 bird tweety abfly tweety
bird jerry abfly jerry

↑2 bird tweety abfly tweety
bird jerry abfly jerry
fly tweety
fly jerry
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Thus, we are reasoning by default that Tweety and Jerry are flying without even considering
the exceptional cases of birds which do not fly. However, if we are additionally told that
Tweety is a penguin then we obtain the program consisting of the clauses

fly X ← bird X ∧ ¬abfly X, (4.38)
abfly X ← ctxt kiwi X,

abfly X ← ctxt penguin X,

bird tweety ← >,
bird jerry ← >,

penguin tweety ← >.

Iterating the semantic operator starting with the empty interpretation we obtain:

Φ(4.38) I> I⊥

↑1 bird tweety abfly tweety
bird jerry abfly jerry

penguin tweety
↑2 bird tweety abfly jerry

bird jerry
penguin tweety
abfly tweety
fly tweety
fly jerry

↑3 bird tweety abfly jerry
bird jerry fly tweety

penguin tweety
abfly tweety

fly jerry

The example shows again that the semantic operator is no longer monotonic. Whereas
abfly tweety is false after the first iteration (the context operator is applied to unknown in all
instantiations of X), it becomes true after the second iteration. This holds as penguin tweety
was mapped to true in the first iteration. Likewise, fly tweety was true after the second
iteration, but is false after the third iteration. After the third iteration, a fixed point has
been reached. Jerry is flying but Tweety is not.

The example also shows that in the first iteration of the semantic operator we jump to the
conclusion that Tweety is not abnormal, which is revised in the second iteration after we
learn that Tweety is a penguin. Likewise, in the second iteration we jump to the conclusion
that Tweety is flying, which again has to be revised in the third iteration.

Although the semantic operator is no longer monotonic for contextual program, it may have
a fixed point under certain conditions. In particular, we will show that if the contextual
program is acylcic, then such a fixed point exists and can be computed.
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In order to do so, we have to extend the notion of a level mapping. Let L be a literal.

lvl(ctxt L) = lvl(¬ctxt L) = lvl(L).

A contextual program P is acyclic with respect to the level mapping lvl if and only if for
each rule A ← Body occurring in P and each (normal or contextual) literal L occurring in
Body we find lvl(A) > lvl(L). With these extensions, Proposition 25 still applies ensuring
that dlvl is a metric. Furthermore, Proposition 26 still applies ensuring that (I, dlvl) is a
complete metric space.

We can now state a more general result than Theorem 27:

Theorem 30 Let P be a contextual program, E and equational theory, lvl a level mapping
for P, and I the set of interpretations for P. If P is acyclic with respect to lvl then ΦP is
a contraction on the metric space (I, dlvl).

Proof We will show
dlvl(ΦP(I),ΦP(J)) ≤ 1

2
dlvl(I, J).

If I = J then ΦP(I) = ΦP(J) and, consequently,

dlvl(ΦP(I),ΦP(J)) = dlvl(I, J) = 0

and we are done.

If I 6= J then we find n ∈ N such that dlvl(I, J) ≤ 1
2n . We will show that

dlvl(ΦP(I),ΦP(J)) ≤ 1

2n+1
,

i.e. for all ground atoms A with lvl(A) ≤ n we have ΦP(I)(A) = ΦP(J)(A). Let’s take
some A with lvl(A) ≤ n and let PA be the set of all clauses occurring in gP whose head
is A. Because P is acyclic, for any clause A ← L1 ∧ . . . ∧ Lm occurring in PA we find for
all 1 ≤ i ≤ m that lvl(Li) < lvl(A) ≤ n, where Li is either a literal or a contextual literal.
From dlvl(I, J) ≤ 1

2n we conclude for all 1 ≤ i ≤ m that I(Li) = J(Li). Therefore, I and J
interprete identically all bodies of clauses in the definition of A. Consequently,

ΦP(I)(A) = ΦP(J)(A)

as desired. 2

Proof of Theorem 27 This follows immediately from Theorem 30 by considering pro-
grams which are not contextual. 2.

Corrollary 28 extends to contextual programs as well:
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Corollary 31 If a contextual program P is acyclic then ΦP has a unique fixed point which
can be computed by iterating ΦP up to ω times starting with any interpretation.

