Data:	IHPC. MA. Nr. 3210 Version: 02.12.2010 Start Year: WiSe 2012
Module Name:	Introduction to High Performance Computing and Optimization
(English):	
Responsible:	Rheinbach, Oliver / Prof. Dr.
Lecturer(s):	Rheinbach, Oliver / Prof. Dr.
Institute(s):	Institute of Numerical Mathematics and Optimization
Duration:	1 Semester(s)
Competencies:	The students shall have an understanding of and ability to apply:
	 Parallel numerical algorithms Parallel computing on shared and distributed memory multiprocessor systems.
	The students know relevant terms in English.
Contents:	Most important ingredients are:
	 Design and analysis of algorithms Portable parallel programming with OpenMP and the MPI (Message Passing Interface) Code profiling and tracing (VAMPIR) and optimization methods BLAS (Basic Linear Algebra Subprograms) Parallel Equation Solution (dense/sparse systems) LU-Decomposition, Tridiagonal Solvers, Iterative Methods International literature and relevant terms in English
Literature:	
Types of Teaching:	S1 (WS): Lectures (2 SWS) S1 (WS): Exercises (1 SWS)
Pre-requisites:	Misc: Basics of numerical analysis and knowledge in scientific programming
Used in:	Computational Science and Engineering, MA (WP)
Frequency:	yearly in the winter semester
Requirements for Credit Points:	For the award of credit points it is necessary to pass the module exam. The module exam contains: MP/KA: MP = individual examination (KA if 20 students or more) [MP minimum 30 min / KA 120 min] Requirements for the module exam: PVL: Programming Project
Credit Points:	4
Grade:	The Grade is generated from the examination result(s) with the following weights (w): MP/KA: MP = individual examination [w: 1]
Workload:	The workload is 120h. It is the result of 45h attendance and 75h self-studies.