Module Name: Numerical Analysis of Differential Equations

Responsible: Eiermann, Michael / Prof. Dr.
Lecturer(s): Eiermann, Michael / Prof. Dr.
Rheinbach, Oliver / Prof. Dr.
Helm, Mario / Dr.

Institute(s): Institute of Numerical Mathematics and Optimization

Duration: 1 Semester(s)

Competencies: Students shall have an understanding to fundamental techniques for the numerical solution of ordinary and partial differential equations. The students know relevant terms in English.

Contents: ODEs: Euler methods, Runge Rutta Methods, Linear Multistep Methods, Stability, Stiffness;
PDEs: Finite Difference techniques, time stepping, von Neumann stability analysis. International literature and relevant terms in English are explained.

Literature: Finite Difference Methods for Ordinary and Partial Differential Equations von Randy Leveque, University of Washington

Types of Teaching: S1 (SS): Lectures (2 SWS)
S1 (SS): Exercises (1 SWS)

Pre-requisites: Misc: Advanced mathematics course for scientists and engineers. Some familiarity with the theory or applications of differential equations is helpful

Used in: Verfahrenstechnik, DIPL (WP)
Computational Science and Engineering, MA (WP)

Frequency: yearly in the summer semester

Requirements for Credit Points: For the award of credit points it is necessary to pass the module exam. The module exam contains:
KA [120 min]

Credit Points: 3

Grade: The Grade is generated from the examination result(s) with the following weights (w):
KA [w: 1]

Workload: The workload is 90h. It is the result of 45h attendance and 45h self-studies.