Proof The result follows from Theorems 30 and 9. 2

However, as shown in the beginning of this subsection, we cannot conclude that the fixed
point of the semantic operator is the least model of the weak completion of the contextual
program.

Proposition 32 If a contextual program P is acyclic then the unique fixed point of ΦP is
a model of wcP.

Proof Let I = 〈I>, I⊥〉 be the least fixed point of ΦP and A↔ F ∈ wcP, where F is the
disjunction of all bodies of clauses in the definition of A. We distinguish three cases:

1. If I(A) = > then A ∈ I>. Hence, we find a clause A ← Body ∈ gP such that
I(Body) = >. As Body is one of the disjuncts occurring in F , I(F ) = >, and,
consequently, I(A↔ F ) = >.

2. If I(A) = ⊥ then A ∈ I⊥. Hence, we find a clause A← Body ∈ gP and for all clauses
of the form A← Body ∈ gP we find I(Body) = ⊥. Because F is the disjunction of all
bodies we conclude I(F ) = ⊥. Consequently, I(A← F ) = >.

3. If I(A) = U then A 6∈ I> ∪ I⊥. Because A ↔ F occurs in wcP, we find a clause of
the form A ← Body ∈ gP. Because A 6∈ I>, we conclude that for each clause of the
form A ← Body ∈ gP it cannot be the case that I(Body) = >. Because A 6∈ I⊥, we
must find a clause of the form A← Body ∈ gP such that I(Body) 6= ⊥. Together with
I(Body) 6= > we learn that I(Body) = U. Because F is the disjunction of all bodies in
the definition of A we conclude I(F ) = U and, consequently, I(A← F ) = >. 2

Open Problem Is the unique fixed point of ΦP a minimal model of wcP?

4.5.3 Contextual Abduction

4.6 Ethical Decision Problems

We will consider different trolley problems [23]: the bystander, the footbridge, the loop, the
loop-push, the man-in-front, and the collapse-bridgecase. All cases are taken from [58] with
some minor adaptations.
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Figure 4.2: The bystander case (initial state) and its ramifications if Hank decides to do
nothing, where ↓ denotes that no further action is applicable.

4.6.1 The Bystander

A trolley whose conductor has fainted is headed towards two people walking on the main
track.3 The banks of the track are so steep that these two people will not be able to get off
the track in time. Hank is standing next to a switch which can turn the trolley onto a side
track, thereby preventing it from killing the two people. However, there is a man standing
on the side track. Hank can change the switch, killing him. Or he can refrain from doing
so, letting the two die. Is it morally permissible for Hank to change the switch?

The case is illustrated in Figure 4.2 (initial state). The tracks are divided into segments
0, 1, and 2, the arrow represents that the trolley t is moving forward and that the track is
clear (c), the switch is in position m (main) but can be changed into position s (side), and
a bullet above a track segment represents a human (h) on this track. t, c, and h may be
indexed to denote the track to which they apply. In addition, we need a fluent d denoting
a dead human.

We choose to represent a state by a pair of multisets consisting of the casualties in its second
element and all other fluents in its first element. Multisets are represented by so-called fluent
terms in the fluent calculus, i.e. the initial state of the bystander case is the pair

(t0 ◦ c0 ◦m ◦ h1 ◦ h1 ◦ h2, 1) (4.39)

3Note that in the original trolley problem, five people are on the main track. For the sake of simplicity,
we assume that only two people are on the main track.
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of fluent terms. The casualties are represented in the second element of (4.39) by the
constant 1 encoding the empty multiset. Initially, there are no casualties, but casualties will
play a special role when preferring one action over another as will be discussed later in this
section. The first element of (4.39) encodes the multiset

{̇t0, c0,m, h1, h1, h2}̇.

There are two kinds of actions, the ones which can be performed by Hank (the direct actions
donothing and change), and the actions which are performed by the trolley (the indirect
actions downhill and kill). We will represent the actions by the trolley explicitly with the
help of a five-place relation symbol action specifying the preconditions, the name, and the
immediate effects of an action. As a state is represented by two multisets, the preconditions
and the immediate effects have also two parts:

action(t0 ◦ c0 ◦m, 1, downhill , t1 ◦ c0 ◦m, 1) ← > (4.40)
action(t0 ◦ c0 ◦ s, 1, downhill , t2 ◦ c0 ◦ s, 1) ← > (4.41)

action(t1 ◦ h1, 1, kill , t1, d) ← > (4.42)
action(t2 ◦ h2, 1, kill , t2, d) ← > (4.43)

If the trolley is on track 0, this track is clear, and the switch is in position m then it will run
downhill onto track 1 whereas track 0 remains clear and the switch will remain in positionm;
if, however, the switch is in position s, the trolley will run downhill onto track 2. If the
trolley is on either track 1 or 2 and there is a human on this track, it will kill the human
leading to a casualty.

In the original version of the fluent calculus, causality is expressed by the ternary predi-
cate causes stating that the execution of a plan transfers an initial into a goal state (see
Section 2.4). Its base case is of the form

causes(X, [ ], X),

i.e. an empty plan does not change any state X. Generating models bottom up using a
semantic operator one has to consider all ground instances of this atom. This set is usually
too large to consider it as a base case for human reasoning episodes. The solution presented
herein overcomes this problem in that we only have a small number of base cases depending
on the number of options an agent like Hank may consider.

In fact, we are not going to solve planning problems like whether there exists a plan such that
its execution transforms the intial state (4.39) into a goal state meeting certain constraints.
Rather we want to compare the outcomes, i.e. the indirect effects, of the actions Hank can
possibly perform. In other words, we want to compare the ramifications of either doing
nothing or throwing the switch in the bystander scenario.

To this end, we will use a binary relation symbol ramify whose first argument is the name
of an action and whose second and third arguments are the state obtained when executing
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the action. The possible actions of Hank are the base cases in the definition of ramify :

ramify(donothing , t0 ◦ c0 ◦m ◦ h1 ◦ h1 ◦ h2, 1) ← > (4.44)
ramify(change, t0 ◦ c0 ◦ s ◦ h1 ◦ h1 ◦ h2, 1) ← > (4.45)

Further actions can be applied to the second argument of ramify given the actions specified
in (4.40)

ramify(A,E1 ◦ Z1, E2 ◦ Z2) ← action(P1, P2, A
′, E1, E2) ∧ (4.46)

ramify(A,P1 ◦ Z1, P2 ◦ Z2) ∧
¬abramify A

′.

It checks whether in a given state (P1 ◦ Z1, P2 ◦ Z2) an action A′ is applicable, which is the
case if the preconditions (P1, P2) are contained in the given state. If this holds then the
action is executed leading to the successor state (E1 ◦ Z1, E2 ◦ Z2), where (E1, E2) are the
direct effects of the action A′. In other words, if an action is applied then its preconditions
are consumed and its direct effects are produced. Such an action application is considered
to be a ramification [66] with respect to the initial, direct action performed by Hank. Hence,
the first argument A of ramify is not changed.

The execution of an action is also conditioned by ¬abramify A
′, where abramify is an abnor-

mality predicate. Such abnormalities were introduced in [61] to represent conditionals as
licenses for inference. In this example, there is nothing abnormal known with respect to the
actions downhill and kill and, consequently, the assumptions

abramify downhill ← ⊥, (4.47)
abramify kill ← ⊥ (4.48)

are added to the program (4.46). But we can imagine situations, where the trolley will only
cross the switch if the switch is not broken. If the switch is broken, the trolley may derail.
Such a scenario can be modeled using the techniques presented in Sections 3.5 and 4.5.

Let
P0 = {(4.40), (4.41), (4.42), (4.43), (4.46), (4.47), (4.48)}

and consider the AC1-equational theory (2.1). Hank has the choice to do nothing or to
change the switch. The indirect effects of his decision are computed as ramifications in the
fluent calculus [66].

If Hank is doing nothing then let

P1 = P0 ∪ {(4.44)}

The least model of the weak completion of P1 – which is equal to the least fixed point of ΦP1

– is computed by iterating ΦP1
starting with the empty interpretation 〈∅, ∅〉. The following

equivalence classes will be mapped to true in subsequent steps of the iteration:

[ramify(donothing , t0 ◦ c0 ◦m ◦ h1 ◦ h1 ◦ h2, 1)],

[ramify(donothing , t1 ◦ c0 ◦m ◦ h1 ◦ h1 ◦ h2, 1)],

[ramify(donothing , t1 ◦ c0 ◦m ◦ h1 ◦ h2, d)],

[ramify(donothing , t1 ◦ c0 ◦m ◦ h2, d ◦ d)].
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ΦP′
1

I> I⊥

1 [ramify(donothing , t0 ◦ c0 ◦m ◦ h1 ◦ h1 ◦ h2, 1)] [abramify downhill ]
[action(t0 ◦ c0 ◦m, 1, downhill , t1 ◦ c0 ◦m, 1)] [abramify kill ]
[action(t0 ◦ c0 ◦ s, 1, downhill , t2 ◦ c0 ◦ s, 1)]

[action(t1 ◦ h1, 1, kill , t1, d)]
[action(t2 ◦ h2, 1, kill , t2, d)]

2 [ramify(donothing , t1 ◦ c0 ◦m ◦ h1 ◦ h1 ◦ h2, 1)]
[aa(donothing , t0 ◦ c0 ◦m ◦ h1 ◦ h1 ◦ h2, 1)]

3 [ramify(donothing , t1 ◦ c0 ◦m ◦ h1 ◦ h2, d)]
[aa(donothing , t1 ◦ c0 ◦m ◦ h1 ◦ h1 ◦ h2, 1)]

4 [ramify(donothing , t1 ◦ c0 ◦m ◦ h2, d ◦ d)]
[aa(donothing , t1 ◦ c0 ◦m ◦ h1 ◦ h2, d)]

Table 4.4: The computation of the least model of wcP ′1, i.e. the program obtained if Hank
is doing nothing. In each step, only the atoms are listed which are newly added.

They correspond precisely to the four states shown in Figure 4.2. No further action is
applicable to the elements of the final congruence class. The two people on the main track
will be killed.

But one problem remains: We need to identify the nstance of the ramify predicate to which
no further action is applicable. To this end we specify

aa(A,P1 ◦ Z1, P2 ◦ Z2) ← action(P1, P2, A
′, E1, E2) ∧ (4.49)

ramify(A,P1 ◦ Z1, P2 ◦ Z2) ∧
¬abramify A

′.

Informally, aa(A,X1, X2) is true if there is an action A′ which is applicable in the state
(X1, X2). Comparing (4.56) and (4.46) we find that the bodies of these rules are identical.
Thus, whenever a truth value is assigned to the head of (4.46), the same truth value will be
assigned to the corresponding head of (4.56). Formally, let

P ′1 = P1 ∪ {(4.56)}.

The computation of least fixed point of ΦP′
1
is shown in Table 4.4.

Let us return to Hank’s choices. If Hank is changing the switch then let

P ′2 = P0 ∪ {(4.45), (4.56)}.

The least fixed point of ΦP′
2
contains

[ramify(change, t2 ◦ c0 ◦ s ◦ h1 ◦ h1, d)].



4.6. ETHICAL DECISION PROBLEMS 91

0

→

s

m

1

••

2

•

0
s

m

1

••

2

→ •

0
s

m ••

2

d ↓

(initial state)

(trolley moving to track 2)

(trolley killing human on track 2)

Figure 4.3: The bystander case (initial state) and its ramifications if Hank decides to change
the switch. One should observe that now the switch points to the side track.

The two people on the main track will be saved but the person on the side track will be
killed. This case is illustrated in Figure 4.3.

The two cases can be compared by means of a prefer rule:

prefer(A1, A2) ← ramify(A1, Z1, D1) ∧ (4.50)
¬ctxtaa(A1, Z1, D1) ∧
ramify(A2, Z2, D1 ◦ d ◦D2) ∧
¬ctxtaa(A2, Z2, D1 ◦ d ◦D2) ∧
¬abprefer A1,

abprefer change ← ⊥,
abprefer donothing ← ⊥.

prefer only compares states, to which no further action is applicable. In the bystander case
these are the states

(t1 ◦ c0 ◦m ◦ h2, d ◦ d)

and
(t2 ◦ c0 ◦ s ◦ h1 ◦ h1, d)

They can be identified in the least fixed points of ΦP′
1
and ΦP′

2
because there is no corre-

sponding tuple of the aa relation. The ctxt operator will map these unknowabilities to false
and the negations thereof will be mapped to true. Comparing D1 and D1 ◦ d ◦D2, action
A2 leads to at least one more dead person than action A1. Hence, A1 is preferred over A2

if nothing abnormal is known about A1.

Under an utilitarian point of view [8], the change action is preferable to the donothing
action as it will kill fewer humans. On the other hand, we know that a purely utilitarian
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Figure 4.4: The bystander case (initial state) and its ramifications if Hank is considering
the counterfactual.

view is impossible in case of human casualties. Hank may ask himself: Would I still save
the humans on the main track if there were no human on the side track and I changed the
switch? This is a counterfactual because its antecedent is false in the current state. But we
can easily deal with it by starting a new computation with the additional fact

ramify(change, t0 ◦ c0 ◦ s ◦ h1 ◦ h1 ◦ c2, 1) ← >. (4.51)

Comparing (2) and the second fact in the program (4.44), h2 has been replaced by c2. There
is no human on track 2 anymore and, hence, this track is clear. This is a minimal change
necessary to satisfy the precondition of the counterfactual. In this case, the least model of
the extended program will contain

[ramify(change, t0 ◦ c0 ◦ s ◦ h1 ◦ h1 ◦ c2, 1)].

This case is illustrated in Figure 4.4. Using

perm_double change ← prefer(change, donothing) ∧ (4.52)
ramify(change, t2 ◦ c0 ◦ s ◦ h1 ◦ h1 ◦ c2, 1) ∧
¬ctxtaa(change, t2 ◦ c0 ◦ s ◦ h1 ◦ h1 ◦ c2, 1) ∧
¬abperm_double change,

abperm_double change ← ⊥

allows Hank to conclude that changing the switch is permissible within the doctrine of double
effect [5].

4.6.2 The Footbridge

The case is similar to the bystander case except that instead of the switch a footbridge is
crossing the main track. Ian is standing on the footbridge next to a heavy human, which he
can throw on the track in the path of the trolley to stop it. Is it morally permissible for Ian
to throw the human down?
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Figure 4.5: The footbridge case.

This case is illustrated in Figure 4.5. The track is again segmented. We use b1 to denote
that there is a heavy human on the footbridge crossing segment 1 of the track. Ian has two
possibilities: donothing and throw . They are represented as the base cases in the definition
of ramify :

ramify(donothing , t0 ◦ c0 ◦ c1 ◦ b1 ◦ h2 ◦ h2, 1) ← >, (4.53)
ramify(throw , t0 ◦ c0 ◦ h2 ◦ h2, d) ← >.

One should observe that in the case of donothing track 1 is clear (c1), whereas this does not
hold if Ian has decided to throw down the heavy human. In the latter case, a dead body is
blocking track 1.

As in the footbridge case, one is tempted to reason that the throw action is preferable to the
donothing action as it will kill fewer humans. But throwing down a heavy human involves
an intentional direct kill, and intentional kills are not allowed under the doctrine of double
effect. This can be modeled with the help of the abnormality predicate abprefer by adding

abprefer throw ← ⊥, (4.54)
abprefer throw ← intent_direct_kill throw ,

intent_direct_kill throw ← >

to the program (4.50) Hence, throwing down the heavy human is not preferred and, thus,
not permissible. The example demonstrates again the way abnormalities are used in the
Weak Completion Semantics. If nothing is known then a negative assumption about the
abnormality is made by the first clause occurring in (4.50). This assumption can be overrid-
den once additional knowledge becomes available. In this case we learn that an intentional
direct kill overrides the negative assumption, which is expressed in the second clause occur-
ring in (4.50). Moreover, from the specification of the throw action we can derive that the
killing of the heavy human was intentional as it is a direct effect of this action, which leads
to the third clause occurring in (4.50).

4.6.3 The Loop

The case is similar to the bystander case. Ned is standing next to a switch which he can
change that will temporarily turn the trolley onto a loop side track. There is a heavy human
on the side track. If the trolley hits the heavy human then this will slow down the trolley,
giving the two people on the main track sufficient time to escape. But it will kill the heavy
human. Is it morally permissible for Ned to throw the switch?



94 CHAPTER 4. APPLICATIONS AND EXTENSIONS

→

•
••

Figure 4.6: The loop case.

This case is illustrated in Figure 4.6. Ned can reason that if he does nothing then the
humans on the main track will be killed. Likewise, if he changes the switch then the humans
on the main track will be saved whereas the human on the side track will be killed. But the
counterfactual if there were no human on the side and he changes the switch then he would
still save the humans on the main track will be false. Hence, according to the doctrine
of double effect changing the switch is not permissible. However, the doctrine of triple
effect [39] allows to distinguish between direct and indirect intentional kills such that the
change action becomes permissible under the doctrine of triple effects.

This example can also be modeled under the Weak Completion Semantics. Because killing
a human is not a direct effect of the change action we may add

abprefer change ← intent_direct_kill change, (4.55)
intent_direct_kill change ← ⊥

to the program (4.50). Consequently, the change action will be preferred over the donothing
action. A properly revised definition for permissibility will allow Ned to conclude that
changing the switch is permissible under the doctrine of triple effect:

perm_triple change ← prefer(change, donothing) ∧ (4.56)
¬ intent_direct_kill change

¬ abperm_triple change,

abperm_triple change ← ⊥

4.6.4 The Loop and a Push

The loop-push case is a variant of the loop case in that besides changing the switch, a heavy
human has to be pushed on the looping side track in order to save the humans on the main
track (see Figure 4.7). Thus, a direct intentional kill is needed to stop the trolley and,
consequently, neither the doctrine of double effect nor the doctrine of triple effect permit
the change action.

4.6.5 Man in Front

The man-in-front case is another variant of the loop case in that a heavy object is blocking
the sidetrack behind the heavy human. If the trolley hits the heavy object, it will stop (see
Figure 4.8). Hence, the killing of the heavy human is no longer intended in order to save
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Figure 4.8: The loop-push case.

the humans on the main track and the chance action is permissible under the doctrines of
double and triple effect.

4.6.6 The Collapsing Bridge

The collapse-bridge case is a variant of the footbridge case. Instead of throwing the heavy
human from the bridge, the bridge is collapsed in its entirety. This places the heavy human
and the debris of he bridge on the track, effectively stopping the trolley (see Figure 4.9).
Hence, the killing of the heavy human is not intentional and the collapse of the bridge
becomes permissible under the doctrines of double and triple effect.

4.6.7 Summary

Table 4.5 gives a summary according to which view which action is permissible for each case.

4.6.8 Fluent Matching Problems

Let us discuss the computation of the least fixed point of the semantic operator ΦP′
1
shown

in Table 4.4 in more detail.

ΦP′
1
(〈∅, ∅〉) = ΦP′

1
↑1 = 〈I>1 , I⊥1 〉,
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Bystander Loop Footbridge Loop-Push Man-in-Front Collapse
Double Effect change - - - change collapse
Triple Effect change change - - change collapse

Utilitarianism change change throw change throw change collapse

Table 4.5: The six cases and the permissible actions according to the different views.

where
I>1 = { [ramify(donothing , t0 ◦ c0 ◦m ◦ h1 ◦ h1 ◦ h2, 1)],

[action(t0 ◦ c0 ◦m, 1, downhill , t1 ◦ c0 ◦m, 1)],

[action(t0 ◦ c0 ◦ s, 1, downhill , t2 ◦ c0 ◦ s, 1)],

[action(t1 ◦ h1, 1, kill , t1, d)],

[action(t2 ◦ h2, 1, kill , t2, d)] },
I⊥1 = { [abramify downhill ],

[abramify kill ] }.
Considering the body of (4.46) we find that both possible ground instances of abramify A

′,
viz. abramify downhill and abramify kill , are false under ΦP′

1
↑ 1 and their negations are true

under ΦP′
1
↑1. The only ground instance of

ramify(A,P1 ◦ Z1, P2 ◦ Z2) (4.57)

being true under ΦP′
1
↑1 is

ramify(donothing , t0 ◦ c0 ◦m ◦ h1 ◦ h1 ◦ h2, 1). (4.58)

Hence, we are searching for a ground instance of

action(P1, P2, A
′, E1, E2)

being true under ΦP′
1
↑1 such that

• the ground instance of P1 is contained in t0 ◦ c0 ◦m ◦ h1 ◦ h1 ◦ h2 and

• the ground instance of P2 is contained in 1.

There are four candidates in ΦP′
1
↑1. The only possible ground instance of an action meeting

the conditions is
action(t0 ◦ c0 ◦m, 1, downhill , t1 ◦ c0 ◦m, 1). (4.59)
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Comparing the second arguments of (4.57) and (4.58) with the first argument of (4.59) we
find that

P1 = t0 ◦ c0 ◦m and Z1 = h1 ◦ h1 ◦ h2.

Likewise, comparing the third arguments of (4.57) and (4.58) with the second argument of
(4.59) we find that

P2 = 1 and Z2 = 1.

Combining Z1 with the fourth argument of (4.59) and, likewise, combining Z2 with the fifth
argument of (4.59) we learn that

ramify(donothing , t1 ◦ c0 ◦m ◦ h1 ◦ h1 ◦ h2, 1)

must be true under ΦP′
1
↑2.

Likewise, we can compute that

[ramify(donothing , t1 ◦ c0 ◦m ◦ h1 ◦ h2, d)]

must be true under ΦP′
1
↑3 and

[ramify(donothing , t1 ◦ c0 ◦m ◦ h2, d ◦ d)]

must be true under ΦP′
1
↑4.

Hence, in order to compute the semantic operator we have to solve AC1-matching problems
of the form

t0 ◦ c0 ◦m ◦ Z1 =AC1 t0 ◦ c0 ◦m ◦ h1 ◦ h1 ◦ h2 and 1 ◦ Z2 =AC1 1

or of the form

t0 ◦ c0 ◦ s ◦ Z1 =AC1 t0 ◦ c0 ◦m ◦ h1 ◦ h1 ◦ h2 and 1 ◦ Z2 =AC1 1.

Whereas the latter has no solution, the former does. In general, we need to solve so-called
fluent matching problems of the form

s ◦ Z =AC1 t (4.60)

where s and t are ground fluent terms and Z is a variable.

Such problems have been considered in [62, 36], where s was a fluent term. It was shown
that fluent matching is decidable, finitary, and there always exists a minimal and complete
set of matchers. The fluent matching algorithm presented in [62, 36] can be easily adapted
to the fact that s is ground:

1 If s =AC1 1 then return {Z 7→ t}.
2 Don’t care non-deterministically select a fluent u occurring in s

and remove u from s.
3 If u occurs in t then delete u from t and goto 1,

else stop with failure.
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Hence, with s being a ground fluent term, fluent matching becomes unitary.

Using the correspondence between fluent terms and multisets, let S and T be the multisets
corresponding to the fluent terms s and t. Then, the fluent matching problem (4.60) has a
solution iff

S ⊆̇ T .

If (4.60) has a solution then Z is mapped onto the fluent term corresponding to

T \̇ S.

4.6.9 On the Adequateness of the Approach

Do humans reason with AC1-matchers in the limited form described in the previous section?
Obviously, the multisets should not be large as there is compelling evidence that humans
cannot deal with many different objects at one time [50]. In the trolley problems discussed in
this paper the maximal number of fluents was six. Even if we increase the number of humans
on the main track to five as in the original version of the bystander case [23], the size of the
multisets becomes only nine. Moreover, the actions did not increase the number of fluents
in that the number of immediate effects was always equal to the number of preconditions.

In Germany small children in the Kindergarden are asked to solve puzzles of the following
form. Given several fruits like, for example, four apples and three peas, they are asked how
many pieces are left after they would give some, say, two apples and one pea, away. The
puzzles are presented in pictures. In most cases, the children are crossing out the pieces
given away and, afterwards, are counting the remaining ones. In other words, they seem to
solve exactly the AC1-matching problems discussed in the previous section. But to the best
of our knowledge, there are almost no experimental data on how humans deal with multisets
(see e.g. [53, 28]). Hence, we hypothesize that humans can solve such matching problems
although we must be careful as the ethical decision problems considered herein are more
abstract than the puzzles solved by the children and it is well-known that humans solve less
abstract problems differently than abstract ones (see e.g. [51, 67, 25]). Thus, the hypothesis
must be experimentally tested.



Chapter 5

A Connectionist Realization

where we develop a connectionist model for the Weak Completion Semantics.

5.1 Representing Interpretations

5.2 Computung Semantic Operators

5.3 Computing Possible Explanations

5.4 Computing Skeptical Abduction
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Chapter 6

Outlook

where we discuss some open problems.

6.1 Reasoning Towards a Program

6.2 Bounded Skeptical Abduction

6.3 Sequence Matters

6.4 Counterfactuals with Unknown Antecedents

Let us consider a variant of the forest fire example discussed in Section 4.1.6 where the
background knowledge has been slightly changed:

If it is not raining then lightning may cause a forest fire. Lightning happened.
If it is not raining then the leaves are dry. The absence of dry leaves is an
abnormality.

The background knowledge can be encoded in a program consisting of the following clauses:

forestfire ← lightning ∧ ¬rain ∧ ¬ab`, (6.1)
ab` ← ¬dryleaves,

lightning ← >,
dryleaves ← ¬rain.

101
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The least model of this program is

M(6.1) = 〈{lightning}, ∅〉.

The atom rain is undefined and, hence, the set of abducibles is

{rain ← >, rain ← ⊥}.

Consider again the conditional

if there had not been so many dry leaves on the forest floor then the forest fire
would not have occurred

or
¬dryleaves ⇒ ¬forestfire.

In addition, suppose we were told (or a speech analysis tool suggests) that the conditional
is a counterfactual. Its antecedent ¬dryleaves is unknown underM(6.1).

There are at least two different ways to proceed in the evaluation of a counterfactual C ⇒ D
whose antecedent is unknown with respect to the background knowledge:

1. We can apply the procedure minimal revision followed by abduction to map C to true
and evaluate the counterfactual with respect to the modified program. One should
observe that the modified program is a monotonic extension of the original program.

2. We can apply the procedure minimal revision followed by abduction to map C to false
and, thereafter, (non-monotonically) revise the modified program to force C to be true.

Let us investigate the outcome given the scenario mentioned above. For the first option,
¬dryleaves is explained by the minimal explanation

rain ← >. (6.2)

Adding the explanation to the program (6.1) we obtain

M(6.1)∪(6.2) = 〈{lightning , rain, ab`}, {forestfire, dryleaves}〉.

Under this interpretation the counterfactual is true.

For the second option we need to map ¬dryleaves to false in a first step. This will happen
if we abduce

rain ← ⊥. (6.3)

Adding this explanation to the program (6.1) we obtain

M(6.1)∪(6.3) = 〈{lightning , dryleaves, forestfire}, {ab`, rain}〉.

Under this interpretation the antecedent ¬dryleaves of the counterfactual is false and we
revise the program (6.1) with respect to ¬dryleaves to obtain

Mrev((6.1)∪(6.3),¬dryleaves) = 〈{lightning , ab`}, {forestfire, dryleaves, rain}〉.
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Under this interpretation the counterfactual is still true, but the model of the revised pro-
gram differs fromM(6.1)∪(6.2) in the value for the atom rain. Hence, the conditional

¬dryleaves ⇒ rain

will be true under the first option but false under the second one.

How shall we evaluate counterfactuals with unknown antecedent?

6.5 Unknown Conclusions

In the forest fire example discussed in Section 4.1.6 we have evaluated the conditional

If there had not been so many dry leaves on the forest floor then the forest fire
would not have occurred

with respect to the background knowledge that lightning as well as arson may cause forest
fire. In the final case considered, the conditional was evaluated to unknown as forestfire was
unknown.

We could apply abduction in case of unknown consequences of conditionals. Given the
program (4.12) ∪ (4.13) the only undefined atom is arson. Assuming that the background
knowledge was correct, the set of abducibles is

{arson ← >, arson ← ⊥}.

The only minimal explanation for ¬forestfire is

arson ← ⊥.

Adding this explanation to the program will make the counterfactual true under the condi-
tion that no arson has taken place.

This corresponds to evaluating the extended conditional

If there had not been so many dry leaves on the forest floor and no arson has
taken place then the forest fire would not have occurred

under the procedure minimal revision followed by abduction discussed in Section 4.1.2.

How shall we evaluate conditionals with unknown conclusion?

6.6 The Moral Machine Experiment

[6]
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6.7 The Need for Experimental Data

In [15] seperate inference rules for abduction and revision were defined. These rules were
applied in cases, when the antecedent of a conditional was unknown. Moreover, the rules
could be applied in any order. As example the firing squad case of Section 4.1.5 was discussed.
In particular, it was shown that depending on the order in which these rules are applied the
conditional

if the captain gave no signal and rifleman a decides to shoot then the court did
not order an execution

may be either true, false, or unknown. Unfortunately, Judae Pearl, who discussed this ex-
ample in [54] did not report any experimental data to see how humans evaluate this and the
other conditionals discussed in Section 4.1.5. But only experiments could tell us, in which
direction theWeak Completion Semantics shall be developed. For the time being we hypoth-
esize that the procedure minimal revision followed by abduction discussed in Section 4.1.2
shall be applied. But this needs to be tested.

6.8 Connectionist Reasoning and Learning
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